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Partial orders




Partial orders

Partial orders

Given a set X, a relation = € X x X is a partial order

if it is:
Q reflexive: Vx € X, x C x
@ antisymmetric: Vx,y e X, xCyAyCx = x=y
@ transitive: Vx,y,ze X, xCyAyLCz = xLC z

(X,C) is a poset (partially ordered set).

If we drop antisymmetry, we have a preorder instead.
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Partial orders

Examples: partial orders

Partial orders:

e (Z,<)

completely ordered)

(
(
° (P(X), <)

(not completely ordered: {1} Z {2}, {2} Z{1})
(

(

(

S,=) is a poset for any S

e (Z%,C), where (a,b) C (a', V) <= a>ad Ab< PV
ordering of interval bounds that implies inclusion)
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Partial orders

Examples: preorders

Preorders:

o (P(X),C), where aC b < |a| < |b|

ordered by cardinal)

a,b)C (&, V) <= {x]a<x<b}C{x|d <x<Vb}
inclusion of intervals represented by pairs of bounds)

(P
(
e (Z2,C), where
(
(

not antisymmetric: [1,0] # [2,0] but [1,0] C [2,0] C [1,0]

Equivalence: =
X=Y < XCYAYLX
We obtain a partial order by quotienting by =.
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Partial orders

Examples of posets (cont.)

@ Given by a Hasse diagram, e.g.:
g
e f

gL g
c d fCf,g
\ / eCeg
b dCd,f,g
cCocef,g
C bC b,c,d, e, f, g
o aCab,c,def,g
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Partial orders

Examples of posets (cont.)

o Infinite Hasse diagram for (NU { oo }, <):

(o]0}

3

2
oo L oo

L 1 g

1C1,2, , 00
0C0,1,2,...,00

0
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Partial orders

Use of posets (informally)

Posets are a very useful notion to discuss about:

@ logic: ordered by implication —

@ approximations: C is an information order
("a C b" means: “a caries more information than b")

@ program verification: program semantics C specification
(e.g.: behaviors of program C accepted behaviors)

course 01-B Mathematical Tools Antoine Miné

p.9 /60



Partial orders

(Least) Upper bounds

@ cis an upper bound of aand bif: aCcand bC ¢

@ cis a least upper bound (lub or join) of a and b if

e c is an upper bound of a and b
o for every upper bound d of aand b, cC d

@
|
|
@ upper bounds of a and b
|
|
b |
alb o @ upper bound of b
RN 1
Ve N |
-, N
s N
[ [
a b
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Partial orders

(Least) Upper bounds

The lub is unique and noted all b.
(proof: assume that ¢ and d are both lubs of a and b; by definition of
lubs, ¢ C d and d C c¢; by antisymmetry of C, ¢ = d)

Generalized to upper bounds of arbitrary (even infinite) sets
UyY,YCX

(well-defined, as LI is commutative and associative).

Similarly, we define greatest lower bounds (glb, meet) alb, MY.
(ambCa,band Ve, cCa,b = cLC alb)

Note: not all posets have lubs, glbs
(e.g.: alU b not defined on ({a,b},=))
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C C X is a chain in (X, ) if it is totally ordered by C:
Vx,ye C,xCyVyLx.

QO
1M

a
M

-
1M
oq




Partial orders

Complete partial orders (CPO)

A poset (X, C) is a complete partial order (CPO)
if every chain C (including () has a least upper bound LI C.

A CPO has a least element L), denoted L.
Examples:

o ({x€Q|0< x<1},<)is not complete, but

(N
({
({xeR|0< x <1}, <) is complete.
e (P(Y),C) is complete for any Y.

(

e (X,C) is complete if X is finite.
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Lattices




Lattices

Lattices

A lattice (X, C, LI, 1) is a poset with
@ a lub all b for every pair of elements a and b;

@ a glb an b for every pair of elements a and b.
Examples:
e integers (Z, <, max, min)

@ integer intervals (presenter later)

o divisibility (presenter later)

If we drop one condition, we have a (join or meet) semilattice.

