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Partial orders

Partial orders

Given a set X, a relation = € X x X is a partial order

if it is:
Q reflexive: Vx € X, x C x
@ antisymmetric: Vx,y e X, xCyAyCx = x=y
@ transitive: Vx,y,ze X, xCyAyLCz = xLC z

(X,C) is a poset (partially ordered set).

If we drop antisymmetry, we have a preorder instead.
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Partial orders

Examples: partial orders

Partial orders:

° (Z,9)

(completely ordered)

° (P(X), <)
(

not completely ordered: {1} Z {2}, {2} Z{1})
e (S5,=) is a poset for any S

(
o (Z2,C), where (a,b) C (d', V) <= a>ad Ab<V

(ordering of interval bounds that implies inclusion)
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Partial orders

Examples: preorders

Preorders:

o (P(X),C), where aC b < |a| < |b|

(ordered by cardinal)

e (Z2,C), where
(a,b) C (d,b) < {x]a<x<b}C{x|ad <x<}b}
(inclusion of intervals represented by pairs of bounds)

not antisymmetric: [1,0] # [2,0] but [1,0] C [2,0] C [1, 0]

Equivalence: =
X=Y < XCYAYLX
We obtain a partial order by quotienting by =.
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Partial orders

Examples of posets (cont.)

@ Given by a Hasse diagram, e.g.:
g
e f

gL g
c d fCf,g
\ / eCeg
b dCd,f,g
cCocef,g
C bC b,c,d, e, f, g
o aCab,c,def,g
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Partial orders

Examples of posets (cont.)

o Infinite Hasse diagram for (NU { oo }, <):

(o]0}

3

2
oo L oo

L 1 g

1C1,2, , 00
0C0,1,2,...,00

0
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Partial orders

Use of posets (informally)

Posets are a very useful notion to discuss about:

@ logic: ordered by implication —

@ approximations: C is an information order

("aC b" means: “a caries more information than b")

@ program verification: program semantics C specification

(e.g.: behaviors of program C accepted behaviors)

@ iteration: fixpoint computation
(e.g., a computation is directed, with a limit: X; C Xo C --- C X,)
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Partial orders

(Least) Upper bounds

@ cis an upper bound of aand bif: aCcand bC ¢

@ cis a least upper bound (lub or join) of a and b if

e c is an upper bound of a and b
o for every upper bound d of aand b, cC d

@
|
|
@ upper bounds of a and b
|
|
b |
alb o @ upper bound of b
RN 1
Ve N |
-, N
s N
[ [
a b
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Partial orders

(Least) Upper bounds

The lub is unique and noted allb.
(proof: assume that ¢ and d are both lubs of a and b; by definition of lubs, ¢ C d and

d C ¢; by antisymmetry of C, ¢ = d)
Generalized to upper bounds of arbitrary (even infinite) sets
uy,YcCcX

(well-defined, as LI is commutative and associative).

Similarly, we define greatest lower bounds (glb, meet) arlb, MY,
(ambCa,band Ve, cC a,b = cLC arb)

Note: not all posets have lubs, glbs
(e.g.: al b not defined on ({a,b},=))
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C C X is a chain in (X, ) if it is totally ordered by C:
Vx,ye C,xCyVyLx.

QO
1M

a
M

-
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Partial orders

Complete partial orders (CPO)

A poset (X, C) is a complete partial order (CPO)
if every chain C (including () has a least upper bound LI C.

A CPO has a least element L), denoted L.
Examples:

o ({x€Q|0< x<1},<)is not complete, but

(N
({
({xeR|0< x <1}, <) is complete.
e (P(Y),C) is complete for any Y.

(

e (X,C) is complete if X is finite.
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Lattices

Lattices

A lattice (X, C, LI, 1) is a poset with
@ a lub all b for every pair of elements a and b;

@ a glb an b for every pair of elements a and b.
Examples:
e integers (Z, <, max, min)

@ integer intervals (presenter later)

@ divisibility (presenter later)

If we drop one condition, we have a (join or meet) semilattice.

