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Introduction

Outline

@ The need for relational domains

@ Presentation of a few relational numerical abstract domains
e linear equality domains
e polyhedra domain

o weakly relational domains: zones, octagons

@ Bibliography
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Shortcomings of non-relational domains

Shortcomings of non-relational domains
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Shortcomings of non-relational domains

Accumulated loss of precision

Non-relation domains cannot represent variable relationships.

Rate limiter

Y:=0; while e 1=1 do

T ST Bt
SiThi i LTS S last output
if R<=-D then Y:=S-D fi;
if R>=D then Y:=S+D fi R:  delta Y-S
D:  max. allowed for |R|

done

Iterations in the interval domain (without widening):
X oxr | oxk | xln
Y=0|[y[<144 | [¥|<160 | ... |][Y[<128+16n
In fact, Y € [—128,128] always holds.

To prove that, e.g. Y > —128, we must be able to:
@ represent the properties R =X — S and R < —D,
@ combine them to deduce S — X > D, and then Y=S —D > X.
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Shortcomings of non-relational domains

The need for relational loop invariants

To prove some invariant after the end of a loop,
we often need to find a loop invariant of a more complex form.

relational loop invariant

X:=0; I:=1;

while e I<5000 do
if [0,1]=1 then X:=X+1 else X:=X-1 fi;
I:=I+1

done ¢

A non-relational analysis finds at ¢ that I = 5000 and X € Z.

The best invariant is: (I =5000) A (X € [—4999,4999]) A (X = 0 [2]).

To find this non-relational invariant, we must find a relational loop
invariant at e: (-I <X <I)A(X+1I=1][2])A(I€][1,5000]),
and apply the loop exit condition C*[I >= 5000] .
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Shortcomings of non-relational domains

Modular analysis

store the maximum of X,Y,0 into Z

max(X,Y,Z)

Z :=X ;
if Y > Z then Z :=Y ;
if Z < 0 then Z :=0;

Modular analysis:
@ analyze a procedure once (procedure summary)

@ reuse the summary at each call site (instantiation)
— improved efficiency
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Shortcomings of non-relational domains

Modular analysis

store the maximum of X,Y,0 into Z’

max(X,Y,Z)
X:=X; Y’:=Y; Z’:=Z;
Z’:=X";

if Y’ > Z’ then Z’:=Y’;
if Z° < 0 then Z’:=0;
(ZV>XAZ >YANZ >20ANY =XAY =Y)

Modular analysis:
@ analyze a procedure once (procedure summary)
@ reuse the summary at each call site (instantiation)
= improved efficiency

@ infer a relation between input X,Y,Z and output X',Y',Z" values
P((V—=R)x (V—=R))=P((VxV)—=R)
@ requires inferring relational information
[Anco10], [Jean09]
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Reminders




Reminders

Syntax

Fixed finite set of variables V,
with value in I, | € {Z,Q,R}

arithmetic expressions:

exp = v variable V € V
] —exp negation
| expoexp binary operation: ¢ € {+,—, x,/}
| [c, ] constant range, ¢, ¢’ € | U {£o0}
¢ is a shorthand for [c, c]

commands:

com = V := exp assignment into V€ V
|  expx=<0 test, <€ {=, <, >, <=,>=,<>}
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Reminders

Concrete semantics

Semantics of expressions: Efe]: (V—=1) — P(I)

E[[e.d1]p £ {xellc<x<c'}

E[v]p = {p(v)}
E[-elp ¥ {-v|veEle]p}
E[er+e]p et {vi+w|veElea]p,weE[e]p}

Forward commands: C[c]: P(V—=1)—= PV = 1)

Clv:=e]x ¥ {p[Vv]|peX, veE[e]p}
Clexi0]X ¥ {plpeX, IveE[e]p, vix0}

Backward commands: <E[[c]] cPV—=1) =PV =)

Z[[V::e]].)( E {plIveE[e]p p[V—v]eX)}
ClexiO]X ¥ (Cex0]X
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Reminders

Abstract domain

@ Abstract elements:

e D!, a set of computer-representable elements
e ~ : D¥ = D concretization
o C!, an approximation order: X* CF Y% = ~(X*%) C v()¥)

@ Abstract operators:

C*[c] such that C[c]~v(X#) Cy(Ci[c] &)
UF such that y(X#) U~(DF) C y(XF UF VF)
N* such that y(X%) Ny(VF) C y(XF Nk YF)
C*[ €] such that

A(X%) N CLe]1(RE) € A(C T ] (A%, R)

@ Fixpoint extrapolation:

o V : (D! x DF) — DF widening
o A : (D! x DF) — DF narrowing
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Linear equality domains
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Linear equality domains Affine equalities

The affine equality domain

Here | € {Q,R}.