Reference on lattices: Birkhoff [Birk76].
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Lattices

Example: the interval lattice

Integer intervals: ({[a,b]|a,beZ, a<b}uU{0},C,L,N)

def

where [a, b] U [&', b'] = [min(a, a"), max(b, b')].
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Lattices

Example: the divisibility lattice

\/N\N /N
4\2/6 \3/9 | ------
\1//

Divisibility (N*, |, lcm, gcd) where x|y <% 3k e N, kx =y
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Lattices

Example: the divisibility lattice (cont.)

Let P & {p1,p2,...} be the (infinite) set of prime numbers.

We have a correspondence + between N* and P — N:

@ a = ((x) is the (unique) decomposition of x into prime factors

o1 (a) ¥ [Lep a4 = x

@ ¢ is one-to-one on functions P — N with finite support
(a(a) = 0 except for finitely many factors a)

We have a correspondence between (N*, |, lcm, gcd)
and (N, <, max, min):

° 1—[ amax(a(a),f(a)) — |Cm(H cp a(a) HaeP aﬁ(a))
o [Lep amn((a)BE) — ged(T], P 2@ [Lcp 2°@)
(Va-a( )<8(a) = ([Lep @) ([Lep 2°@)
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Lattices

Complete lattices

A complete lattice (X, C, LI, 11, L, T) is a poset with
Q alub LIS for every set S C X
Q aglbs foreveryset S C X
© a least element L

Q a greatest element T

Notes:

o limplies2asMX =U{y|Vxe X, yCx}
(and 2 implies 1 as well),

eland2imply3and4: L=Ul=1X,T=n0=0UX,

@ a complete lattice is also a CPO.
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Lattices

Complete lattice examples

o real segment [0,1]: ({x € R|0 <x <1}, <, max, min,0,1)
e powersets (P(S), C,U,N,0,S)

@ any finite lattice
(WY and MY for finite Y C X are always defined)

@ integer intervals with finite and infinite bounds:

({[a,b]|la€eZ2U{-0},beZU{+0},a<b}U{d},
C, U, N, 0, [-oo,+00])

with U [a;, bi] = [minjes a;, maxie; bi].
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Lattices

Example: the powerset complete lattice

Example:  (P({0,1,2}),C,U,N,0,{0,1,2})

{0,1,2}
/{‘”2}\
{0,1} {1,2}
o\
) 2)

0
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Lattices

Derivation

Given a (complete) lattice or partial order (X,C, U, M, L, T)
we can derive new (complete) lattices or partial orders by:

o duality
(X, 2,1, T, 1)
e L is reversed
e LI and I are switched
e | and T are switched

o lifting (adding a smallest element)
(Xu{Ll'},Chuwm L1, T
e al’b <« a=1'vaCh
o 'Wa=all1l'=a andall/ b=aUbifab# 1’
o I'Ma=ar1l'=1'andar’b=anbifa,b# 1’
o 1/ replaces L
e T is unchanged
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Lattices

Derivation (cont.)

Given (complete) lattices or partial orders:
(X17 Ela |—|17 |_|1) J—la Tl) and (X2> 227 |—|2a |_|27 J—2> T2)

We can combine them by:

@ product
(Xl X X27 Ea I—l’ [—l, J_, —l—) Where

o () EXy) —= xEixX' Ay Loy
def

o (x,y)U(X,y') = (xU1x', ylay')
o (x,y)M(X,y") = (xMix,yMy)
o L ¥ (1y,1,)
o T & (Ty,T)

@ smashed product (coalescent product, merging 11 and 15)
((X\{Li}) x e\ {L2}))U{ L}, Eum, L, T)
(as X1 x Xa, but all elements of the form (Ly,y) and (x, L) are
identified to a unique L element)
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Lattices

Derivation (cont.)