Reference on lattices: Birkhoff [Birk76].
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Lattices

Example: the interval lattice

lntarcar intaviial~.

course 02
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Lattices

Example: the divisibility lattice

\/N\N /N
4\2/6 \3/9 | ------
\1//

Divisibility (N*, |, lcm, gcd) where x|y <% 3k e N, kx =y
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Lattices

Example: the divisibility lattice (cont.)

Let P & {p1,p2,...} be the (infinite) set of prime numbers.

We have a correspondence ¢ between N* and P — N:
@ a = ((x) is the (unique) decomposition of x into prime factors
o H(a) ' TT,ep a0 = x
@ ¢ is one-to-one on functions P — N with finite support

(a(a) = 0 except for finitely many factors a)

We have a correspondence between (N*, |, lem, ged)

and (N, <, max, min).

Assume that o = ¢(x) and 8 = «(y) are the decompositions of x and y, then:
O ,ep a5 = lem([T,ecp a6, [T,cp 8°0)) = lem(x,y)
[+ H 2cP mln (v(a),B(a)) — ng(HaEP a (a)’HEEP aﬂ(a)) = gcd(x7_y)
o (vara(a)<B(2) <= ([ep @) | ([Lep 27@) <= xly
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Lattices

Complete lattices

A complete lattice (X, C, LI, 11, L, T) is a poset with
Q alub LIS for every set S C X
Q aglbs foreveryset S C X
© a least element L

Q a greatest element T

Notes:

o limplies2asMS=U{y|VxeS, yCx}
(and 2 implies 1 as well),

eland2imply3and4: L=Ul=1X,T=n0=0UX,

@ a complete lattice is also a CPO.
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Compl

Lattices

ete lattice examples

course 02

real segment [0,1]: ({x € R|0 < x <1}, <, max, min,0,1)
powersets (P(S), C,U,N, 0, S)

any finite lattice
(LY and MY for finite Y C X are always defined)

integer intervals with finite and infinite bounds:
({[ab]la€ZU{-00}, beZU{+o0},a<b}U{D},
ga l—la ma (2)7 [_OO7+OO])

with U [a;, bi] = [minjes a;, maxie; bi].
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Lattices

Example: the powerset complete lattice

Example:  (P({0,1,2}),C,U,N,0,{0,1,2})

{0,1,2}
/{‘”2}\
{0,1} {1,2}
o\
) 2)

0
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Lattices

Derivation

Given a (complete) lattice or partial order (X,C, U, M, L, T)
we can derive new (complete) lattices or partial orders by:

o duality
(X, 2,1, T, 1)
e L is reversed
e LI and I are switched
e | and T are switched

o I|ft|ng (adding a smallest element)
(Xu{Ll'},Chuwm L1, T
e al’b <« a=1'vaCh
o 'Wa=all1l'=a andall/ b=aUbifab# 1’
o I'Ma=ar1l'=1'andar’b=anbifa,b# 1’
o 1/ replaces L
e T is unchanged
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Lattices

Derivation (cont.)

Given (complete) lattices or partial orders:
(X17 Ela |—|17 |_|1) J—la Tl) and (X2> 227 |—|2a |_|27 J—2> T2)
We can combine them by:

@ product

(X1 x Xo,C,U,M, L, T) where

(Y EKY) <= xCix' Ay Loy
(oY) U (X, y) = (xth X, y Uz y')
(oY) (y) < (xMx, yMay')

def

o L% (1, 1,
def

o T = (T, T2

—_ — — —

@ smashed product (coalescent product, merging L1 and L»)
(N { L)) x e\ {L2}))u{L},Cum L, T)

(as X1 x Xp, but all elements of the form (L1,y) and (x, L2) are identified to a

unique L element)
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Lattices

Derivation (cont.)