We look for invariants of the form:

/\j Oy aVi=B)), ajj, Bj €

where all the «j; and 3; are inferred automatically.

We use a domain of affine spaces proposed by [Karr76]:

Df & { affine subspaces of V — | }

/
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Linear equality domains Affine equalities

Affine equality representation

Machine representation:  an affine subspace is represented as

@ either the constant ¥,

e or a pair (M, C) where
e M e I™"isa mx nmatrix, n=|V| and m < n,
o C € 1™ is a row-vector with m rows.

=,

(M, C) represents an equation system, with solutions:
(M, ) E{ Vel MxV=C}

M should be in row echelon form:
e Vi < m, 3k; such that My, =1
and Ve < ki, M;c =0, V/ 75 i Mlk,- =0,
o if i < i then ki < kjr.
Remarks:
@ the representation is unique,
e as m < n = |V|, the memory cost is in O(n?) at worst,
o TP is represented as the empty equation system: m = 0.
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Linear equality domains Affine equalities

Normalisation and emptiness testing

Let M x V = C be a system, not necessarily in normal form.

The Gaussian reduction tells in O(n®) time:
@ whether the system is satisfiable, and in that case
@ gives an equivalent system in normal form.

i.e. returns an element in D¥.

Example:
2X + Y + Z = 19
X + Y - Z = 9
3Z = 15
\
X + 0.5Y = 7
Z =5
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Linear equality domains Affine equalities

Normalisation and emptiness testing (cont.)

Gaussian reduction algorithm:  Gauss((M, C))

r:=0 (rankr)
for c from1ton (column c)
if 3 >r, Mgc 20 (pivot /)

r=r+1

swap (My, G;) and (M,, C,)

divide (M,, C,) by My

for jfrom 1ton, j#r

replace (M;, G;) with (M;, G} — Mic(M,, C,)

if 3¢, (Mg, C) = (0,...,0,¢),c #0
then return unsatisfiable

remove all rows (Mg, Cy) that equal (0,...,0,0)
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Linear equality domains Affine equalities

Affine equality operators

Applications
If X% Yt #* 1% we define:

M C
xtnt oyt & g { X } v
Yy auss My: | Co

Xﬁ:ﬁyﬁ g)’ Mxﬁ:Myﬁ and Cxﬁ:C_:yﬁ

def,

Xtcrt oyt £ xtnt pf =t

f V. A — g def M.y Coys
s 2 cas ([ M 15 T)
Cilea0] X% € X% for other tests

Remark:
Cf, =F, %, =* and Cﬂ[[zj ajV; — 3 =0] are exact:

XECEYE = y(XF) Co(VF),  A(XFNFYE) =y (XF) Ny(VF),...
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Linear equality domains Affine equalities

Generator representation

Generator representation

An affine subspace can also be represented as a set of vector
generators Gi, ..., Gy, and an origin point O, denoted as [G, O].

WG, 0) £ {GxX+0|xecl™} (Gel™m Ocl)
We can switch between a generator and a constraint
representation:

e From generators to constraints: (M, C) = Cons([G, O])

Write the system V =G x X+ O with variables V, X.
Solve it in A (by row operations).
Keep the constraints involving only V.

X = A+2 X—2 = A
e.g. Y = 224+pu+3 = —-2X+Y+1 = p
Z = pu 2X—Y+zZ-1 = 0

The result is: 2X — Y+ Z = 1.
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Linear equality domains Affine equalities

Generator representation (cont.)

o From constraints to generators: [G, 0] & Gen((M, C))

Assume (M, C) is normalized.
For each non-leading variable V, assign a distinct Ay,
solve leading variables in terms of non-leading ones.

-0.5 7
{ x+0.5sZ{ = ; . 1 M| 0
- 0 5
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Linear equality domains Affine equalities

Affine equality operators (cont.)

Applications
Given Xﬁ,yﬂ #* L%, we define:
¢ 0 8 Cons (Gauss (|| Gas Gyu (Oys — Os) |, Oe]))
CH[V; =] — 00, +oo[] XF = Cons (Gauss ([[ G % |, O”Xﬁ]))
CHLV = iV + Bl X =

if a; =0,(C*[ Y, V; —V; + B=0] o CF[V; :=] — o0, +00[ ] ) X*
if aj # 0, X% where V; is replaced with (V; — YizgeiVi = B)/a;

CHV; = e] Xt < CH[V; :=] — oo, +o00[ ] X* for other assignments
Remarks:

e U is optimal, but not exact.
o CH[V; =", a;V; + B] and C*[V; :=] — oo, +oc[] are exact.
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Linear equality domains Affine equalities

Affine equality operators (cont.)