Given a (complete) lattice or partial order (X,C, U, M, L, T)

and a set S:

@ point-wise lifting (functions from S to X)

(S — X, 1, v, L', T") where

course 01-B

xCy <= Vse S:x(s)Cy(s)
Vs e S (xU y)(s) & x(s)Uy(s)
Vs e S:(xM y)(s) = x(s)My(s)
VseS:L'(s)=1
VseS:T'(s)=T

o
<)

f

Mathematical Tools

Antoine Miné

p. 25 / 60



Lattices

Distributivity

A lattice (X, C, U, M) is distributive if:
e all(bMc)=(amb)U(alMc) and
e all(bUc)=(aub)M(alc) and

Examples:

e (P(X),<,U,n) is distributive

@ intervals are not distributive
([0,0]u(2,2]) 1 [1,1] = [0,2] (1 [L, 1] = [1,1] but
(0,01 [L ) U ([2,2 M [L,1]) =0 U =0

(common cause of precision loss in static analyses)
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Lattices

Sublattice

Given a lattice (X,C,U,M) and X' C X
(X', C, U, M) is a sublattice of X if X is closed under L and M

Examples:

o if YCX, (P(Y

), S, U,N, 0, Y) is a sublattice of
(P(X),<C,u,n,0,X)

@ integer intervals are not a sublattice of (P(Z),C,U,N,0,2)
[min(a, a'), max(b, b')] # [a, b] U [, ']

(another common cause of precision loss in static analyses)
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Fixpoints

Functions

A function f : (X1,Cq,U1, L1) = (X2, 52, Up, Lo) is
@ monotonic if
Vx,x', xC1 X' = f(x)Co (X))
(aka: increasing, isotone, order-preserving, morphism)

@ strict if f(Ll) =15

@ continuous between CPO if
VC chain C X, {f(c)|ce C}isachaininY
and f(LU; C) =1 {f(c)|ce C}

@ a (complete) LI—morphism between (complete) lattices
if VS C X, f(|_|15):|_|2{f(5)‘$€ 5}

@ extensive if X1 = Xy and Vx, x Ty f(x)
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Fixpoints

Fixpoints

Given f: (X,C) — (X,E)
@ x is a fixpoint of f if f(x) = x

@ x is a pre-fixpoint of f if x C f(x)
@ x is a post-fixpoint of f if f(x) C x

We may have several fixpoints (or none)
def

o fp(f) = {xe X|f(x)=x}

o Ifp, f & minc {y e fp(f)|x Ty} if it exists
(least fixpoint greater than x)

o Ifpf € ifp, f
(least fixpoint)

o dually: gfp, f = maxc {y e fp(f)|y Cx}, gfpf < gfprf
(greatest fixpoints)
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e

® pre

pre

Monotonic function with two distinct fixpoints




Fixpoints

Fixpoints: example

N

[ ]
=5

C

N\
/

pre

za

Monotonic function with a unique fixpoint
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post

o PI® < °

pre

Non-monotonic function with no fixpoint




Fixpoints

Uses of fixpoints: examples

@ Express solutions of mutually recursive equation systems

Example:

X1 = f(Xl,Xz)

with xq, x, in lattice X
x2 = g(x1,x2) '

The solution of {

are exactly the fixpoint of F in lattice X x X, where

F(x1, %) = (f(x1, %), g(x1, 2))

The least solution is Ifp F.
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Fixpoints

Uses of fixpoints: examples

@ Close (complete) sets to satisfy a given property

Example:
r C P(X x X) is transitive if:
(a,b) e rA(b,c)er = (a,c)er

The transitive closure of r is the smallest relation transitive
containing r.

Let f(s) =rU{(a,c)|(a,b) € sA(b,c) € s}, then Ifpf:
o Ifp(s) contains r
o Ifp(s) is transitive

o Ifp(s) is minimal

— Ifp f is the transitive closure of r.
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Fixpoints

Tarski's fixpoint theorem

Tarksi's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proved by Knaster and Tarski [Tars55].
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Fixpoints

Tarski's fixpoint theorem

Tarksi's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
We prove Ifpf =M {x|f(x) C x} (meet of post-fixpoints).

|
post

pre post pre

course 01-B Mathematical Tools Antoine Miné

p. 37 / 60



Fixpoints

Tarski's fixpoint theorem

Tarksi's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
We prove Ifpf =M {x|f(x) C x} (meet of post-fixpoints).
Let f*={x|f(x)Ex}and a="f*

Vx € f*, aC x (by definition of M)

so f(a) C f(x) (as f is monotonic)

so f(a) C x (as x is a post-fixpoint).