Given a (complete) lattice or partial order (X,C, U, M, L, T)

and a set S:

@ point-wise lifting (functions from S to X)
(S — X, ., L', T") where
o xC'y <= Vse S:x(s) C y(s)

course 02

def

Vs e S:(x y)(s)
Vs e S:(x™ y)(s)
VseS:L'(s)=1
VseS:T'(s)=T

f

o o
&

Order Theory

x(s) U y(s)
x(s) My(s)

Antoine Miné
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Lattices

Distributivity

A lattice (X, C, U, M) is distributive if:
e all(bMc)=(aub)M(alc) and
e all(bUc)=(anb)U(alMc)

Examples:

e (P(X),<,U,n) is distributive

@ intervals are not distributive
([0,0]U[2,2]) 11 [1,1] = [0,2] M1 [1,1] = [1,1] but
([o,0] 1 [L,1Du([2,21 [, 1) =0ud =0

(common cause of precision loss in static analyses)
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Lattices

Sublattice

Given a lattice (X,C,U,M) and X" C X
(X', C,U,M) is a sublattice of X if X" is closed under L and M

Examples:

o if YC X, (P(Y),C,U,N,0,Y) is a sublattice of
-

C,
(P(X),C,u,n, 0, X)

@ integer intervals are not a sublattice of (P(Z),C,U,N,0,2)
[min(a, a'), max(b, b')] # [a, b] U [, V]

(another common cause of precision loss in static analyses)
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Fixpoints

Functions

A function f : (Xl, Cq, L, J_l) — (XQ, Co, Lo, J_z) is

@ monotonic if
Vx, X', xC1 X' = f(x) Ca f(X)

(aka: increasing, isotone, order-preserving, morphism)

e strict if f(L1) = 1o

@ continuous between CPO if
VC chain C X1, {f(c)|c € C} is a chainin X,
and (U1 C) =1 {f(c)|ce C}

@ a (complete) LI—morphism between (complete) lattices
if VS C X, f(Uls):l_lg{f(SHSES}

@ extensive if X; = X, and Vx, xC; f(x)
e reductive if X; = X5 and Vx, f(x)Cq x

course 02 Order Theory Antoine Miné
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Fixpoints

Fixpoints

Given f : (X,C) — (X,E)
@ x is a fixpoint of f if f(x) = x

@ x is a pre-fixpoint of f if x C f(x)
@ x is a post-fixpoint of f if f(x) C x

We may have several fixpoints (or none)
o fp(f) £ {xe X|f(x)=x}
o Ifp, f o minc {y € fp(f) | x C y } if it exists

(least fixpoint greater than x)
def

o Ifpf & ifp, f

(least fixpoint)

e dually: gfp, f ot maxc {y € fp(f) |y T x}, gfpf ot gfpt f

(greatest fixpoints)
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e

® pre

pre

Monotonic function with two distinct fixpoints




pre

Monotonic function with a unique fixpoint




post

o PI® < °

pre

Non-monotonic function with no fixpoint




@ Express solutions of mutually recursive equation systems

Example:

x1 = f(x1,x2)

with x1, x2 in lattice X
x2 = g(x1,x2) ’

The solutions of {

are exactly the fixpoint of F in lattice X x X, where
El X = ( fhax),
x2 g(x1,x2)

The least solution of the system is Ifp F.



Fixpoints

Uses of fixpoints: examples

@ Close (complete) sets to satisfy a given property

Example:

r C X x X is transitive if:
(a,b) e rn(b,c)er = (a,c)€er

The transitive closure of r is the smallest transitive relation containing r.

Let f(s) =rU{(a,c)|(a,b) € sA(b,c) € s}, then Ifpf:
o Ifpf contains r
o Ifpf is transitive
o Ifpf is minimal

= Ifp f is the transitive closure of r.
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Fixpoints

Tarski's fixpoint theorem

Tarksi's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proved by Knaster and Tarski [Tars55].
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Fixpoints

Tarski's fixpoint theorem

Tarksi's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
We prove Ifp f =11 { X ‘ f(X) C X} (meet of post-fixpoints).

|
post

pre post pre
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Fixpoints

Tarski's fixpoint theorem

Tarksi's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
We prove Ifp f =11 { X | f(X) C X} (meet of post-fixpoints).
Let f*={x|f(x)Ex}and a="f*

Vx € f*, aC x  (by definition of )
SO f(a) C f(X) (as f is monotonic)
SO f(a) C x (as x is a post-fixpoint).
We deduce that f(a) C M1 f*, ie. f(a)C a.
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Fixpoints

Tarski's fixpoint theorem

Tarksi's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
We prove Ifp f =11 { X | f(X) C X} (meet of post-fixpoints).

f(a)C a

¢) f(f( )) C ( ) (as f is monotonic)
SO f( ) € f*  (by definition of £*)

so a L f(a).