Backward assignments:

def

CHV; :=] — oo, +oo[ | (X#, RF) = X*nf (C*[V; :=] — o0, +00[] R¥)

def

Cﬁ[[Vj = Zi Oé,'V,' + BH (Xu,Rﬁ)
X% N (RF where V; is replaced with (Y, a;V; + 3))

— e A BTN
CHV = e] (X%, RY) & CH[V; :=] — oo, +oo[ ] (X%, RY)
for other assignments

Remarks:

o CH[V; =", a;V; + B8] and CF[V; :=] — 0o, +oo[] are exact
@ a backward assignment can be seen as a substitution wrt.
constraints (similar to Dijkstra's weakest preconditions)
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Linear equality domains Affine equalities

Analysis example

No infinite increasing chain: we can iterate without widening.

Forward analysis example: Te
X:=10
1X:=10; Y:=100; Y:=100
while 2X<>0 do® 2e %=0
X:=X-1;
Y:=Y+10 X<>0 e 4
done? X:=X-1
Y:=Y+10
3'e
10 #1 #2 13 4
7l N B X, | X

¢
1] TF TF TF TH TH
2| 1% | (10,100) | (10,100) | 10X + Y =200 | 10X + Y = 200
3] Lt ik (10,100) (10,100) 10X + Y = 200
4| 1t 14 14 14 (0,200)
Note in particular:

X% = {(10,100)} U* {(9,110)} = { (X,Y) | 10X + Y = 200 }
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Linear equality domains Affine equalities

Constraint-only equality domain

In fact [Karr76] does not use the generator representation.
(rationale: few constraints but many generators in practice)

We need to redefine two operators: forgetting and union.

o CH[V; :=] — oo, +oo[]

Pick the row (M;, ;) such that M;; # 0 and i maximal.

Use it to eliminate all non-0 occurrences of V; in M.
Then remove the row (M;, G;).

[ x +z=10 B
e.g. forgetting Z: { Y477 = {X7Y73

The operator is exact.
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Linear equality domains Affine equalities

Constraint-only equality domain (cont.)

o (M, C) U (N, D)

Idea: unify columns 1 to nin (M, C) and (N, D)
using row operations.

e.g. unify columns £(0 1 0) and (3 0 0).
RO M R A Ny R 3 M R A Ny
01 M [,] 0onN, |=]| 00 0 [.] 00N
00 M; 0 0 N3 00 M; 0 0 N3
Use the row (6 1 Mg) to create 3 in the left argument.
Then remove the row (01 M,).
The right argument is unchanged.
Unifying (@ 0 0) and (50 0) is a bit more complicated. . .
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Linear equality domains Affine equalities

A note on integers

Suppose now that | = Z.
@ Zis not closed under affine operations: (x/y) X y # x,
@ Gaussian reduction implemented in Z is unsound.
(e.g. unsound normalization 2X + Y = 19 #= X = 9, by truncation)

One possible solution

@ keep a representation using matrices with coefficients in Q,
@ keep all abstract operators as in Q,
def

o change the concretization into: yz(X¥%) = ~(&x*) N Z".
With respect to 7z, the operators are no longer best / exact.
Example:  where X! is the equation Y = 2X

o 12(X) = {(X,Y)[X€Z ¥=2x}

o (C[X:=0] oyz)X*={(X,Y)|X=0, Yiseven}

o (vz0 C[X:=0])X* = { (X,Y) | X=0, Y Z}

The analysis forgets the “intergerness” of variables.
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Linear equality domains Congruence equalities

The congruence equality domain

Now, | = Z.

We look for invariants of the form: /\ (Z m;V; = ¢ [/g]) .
i=1

J
Algorithms:

@ there exists minimal forms (but not unique),
computed using an extension of Euclide's algorithm,

o there is a dual representation: {Gx X+ O | X e Z™},
and passage algorithms,

@ see [Gran91].
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Linear equality domains Congruence equalities

Analysis example

Program example:

X:=0; Y:=0;

while °[0,1]=0 do
if [0,1]=0 then X:=X+4
else X:=X+12 fi;
Y:=Y+4

done

At e, we find: (X=0[4)DA(Y=0[4)A(X=Y][8]).
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Polyhedron domain




The polyhedron do

Here again, | € {Q,R}.

n
We look for invariants of the form: /\ <Z Vi > @-) )
i \i=1
We use the polyhedron domain proposed by [Cous78|:
D! & {closed convex polyhedra of V — 1}

A

Note:  polyhedra need not be bounded (# polytopes).
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Polyhedron domain

Double description of polyhedra

Polyhedra have dual representations (Weyl-Minkowski Theorem).
(see [Schr86])

Constraint representation

(M, C) with M € 1™ and C € I™
represents:  4((M, C)) & {V | M x V > C}

We will also often use a constraint set notation { >, a;;Vi > f; }.