We deduce that f(a) C 11 f*, ie. f(a)C a.
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Fixpoints

Tarski's fixpoint theorem

Tarksi's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
We prove Ifpf =M {x|f(x) C x} (meet of post-fixpoints).

f(a)C a

so f(f(a)) C f(a) (as f is monotonic)
so f(a) € f*  (by definition of f*)

so aC f(a).

We deduce f(a) = a, so a € fp(f).

Note that y € fp(f) implies y € f*.
As a=T1f* aC y, and we deduce a = Ifpf.
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Fixpoints

Tarski's fixpoint theorem

Tarksi's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
Given S C fp(f), we prove that Ifp 5 f exists.

Consider X' = {xe X| U SC x}.

X’ is a complete lattice.

Moreover Vx' € X', f(x') € X'.

f can be restricted to a monotonic function ' on X'

We apply the preceding result, so that Ifp f’ = Ifp s f exists.
By definition, Ifp,, s f € fp(f) and is smaller than any fixpoint
larger than all s € S.
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Fixpoints

Tarski's fixpoint theorem

Tarksi's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
By duality, we construct gfp f and gfps f.

The complete lattice of fixpoints is:
(fp(f), C, AS.Ifp s f, AS.gfpnsf, Ifpf, gfpf).

Not necessarily a sublattice of (X,C U, M, L, T)!
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Fixpoints

Tarski's fixpoint theorem: example

C.)

gfp

Ny

1fp

Lattice: ({ Ifp, fpl, fp2, pre, gfp },U, M, Ifp, gfp)
Fixpoint lattice: ({ Ifp, fpl,fp2,gfp }, LV, 7, Ifp, gfp)
(not a sublattice as fpl L fp2 = gfp while fpl LI fp2 = pre,
but gfp is the smallest fixpoint greater than pre)
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Fixpoints

“Kleene” fixpoint theorem

“Kleene” fixpoint theorem

If f: X — X is continuous in a CPO X and a C f(a)
then Ifp, f exists.

Inspired by Kleene [Klee52].
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Fixpoints

“Kleene” fixpoint theorem

“Kleene” fixpoint theorem

If f: X — X is continuous in a CPO X and a C f(a)

then Ifp, f exists.

We prove that { f"(a)|n € N} is a chain and
Ifp, f =U{f"(a)|neN}.
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f(f(a))
f(a)

f(f(f(f(a))))

f(f(f(a)))
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Fixpoints

Kleene" fixpoint theorem

“Kleene” fixpoint theorem

If f: X — X is continuous in a CPO X and a C f(a)
then Ifp, f exists.

We prove that { f"(a)|n € N} is a chain and
Ifp, f =U{f"(a)|neN}.

a C f(a) by hypothesis.

f(a) C f(f(a)) by monotony of f.

By recurrence Vn, f"(a) C f"1(a).

Thus, {f"(a)|n € N} is a chainand U{f"(a)|n € N} exists.
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Fixpoints

“Kleene” fixpoint theorem

“Kleene” fixpoint theorem

If f: X — X is continuous in a CPO X and a C f(a)
then Ifp, f exists.

FU{f"(a)[neN})

=U{f"1@)|neN}) (by continuity)
=aU(U{f™(a)| n € N}) (as all f"*1(a) are greater than a)
=uU{f"(a)|neN}.

So, U{f"(a)|ne N} e fp(f)

Moreover, any fixpoint greater than a must also be greater
than all f"(a), n € N.
So, U{f"(a)|ne N} =Ifp,f.

course 01-B Mathematical Tools Antoine Miné p. 39 / 60



Fixpoints

Well-ordered sets

(S,C) is a well-ordered set if:
@ L is a total order on S
@ every X C S such that X # () has a least element M X € X

Consequences:

@ any element x € S has a successor x +1 = M {y|xCy}
(except the greatest element, if it exists)

o if Ay, x=y+1, xisalimitand x=U{y|y C x}
(every bounded subset X C S has a lub
UX=M{y|VxeX,xCy})

Examples:
e (N,<) and (NU{ o0}, <) are well-ordered
e (Z,<), (R, <), (R, <) are not well-ordered
@ ordinals 0,1,2,...,w,w+1,... are well-ordered (w is a limit)
well-ordered sets are ordinals up to order-isomorphism
(i.e., bijective functions f such that f and ! are monotonic)
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Fixpoints

Constructive Tarski theorem by transfinite iterations

Given a function f : X — X and a € X,

the transfinite iterates of f from a are:
def

Xo = a
def . . .
xp = f(Xp—1) if nis a successor ordinal
def . . . .
xp = U {xm|m<n} ifnisa limit ordinal

Constructive Tarski theorem

If f: X — X is monotonic in a CPO X and a C f(a),
then Ifp, f = x5 for some ordinal §.