We deduce that f(a) = a, so a € fp(f).

Note that y € fp(f) implies y € *.
As a=T11f* aLC y, and we deduce a = Ifpf.
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Fixpoints

Tarski's fixpoint theorem

Tarksi's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
Given S C fp(f), we prove that Ifp 5 f exists.

Consider X’ ={xe X| U SC x}.

X’ is a complete lattice.

Moreover Vx' € X', f(x') € X'.

f can be restricted to a monotonic function ' on X'

We apply the preceding result, so that Ifp f’ = Ifp s f exists.
By definition, Ifp,, s f € fp(f) and is smaller than any fixpoint
larger than all s € S.
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Fixpoints

Tarski's fixpoint theorem

Tarksi's theorem

If f: X — X is monotonic in a complete lattice X
then fp(f) is a complete lattice.

Proof:
By duality, we construct gfp f and gfps f.

The complete lattice of fixpoints is:
(fp(f), C, AS.Ifp s f, AS.gfpnsf, Ifpf, gfpf).

Not necessarily a sublattice of (X, C, U, M, L, T)!
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Fixpoints

Tarski's fixpoint theorem: example

¢

efp
/ re\
Gl w0
\lfp

@)
Lattice: ({Ifp, fpl,fp2, pre, gfp }, U, M, Ifp, gfp)
Fixpoint lattice: ({Ifp, fpl,fp2,gfp }, LV, 7, Ifp, gfp)
(not a sublattice as fpl LV fp2 = gfp while fpl LIfp2 = pre,

but gfp is the smallest fixpoint greater than pre)
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Fixpoints

“Kleene” fixpoint theorem

“Kleene” fixpoint theorem

If f: X — X is continuous in a CPO X and a C f(a)
then Ifp, f exists.

Inspired by Kleene [Klee52].

course 02 Order Theory Antoine Miné p. 38 / 66



Fixpoints

“Kleene” fixpoint theorem

“Kleene” fixpoint theorem

If f: X — X is continuous in a CPO X and a C f(a)

then Ifp, f exists.

We prove that { f"(a)|n € N} is a chain and
Ifp, f =U{f"(a)|neN}.

course 02

f(f(a))
f(a)

f(f(f(f(a))))

f(f(f(a)))

Order Theory
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Fixpoints

“Kleene” fixpoint theorem

“Kleene” fixpoint theorem

If f: X — X is continuous in a CPO X and a C f(a)
then Ifp, f exists.

We prove that { f"(a)|n € N} is a chain and
Ifp, f =U{f"(a)|neN}.

a C f(a) by hypothesis.

f(a) C f(f(a)) by monotony of f.

(Note that any continuous function is monotonic.

Indeed, xCy = xUy=y = f(xUy)="f(y);

by continuity f(x) U f(y) = f(xUy) = f(y), which implies f(x) C f(y).)

By recurrence Vn, f"(a) C f"T1(a).
Thus, {f"(a)|n € N}isachainand LI{f"(a)|n e N} exists.
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Fixpoints

“Kleene” fixpoint theorem

“Kleene” fixpoint theorem

If f: X — X is continuous in a CPO X and a C f(a)
then Ifp, f exists.

FU{f"(a)[neN})

= |_|{ f”*l(a) | neN }) (by continuity)

=al (l_l { f”“(a) | neN }) (as all f"+1(a) are greater than a)
_L{f(a)[neNY.