Generator representation

[P, R] where

o P c I"™P is a set of p points: .51,...,/3,,

@ Re 1™ is a set of r rays: ﬁl,...,Rr
def ~¢ r =4 . p
7([P.R]) = {(Zle aj”j) + (Zj:l 51"’1) | V), a;,8; >0, 330 o = 1}
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Polyhedron domain

Origin of duality

Dual A* £ {Xecl"|VicA 3-Xx<0}
e {3}* and {\F| A > 0}* are half-spaces,
o (AUB)*=A*NB*,
o if Ais convex, closed, and 0e A, then A™ = A,

Duality on polyhedral cones:

Cone: C={V|MxV >0}or C={X/_BR;|Vj 8 >0}
o C =,
@ C* is also a polyhedral cone,

@ a ray of C corresponds to a constraint of C*,

@ a constraint of C corresponds to a ray of C*.
extended to polyhedra by homogenisation to polyhedral codes:
CP) € {AV|A>0,(Vh,...,V,) €v(P), Voi1 =1} C I
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Polyhedron domain

Polyhedra representation (cont.)

Minimal representations

@ A constraint system is minimal if no constraint can be omitted
without changing the concretization.

@ A generator system is minimal if no generator can be omitted
without changing the concretization.

Remarks:

@ most operators are easier on one representation;
@ minimal representations are not unique;

@ there is no memory bound on the representations
(even minimal ones);

@ equality constraints, as well as lines (pairs of opposed rays)
may be handled separately and more efficiently.
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Polyhedron domain

Chernikova's algorithm

Switch from a constraint system to an equivalent generator system.

Algorithm introduced by [Cher68].

Notes:

@ By duality, we can use the same algorithm to switch from
generators to constraints.

@ The minimal generator system can be exponential in the
original constraint system.

(e.g. a n—dimensional hyper-cube has 2n constraints and 2"
vertices)

Algorithm: incrementally add constraints one by one

Po={(0,...,0) } (origin)

Start with: { Ro={%, —%x|1<i<n} (axes)

course 05-A Relational Numerical Abstract Domains Antoine Miné p.32 /75



Polyhedron domain

Chernikova's algorithm (cont.)

Update [Px_1,Rk_1] to [P_;f, R;d B
by adding one constraint M - V > C, € (M, C):

start with P, = R, = 0,
e for any Pc P,_1 s.t. I\7Ik P > Cg, add P to Py:

e for any R e R,_1 s.t. Mk "R >0, add R to Ry;
e for any 13, Qc P,_1 s.t. Mk P> Cy and I\7Ik Q< C, add

to Py:
Ek:"/’k;Qﬁf C—McP 5
MeP—McQ' MP—My-Q

oforanyPeP,< 1,R€Rk 1 S.t. eltheer P>Ckand
Mk R<O oer P<Ckandl\/lk R>O add to Py:

o for any R,S € Ry_1st. M- R >0 and M-S <0, add to
Rki (Mk . S)R — (Mk : R)S
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Polyhedron domain

Chernikova's algorithm (example)

Example:

T%

i

(0) (1) 2 3)
Py = {(070)} Ry = {(170); (_170); (O’ 1); (Ov _1)}

Y>1 P, ={(0,1)} R: = {(1,0); (-1,0); (0,1)}
X+Y>3 P={(2.1)} R, = {(1.0); (~1.1); (0,1)}
X-Y<1 P3={(21)(1,2)} R3={(0,1); (1,1)}
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Polyhedron domain

Redudancy removal

Goal: only introduce non-redundant points and rays during
Chernikova's algorithm.
Definitions  (for rays in polyhedral cones)
Given C={V|MxV>0={Rx3|3>0}
R saturates I\7Ik v > 0 N I\/lk R=0.
S(R,C) ¥ {k| M- R =0}.
Theorem:

assume C has no line (AL +£0 st Va, ol e C)
R is non-redundant wrt. R <= AR; € R, S(R, C) C S(R;, C)

° S(I-?,-, C), R; € R is maintained during Chernikova's algorithm
in a saturation matrix,
@ extension possible to polyhedra and lines,

@ various improvements exist [LeVe92].

course 05-A Relational Numerical Abstract Domains Antoine Miné p.35 /75



Polyhedron domain

Operators on polyhedra

Given Xﬁ,yﬁ #* 1% we define:

Vﬁepxn, MyuXF_" Z 6);11
R>0

xtctyr L -
- VRERXu, Myux

xt=typt &L ytctyt and YECE At

P NaUIN = <[ mﬂ } , [ gXﬁ 1> (join constraint sets)
yi Vi
XE Ut YE 1 [ [Px: Py:], [Ry: Ry:]] (join generator sets)

Remarks:
o C! =fand N! are exact.

e U is optimal: we get the topological closure of the convex
hull of v(X#) U~ (V).
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Polyhedron domain

Operators on polyhedra (cont.)