Generalisation of “Kleene” fixpoint theorem, from [Cous79].
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Fixpoints

Proof

f is monotonic in a CPO X,

X0 o al f(a)

def

Xn = f(xp—1) if nis a successor ordinal
Xp & U {xm|m<n} ifnisa limit ordinal
Proof:

We prove that 39, x5 = xs511.

We note that m < n — x,, C x,.

Assume by contradiction that Ad, x5 = Xs511-

If nis a successor ordinal, then x,_1 C x,.

If nis a limit ordinal, then Vm < n, x, C Xp.
Thus, all the x, are distinct.

By choosing n > | X|, we arrive at a contradiction.
Thus ¢ exists.
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Fixpoints

Proof

f is monotonic in a CPO X,
def

xo = alC f(a)

def

Xn = f(xp—1) if nis a successor ordinal
Xp & U {xm|m<n} ifnisa limit ordinal
Proof:

Given § such that x541 = xs, we prove that xs = Ifp, f.

f(xs) = xs+1 = x5, s0 x5 € fp(f).

Given any y € fp(f), y 3 a, we prove by transfinite induction
that Vn, x, C y.

By definition xg = a C y.

If nis a successor ordinal, by monotony,

X1 Ty = f(xp—1) Ef(y), ie, x, Cy.

If nis a limit ordinal, Vm < n, x,, C y implies
xp=U{Xxm|m<n}Cy.

Hence, xs C y and x5 = Ifp, f.
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Fixpoints

Ascending chain condition (ACC)

An ascending chain C in (X,C) is a sequence ¢; € X
such that i <j = ¢ <.

A poset (X, C) satisfies the ascending chain condition (ACC)
iff for every ascending chain C, 3i e N, Vj > i, ¢; = ¢.

Similarly, we can define the descending chain condition (DCC).

Examples:

@ the powerset poset (P(X),C) is ACC (and DCC) iff X is
finite

@ the pointed integer poset (ZU{ L },C) where
xCy <= x=1Vx=yis ACC and DCC

e the divisibility poset (N*,|) is DCC but not ACC.
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Fixpoints

Kleene fixpoints in ACC posets

“Kleene" finite fixpoint theorem

If f: X — X is monotonic in an AAC poset X and a C f(a)
then Ifp, f exists.

Proof:

We prove 3n € N, Ifp, f = f"(a).

By monotony of f, the sequence x, = f"(a) is an increasing chain.
By definition of AAC, 3n € N, x, = xpt1 = f(xn).

Thus, x, € fp(f).

Obviously, a = xg C f(x,).

Moreover, if y € fp(f) and y J a, then Vi, y 3 fi(a) = x;.

Hence, y J x, and x, = Ifp, (f).

course 01-B Mathematical Tools Antoine Miné p. 44 / 60



Fixpoints

Comparison of fixpoint theorems

theorem function domain | fixpoint method
Tarski monotonic | complete fp(f) meet of
lattice post-fixpoints

Kleene continuous CPO Ifp,(f) countable
Iterations

constructive | monotonic CPO Ifp,(f) transfinite
Tarski iteration

ACC Kleene | monotonic poset Ifp,(f) finite

iteration
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Galois connections

Galois connections

Given two posets (C, <) and (A, C), the pair
(a: C— A, v:A— C)is a Galois connection iff:

VacA ceC,alc)Ca < c<~(a)

which is noted (C, <) <;—> (A ).

[0}

@ « is the upper adjoint or abstraction; A is the abstract domain.