CH Y avi+ 5> 0]t = <[ " }[ “ D

a1 Qp _ﬂ
CHY,aVi+ f=0]xt &
(CH[ Vi + 8 2 0] o CH[ 32 ;(—ei)Vi — B > 0] ) A
CH[Vj =] — 00, +00[[ X% = [Pys, [Rae % (%) ]]
CHV; == 3 Vi + Bl A =
if Q; :0,(Cﬁ[[zia,-v,-—vj—i—6:0]] Ocﬁ[[Vj ::] —OO,—l—OO[]]).)C'Tj
if aj # 0, (M, C) where V; is replaced with a%_(vj — 2y aiVi = B)

Remarks:
o CI[Y,aiVi+B>0], CV;:= X, Vi + ] X and
CH[V; :=] — 00, 4+00[] are exact.

@ We can also define C*[V; := >, a;V; + 3] on a generator system.
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Polyhedron domain

Operators on polyhedra (cont.)

Backward assignments:

def

CFV; =] — oo, +oo[ ] (X, RF) = X nf (CH[V; :=] — o0, +oo[ | R¥)

def

CHlV; ==Y iV + B] (X%, RY) =
X% NF (RF where V; is replaced with (3°; aiV; + 3))

def

CH[V; = e (X%, RY) 2 CH[V; =] — oo, +oo[] (X%, RE)

for other assignments

Note: identical to the case of linear equalities.
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Polyhedron domain

Polyhedra widening

D* has strictly increasing infinite chains => we need a widening.
Definition:

Take X* and V! in minimal constraint-set form.

xXtvyt = {ceaxt
U {ce)?

VECH{c}}
3 e X%, X =F(xf\ )u{c) )

We suppress any unstable constraint ¢ € X%, i.e., V! ZF {c}.

However, we keep constraints ¢ € Vi equivalent to those in Xt
i.e., when 3¢’ € xF A% =F (X%\ )U{c}.

Example:
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Polyhedron domain

Example analysis

Example program

X:=2; 1:=0;

while e I<10 do
if [0,1]=0 then X:=X+2 else X:=X-3 fi;
I:=I+1

done¢

We use a finite number (one) of intersections N as narrowing.
Iterations with widening and narrowing at e give:
Xt = {x=21=0}
XP = [x=2,1=0}v({x=2I=0}Ut{Xe[-1,4], I=1})
{(X=2,1=0}v{Ie0,1],2-3I1<X<2I+2}
= {I>0,2-3I1<X<2I+2}
{1>0,2-31<Xx<21+2}nf
({X=2,I1=0} U {I€[1,10], 2—-3I <X <2I+2})
= {I€[0,10], 2—3I <X <2I+2}
At 4 we find eventually: T =10 AX € [-28,22].
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Polyhedron domain

Other polyhedra widenings

Widening with thresholds:

Given a finite set T of constraints, we add to X% v V¥ all the
constraints from T satisfied by both X* and V.

Delayed widening:

We replace X% v Y with XF Uf )* a finite number of times
(this works for any widening and abstract domain).

See also [Bagn03|.
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Polyhedron domain

Strict inequalities

The polyhedron domain can be extended to allow strict
constraints:  { V|MxV > Cand M x V > ('}
Idea:

A non-closed polyhedron on V is represented
as a closed polyhedron P on V' = VU {V }.

Vi 4 -+ a,V, + 0V, >0 represents a1V + - - 4 @,V >0
aiVi+ -+ apVp —cVe >0, ¢ >0 represents aiVi+ -+ a,V,>0

P represents the non necessarily closed polyhedron:
Ye(P) = {(V1,...,Vn) | 3Ve > 0, (V1,...,V,, V) € 4(P)}.
Notes:

@ The minimal form needs some adaptation [Bagn02].

o Chernikova's algorithm, N, U, C![c], and C![‘c ] can be
easily reused.
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Polyhedron domain

Constraint-only polyhedron domain

It is possible to use only the constraint representation:
@ avoids the cost of Chernikova's algorithm,

@ avoids exponential generator systems (hypercubes).

The core operations are: projection and redundancy removal.

Projection:  using Fourier-Motzkin elimination

Fourier(X*,Vy) eliminates Vy from all the constraints in A*:

Fourier(X*,v,) &

{(Zia/V/Zﬁ)EXu|Oék:0}U
{ (mag)et +ajem | et = (T, Vi > BF) € X%, af >0,
c=0aVvi>B)eX? a <0}
we then have:
v(Fourier(X*, V) = { X[V — v] | v €1, X € v(X*) }.
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Polyhedron domain

Constraint-only polyhedron domain (cont.)