@ + is the lower adjoint or concretization; C is the concrete domain.
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Galois connections

Properties of Galois connections

Assuming Va, c, a(c) C a <= ¢ < 7(a), we have:
@ o is extensive: Ve, ¢ < vy(a(c))
proof: a(c) C a(c) = ¢ < y(a(c))
@ « o~ is reductive: Ya, a(y(a)) C a
© « is monotonic
proof: c < ¢’ = c <7(a(c')) = a(c) CE o)
© 7 is monotonic
Q@ Yoaoy=1
proof: a(1(2)) C a(+()) = (a) < 1(a(+(a))) and
aJda(y(a)) = ~v(a) = v(a(y(a)))

Q coyoa=«
@ «o~isidempotent: coyoaoy=ao7y
© o« is idempotent
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Galois connections

Alternate characterization

If the pair (a: C — A, : A — C) satisfies:
© 7 is monotonic,
@ « is monotonic,
© 7o« is extensive

@ « oy is reductive

then («,7) is a Galois connection.

(proof left as exercise)
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Galois connections

Uniqueness of the adjoint

Given (C, <) % (A D),

each adjoint can be uniquely defined in term of the other:
Q a(c)=T1{alc<(a)}
Q@ 1(a) =V{cla(c)Ea}

Proof: of 1

Va, c <v(a) = oafc) C a.

Hence, a(c) is a lower bound of { a|c < v(a) }.

Assume that 2’ is another lower bound.

Then, Va, c <~v(a) = 4’ C a.

By Galois connection, we have then Va, a(c) C a = &' C a.
This implies &’ C «a(c).

Hence, the greatest lower bound of { a|c < ~(a) } exists,

and equals «a(c).

The proof of 2 is similar (by duality).
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Galois connections

Properties of Galois connections (cont.)

If (a: C— A~v:A— C), then:
Q@ VX C C,if VX exists, then a(V X) =L {a(x)|[xe X} .

@ VX CA, ifMX exists, then y(MX) = A{~v(x)|x € X }.

Proof: of 1

By definition of lubs, Vx € X, x <V X.

By monotony, ¥x € X, a(x) C a(V X).

Hence, a(V X) is an upper bound of { a(x)|x € X }.
Assume that y is another upper bound of { a(x)|x € X }.
Then, Vx € X, a(x) C y.

By Galois connection Vx € X, x < v(y).

By definition of lubs, V X < ~(y).

By Galois connection, a(V X) C y.

Hence, { a(x)|x € X } has a lub, which equals a(V X).

The proof of 2 is similar (by duality).
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Galois connections

Deriving Galois connections

Given (C, <) &= (A, C), we have:

e duality: (A,J) &= = (C,>)

(a(c) Ea <= c <y(a)isexactly v(a) > ¢ <= aJda(c))
@ point-wise lifting by some set S:

(S = C,<) F‘—L (S — A, L) where

f<f = Vs, f(s) < f'(s), (3(F))(s) =(f(s)),
FEf == Vs, £(s) C f(s), (a(f))(s) = a(f(s)).

Given (X1, £1) == (X2, C2) == (Xs, Ca):

@ composition: (X1,C1) <71——72> (X3,C3)

apoa]

(e oar)(c) B3 a <= ai1(c) Ex 12(a) <= cCy (m1072)(a))
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Galois connections

Galois connection example

Abstract domain of intervals of integers Z
represented as pairs of bounds (a, b).

We have: (P(Z),Q)%(I,E)
o | ¥ (ZU{-0}) x (ZU {+0})
o (a,b)C(d,b) «— a>adAb< P
o v(a,b) £ {xeZ|la<x<hb}
o a(X) & (min X, max X)

proof:
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Galois connections

Galois connection example

Abstract domain of intervals of integers Z
represented as pairs of bounds (a, b).