Fourier causes a quadratic growth in constraint number.
Most such constraints are redundant.

Redundancy removal:  using linear programming [Schr86]

Let simplex()¥, V) L {V-71ye~ry(}

If c=(a-V>pB)e X and B < simplex(X*\ {c},Q),
then ¢ can be safely removed from X
(iterate over all constraints)

Note:  running simplex many times can be become costly
@ use fast syntactic checks first,

@ check against the bounding-box first.
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Polyhedron domain

Constraint-only polyhedron domain (cont.)

Constraint-only abstract operators:

def

AP CEYE S5 V(a-V > B) € VE simplex(XH,d) >

def

xt=tyt & xt Ct oyf and Y CE ot
xtnt Yt < xty Yt (join constraint sets)
CHVj =] — o0, +oo[| X < Fourier(X*, V)

For Uf, we introduce temporaries V<, ij, o, oV
Xt Ut oy &
Fourier( { (3_; V¥ — B > 0) | Qv = B) € Xt} U

{ (00 = Bo¥ >0) [ (T, 00, > B) e VE} U
{Vi=v¥+v|vieV}iu{o¥>00Y>0, 0" +0¥ =1},

(v, wWlveviu{o¥o¥})
(see [Beno96])
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Polyhedron domain

Integer polyhedra

How can we deal with | = Z7

Issue: integer linear programming is difficult.
Example: satsfiability of conjunctions of linear constraints:

@ polynomial cost in Q,

@ NP-complete cost in Z.

Possible solutions:

@ Use some complete integer algorithms.
(e.g. Presburger arithmetics)

Costly, and we do not have any abstract domain structure.

o Keep Q—polyhedra as representation, and change the
def

concretization into: 1z(X*%) = y(X%) N zZ".
However, operators are no longer exact / optimal.

course 05-A Relational Numerical Abstract Domains Antoine Miné

p. 46 / 75



Weakly relational domains

Weakly relational domains
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Zone domain

The

Here, | € {Z,Q,R}.

We look for invariants of the form:
AVi—Vi<cor £V;<c, cel

A subset of 1" bounded by such constraints is called a zone.

[Mine01a]



Weakly relational domains Zone domain

Machine representation

A potential constraint has the form: V; —V; < c.

Potential graph: directed, weighted graph G

@ nodes are labelled with variables in V,
@ we add an arc with weight ¢ from V; to V; for each constraint
Vi—Vi<c
Difference Bound Matrix (DBM)

Adjacency matrix m of G:

@ m is square, with size n X n, and elements in | U {+00},
@ mj; = ¢ < +oo denotes the constraint V; — V; < c,

@ mjj = +oo if there is no upper bound on V; —V;.

Concretization:
~v(m) def { (vi,...,vn) €17 Vi j, vi—vi < mj }.
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Weakly relational domains Zone domain

Machine representation (cont.)

Unary constraints add a constant null variable Vy.

@ m has size (n+1) x (n+1);
@ V; < cis denoted as V; — Vy

@ V; > cis denoted as Vg — V;
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Weakly relational domains

The DBM lattice

Zone domain

D! contains all DBMs, plus 1

< on U {400} is extended point-wisely.

If m,n# L%
m gﬁ n
m="F/n

[m Nt n]
[m Ut n]
(7]

i

(DF, CH UF, NE, LF, TH) is a lattice.

Remarks:

i

i

def

def

def

def

Vi,j, mj; < njj
Vi,j, m,-j = n,-j
min(mj;, njj)
max(mj;, njj)

+00

e D! is complete if < is (=R or Z, but not Q),
o m Cf n = y9(m) C yo(n), but not the converse,
o m =% n = y5(m) = yo(n), but not the converse.
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Weakly relational domains Zone domain

Normal form, equality and inclusion testing

Issue:  how can we compare 75(m) and ~o(n)?

Idea: find a normal form by propagating/tightening constraints.

vo—v1<3 vo—v1<3
Vi — < -1 Vi — < -1
Vo—V2§4 Vo—V2§2

@@
A B

Definition: shortest-path closure m*

=

—1
x def .
mU = min
N

(i=1i,...,in=1])

Mi g
1

>
Il

Exists only when m has no cycle with strictly negative weight.
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Weakly relational domains Zone domain

Floyd—Warshall algorithm

Properties:
@ 1(m) =0 <= G has a cycle with strictly negative weight.
o if yo(m) # 0, the shortest-path graph m* is a normal form:
m* = minc; { n|~o(m) =o(n) }

o If yo(m),v0(n) # 0, then
o o(m) = no(n) = m* = nr,
o Yo(m) C yp(n) < m* Cfn.

Floyd—Warshall algorithm

0 def .
mj; = mij;
k41 def k

m;; min(mU, mf-j( + m,’jj)
o If yo(m) # 0, then m* = m" 1, (normal form)
e 1p(m)=0 = 3, m}}“ <0, (emptiness testing)

e m"™! can be computed in O(n?) time.
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Weakly relational domains Zone domain

Abstract operators

Abstract union U
o ~o(m U* n) may not be the smallest zone containing
Yo(m) and ~o(n).
@ however, (m*) U* (n*) is optimal:
(m*) U* (n*) = mingc: { 0] 70(0) 2 70(m) Uro(n) }
which implies
Yo((m*) UF (%)) = minc { 70(0) | 70(0) 2 70(m) Uo(n) }
o (m*) U (n*) is always closed.

Abstract intersection Nf
o Nf is always exact: yo(m N* n) = vo(m) N 7o(n)

o (m*)N*(n*) may not be closed.

Remark:
The set of closed matrices with L?, and the operations ch U,
Am, n.(m N n)* define a sub-lattice.

7o is injective in this sub-lattice.
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Weakly relational domains Zone domain

Abstract operators (cont.)

We can define:
f . V. def mln(mlJ? C) if (Iv./) = (iOaj0)7
[C [Vjo = Vi < C]]m]ij B { mj; otherwise.
Cﬂ[[vjo =V, = [37 b]ﬂm o (Cﬁ[[vjo - Vi < b]] © Cﬂ[[vio - Vjo < _a]])

# 1 def —+00 ifi:joorj:_jo,
©11s =1 socliml, 2 { 7 ke

(not optimal on non-closed arguments)
CHVj, ==V + [a,b] [ m =

(C*[Vj, — Vi, = [a, b]] o CH[V}, :=] — oo, +oo[] )m if iy # jo

def mj—a ifi=joandj#jo
(CTW, =V + [a. bl Tm], ' & my+b i i £ and j = o
mij; otherwise.

(fo # Jo; Vi, can be replaced with O by setting iy = 0)

These transfer functions are exact.
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Weakly relational domains

Abstract operators (cont.)

Zone domain

Backward assignment:

C V), :=] — o0, +00[] (m, ) © mne (C* vy, =

] = o0, +0o[] ¥)

% de
Cﬁﬂvjo =V + [aa b]]] (ma r) = m (Cu[[vjo =V + [*ba *a] H r)

%
[, =V, + [ Bl ()] &
ij

min(rf,ri; +b) if i =i and j # o, jo
m min(r?J‘-,r,’;0 —a) ifj=iyandi#iy,jo

+00 if i=joorj=jo

"}j‘ otherwise.
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Weakly relational domains Zone domain

Abstract operators (cont.)

Issue: given an arbitrary linear assignment Vj; 1= ag + >, ax X Vj
@ there is no exact abstraction, in general;

@ the best abstraction a o C[c] oy is costly to compute.
(e.g. convert to a polyhedron and back, with exponential cost)

Possible solution:

Given a (more general) assignment e = [ag, bo] + >, [ak, bk] X Vi
we define an approximate operator as follows:

max(E*[ e m) if i=0andj=j
— min(Ef[ e] m) ifi=jopandj=0
[Co[v; == e]m], & max(Ef[e — V;]m) if i #0,jo and j = jo
—min(E*[ e+ V;]m) if i =joandj#0,j
mj; otherwise

where E*[ e ] m evaluates e using interval arithmetics with
Vi € [—mim mgk]-

Quadratic total cost (plus the cost of closure).
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Weakly relational domains Zone domain

Abstract operators (cont.)

Example:

Argument

0<Y<10

0<z2<10

0<y-z<10

lX=Y-2
-10<Xx<10 -10<Xx<10 0<x<10
—-20<X-Y<10 -10<X-Y<0 -10<X-Y<0
—-20<X-Z<10 -10<X-2<10 -10<X-2Z<10

Intervals Approximate Best
solution (polyhedra)

We have a good trade-off between cost and precision.

The same idea can be used for tests and backward assignments.
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Weakly relational domains Zone domain

Widening and narrowing

The zone domain has both strictly increasing and decreasing
infinite chains.
Widening Vv

[m o "],-- def mi; if njj S mij;
U +o00 otherwise
Unstable constraints are deleted.

Narrowing A

[m A n] def njj if mjj = +00
y mj; otherwise

Only 400 bounds are refined.

Remarks:
@ We can construct widenings with thresholds.

@ V (resp. A) can be seen as a point-wise extension of an
interval widening (resp. narrowing).
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Weakly relational domains Zone domain

Interaction between closure and widening

Widening V and closure * cannot always be mixed safely:
e mj; Cm; v (n¥) OK
e mj; = (m)vn, wrong
e mj = (m;vn)* wrong

otherwise the sequence (m;) may be infinite!