We have: (P(2),C) % (1,6)

o | £ (ZU{~0}) X (ZU {+0})
a,b)C (d,b) < a>adAb<P
o y(a,b) £ {xeZ|la<x<h}

o a(X) = (min X, max X)

(]
—~

proof:

(X

2

~—

C (a, b)

minX > aAmaxX <b
Vxe X:a<x<b
VxeX:xe{yla<y<b}
Vx € X:x € v(a, b)

X Cv(a, b)
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Galois connections

Galois embeddings

If (C,<) &= (A,C), the following properties are equivalent:
Qais surjective (Vae A, dce C,a(c) = a)
@ ~ is injective (Va,a € A,v(a) =~v(d) = a=2)
Q aovy=id (Vaeg A, id(a) = a)

Such (a,7) is called a Galois embedding, which is noted
(C,<) & (A.C)

Proof:
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Galois connections

Galois embeddings

If (C,<) % (A,), the following properties are equivalent:

Q o is surjective (Vae A, dce C,a(c) = a)
@ ~ is injective (Va,a € A,v(a) =~v(d) = a=2)
Q aovy=id (Vaeg A, id(a) = a)

Such (a,7) is called a Galois embedding, which is noted
(C,<) & (A.C)

Proof: 1 — 2

Assume that y(a) = v(&').

By surjectivity, take ¢, ¢’ such that a = a(c), &’ = «o(c').
Then 7(a(c)) = y(a(c").

And a(y(a(e))) = aly(a(c))-

Asaovoa—a a(c) = a(d).
Hence a = &'.
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Galois connections

Galois embeddings

If (C,<) &= (A,C), the following properties are equivalent:
Qais surjective (Vae A, dce C,a(c) = a)
@ ~ is injective (Va,a € A,v(a) =~v(d) = a=2)
Q aovy=id (Vaeg A, id(a) = a)

Such (a,7) is called a Galois embedding, which is noted
(C,<) & (A.C)

Proof: 2 — 3

Given a € A, we know that v(«a(v(a))) = v(a).
By injectivity of v, a(vy(a)) = a.
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Galois connections

Galois embeddings

If (C,<) &= (A,C), the following properties are equivalent:
Qais surjective (Vae A, dce C,a(c) = a)
@ ~ is injective (Va,a € A,v(a) =~v(d) = a=2)
Q aovy=id (Vaeg A, id(a) = a)

Such (a,7) is called a Galois embedding, which is noted
(C,<) & (A.C)
Proof: 3 —= 1

Given a € A, we have a(y(a)) = a.
Hence, 3c € C, a(c) = a, using ¢ = v(a).
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.~ Galois comnections
Galois embeddings (cont.) _

(C,<) &= (A, D)

C a A

A Galois connection can be made into an embedding by quotienting
A by the equivalence relation a = 3’ <= ~(a) = v(a).
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Galois connections

Galois embedding example

Abstract domain of intervals of integers Z
represented as pairs of ordered bounds (a, b) or L.

We have: (P(Z2),C) % (1,©)

I < {(a,b)|acZU{—oc0},beZU{4o0},a<b}U{L}
(a,b) C (&,b) < a>ad Ab<Pb, V¥xLLCx

o y(a,b) £ {xezZla<x<b}, ~(L)=0

oa( ) = (min X, maxX), or Lif X =0

Q

proof:
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Galois connections

Galois embedding example

Abstract domain of intervals of integers Z
represented as pairs of ordered bounds (a, b) or L.

We have: (P(2), Q) % (1,©)
o | ¥ {(a,b)|lacZU{~xx},beZU{+x},a<b}uU{L}
(a,b) C (&,b) < a>ad Ab<Pb, V¥xLLCx
o y(a,b) = {xeZla<x<b}, ~L)=0
oa( ) = (min X, maxX), or Lif X =0

«2

proof:

Quotient of the “pair of bounds” domain (Z U {—oc0})
the relation (a, b) = (&', b') <= ~(a,b) =~(a', ')
e, (a<bha=aAb=b)Vv(a>bnra >Db).

x (ZU{+40o0}) by
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p: X — X is an upper closure in the poset (X, L) if it is:
@ monotonic: x C x' = p(x) C p(x'),
@ extensive: x C p(x), and
© idempotent: pop =p.




Galois connections

Upper closures and Galois connections

Given (C,<) £ (A,C),
~ o« is an upper closure on (C, <).
Given an upper closure p on (X,C), we have a Galois embedding:

(X,C) == (p(X),C)

— we can rephrase abstract interpretation using upper closures
instead of Galois connections, but we lose:

@ the notion of abstract representation
(a data-structure A representing elements in p(X))

@ the ability to have several distinct abstract representations
for a single concrete object
(non-necessarily injective ~y versus id)
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