Example:

X:=0; Y:=[-1,1];

while e 1=1 do X.u2j ‘ X.ﬂzjﬂ
R:=[-1,1]; X € [~2/,2]] Xe[-2/—2,2/+2]
if X=Y then Y:=X+R Ye[-2/—1,2j+1] | YE[-2/—1,2j+ 1]
else X:=Y+R fi X—Ye[-1,1] X—Ye[-1,1]

done

Applying the closure after the widening at e prevents convergence.
Without the closure, we would find in finite time X — Y € [-1,1].
Note: this situation also occurs in reduced products

(here, D* ~reduced product of n x n intervals, % ~reduction)
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Octagon domain
The octag

Now, | € {Q,R}.
We look for invariants of the form: /\ 1V, £V, <c, cel

A subset of 1" defined by such constraints is called an octagon.

It is a generalisation of zones (more symmetric).

[Mine01b]



Weakly relational domains Octagon domain

Machine representation

Idea: use a variable change to get back to potential constraints.

Let V/ & {Vll, - ,VIQ,,}.
the constraint: is encoded as:
Vi—Vi<c (i#)) Vo1 —Vo1< ¢ and Vi —Vy <c
Vi+Vi<c (i#)) V1=V < ¢ and Vi1 —Vy<c
—V;—=V;<c (i#)) Vg —Vai1 < ¢ and Vi —Vy_1<c
Vi<c Vi1 — Vo < 2¢
Vi>c Vg = Vi1 <—2c

We use a matrix m of size (2n) x (2n) with elements in | U {400}

def

and ,\//j:(m) — (V].v' ) Vn) ‘ (V]_,—V]_,.. * Vna_Vn) S A/(m) }

Note:
Two distinct m elements can represent the same constraint on V.

To avoid this, we impose that Vi,j, mj = m;; where 7=i@ 1.
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Weakly relational domains Octagon domain

Machine representation (cont.)

Example:

Vi+V, <3
Vo, —V; <3

Vi —V, <3
-V -V, < -3
2V, <2
-2V, < 8

YA

Lattice

Constructed by point-wise extension of < on | U {400}.
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Weakly relational domains Octagon domain

Algorithms

m* is not a normal form for ..

Idea use two local transformations instead of one:
{ X:k__‘g,jiz —=V;,-V;<c+d

and
{VVizs =viviserap
Modified Floyd—Warshall algorithm

m* d:ef 5(m2n+1)

1 def

A
where: ( { [m**]; = min(n, nix + ni;), 1 < k <2n

(B) [S(m)]; = min(ny, (niz + ny)/2)
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Weakly relational domains Octagon domain

Algorithms (cont.)

Applications
o v+(m)=0 < 3i, m} <0,
o if vo+(m) # (), m® is a normal form:
m® = minc; {n|yx(n) =~+(m) },
o (m*) Uf (n®) is the best abstraction for the set-union
Y+ (m) Uyx(n).

Widening and narrowing

@ The zone widening and narrowing can be used on octagons.

@ The widened iterates should not be closed.
(prevents convergence)

Abstract transfer functions are similar to the case
of the zone domain.
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Weakly relational domains Octagon domain

Analysis example

Rate limiter

Y:=0; while e 1=1 do

i) oo ey, | K sl
DIk YT LA S; last output
if R<=-D then Y:=S-D fi;
if R>=D then Y:=S+D fi R:  delta Y-8
D: max. allowed for |R|

done

Analysis using:
@ the octagon domain,

@ an abstract operator for Vj; := [ag, bo] + >, [ak, bik] % Vi
similar to the one we defined on zones,
@ a widening with thresholds T.

Result: we prove that |Y| is bounded by: min { t € T | t > 144 }.

Note: the polyhedron domain would find |Y| < 128 and does not
require thresholds, but it is more costly.
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Weakly relational domains Octagon domain

Integer octagons

Recall that zones work equally well on Q, R and Z.

Issue:
The octagon domain we have presented is not complete on Z:
@ the algorithm for m*® uses divisions by 2,
@ when replacing x — x/2 with — |x/2], we get:
m® # minc: { o | y4(0) = yx(m) }.

Possible solutions:

e Use m® with |x/2] instead of /2.
All computations remain sound on integers.
The best-precision results are no longer valid.

o See [Bagn08] for a O(n3) time “tight closure” for integer
octagons.

course 05-A Relational Numerical Abstract Domains Antoine Miné p. 69 / 75



Summary




Summary

Summary of numerical domains

domain non-relational linear polyhedra octagons
equalities
invariants Ve Dg YaiVi=0 | >0V <P | £V; £V; < ¢
memory O(n) O(n?) 02" O(n?)
cost
time O(n) O(n3) 0(2m O(n?)
cost
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