So, U{f"(a)|ne N} e fp(f)

Moreover, any fixpoint greater than a must also be greater
than all f"(a), n € N.
So, U{f"(a)[ne N} =Ifp,f.
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Fixpoints

Well-ordered sets

(S,C) is a well-ordered set if:
@ C is a total order on S

@ every X C S such that X # () has a least element 1 X € X

Consequences:

def
@ any element x € S has a successor x +1 =

(except the greatest element, if it exists)
o if Ay, x=y+1, xisalimtand x=U{y|yC x}
(every bounded subset X C S hasalubuUX =m{y|Vxe X, xCy})

N{ylxCy}

Examples:

e (N,<)and (NU {0}, <) are well-ordered

e (Z,<), (R,<), (RT, <) are not well-ordered

e ordinals 0,1,2,... ,w,w+1,... are well-ordered (w is a limit)
well-ordered sets are ordinals up to order-isomorphism

(i.e., bijective functions f such that f and f~! are monotonic)
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Fixpoints

Constructive Tarski theorem by transfinite iterations

Given a function f : X — X and a € X,

the transfinite iterates of f from a are:
def

Xo = a
def . . .
xp = f(Xp—1) if nis a successor ordinal
def . . . .
xp = U {xm|m<n} ifnisa limit ordinal

Constructive Tarski theorem

If f: X — X is monotonic in a CPO X and a C f(a),
then Ifp, f = x5 for some ordinal §.

Generalisation of “Kleene” fixpoint theorem, from [Cous79].

course 02 Order Theory Antoine Miné p. 40 / 66



Fixpoints

Proof

f is monotonic in a CPO X,

X0 o al f(a)

def

Xn = f(xp—1) if nis a successor ordinal
Xp & U {xm|m<n} ifnisa limit ordinal
Proof:

We prove that 39, x5 = xs511.

We note that m < n — x,, C x,.

Assume by contradiction that Ad, xs = Xs511-

If nis a successor ordinal, then x,_1 C x,.

If nis a limit ordinal, then Vm < n, x, C Xp.
Thus, all the x, are distinct.

By choosing n > | X|, we arrive at a contradiction.
Thus ¢ exists.
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Fixpoints

Proof

f is monotonic in a CPO X,

X0 o al f(a)

def

Xn = f(xp—1) if nis a successor ordinal
Xp & U {xm|m<n} ifnisa limit ordinal
Proof:

Given § such that x541 = xs, we prove that xs = Ifp, f.

f(xs) = xs+1 = x5, s0 x5 € fp(f).

Given any y € fp(f), y 3 a, we prove by transfinite induction

that Vn, x, C y.

By definition xg = a C y.

If nis a successor ordinal, by monotony,

X1 Ty = f(xp—1) Ef(y), ie, x, Cy.

If nis a limit ordinal, Vm < n, x,, C y implies
xp=U{Xxm|m<n}Cy.

Hence, xs C y and x5 = Ifp, f.
course 02 Order Theory Antoine Miné p. 41 / 66



Fixpoints

Ascending chain condition (ACC)

An ascending chain C in (X,C) is a sequence ¢; € X
such that i <j = ¢ Cq.

A poset (X, C) satisfies the ascending chain condition (ACC)
iff for every ascending chain C, 3i e N, Vj > i, ¢; = ¢.

Similarly, we can define the descending chain condition (DCC).

Examples:

@ the powerset poset (P(X),C) is ACC (and DCC) iff X is
finite

@ the pointed integer poset (ZU{ L },C) where
xCy <= x=1Vx=yis ACC and DCC

e the divisibility poset (N*,|) is DCC but not ACC.

course 02 Order Theory Antoine Miné p. 42 / 66



Fixpoints

Kleene fixpoints in ACC posets

“Kleene" finite fixpoint theorem

If f: X — X is monotonic in an AAC poset X and a C f(a)
then Ifp, f exists.

Proof:

We prove 3n € N, Ifp, f = f"(a).

By monotony of f, the sequence x, = f"(a) is an increasing chain.
By definition of AAC, 3n € N, x, = xpt1 = f(xn).

Thus, x, € fp(f).

Obviously, a = xg C f(x,).

Moreover, if y € fp(f) and y J a, then Vi, y 3 fi(a) = x;.

Hence, y 3 x,, and x, = Ifp, ().
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Fixpoints

Comparison of fixpoint theorems

theorem function domain fixpoint method
Tarski monotonic | complete fp(f) meet of
lattice post-fixpoints

Kleene continuous CPO Ifp, () countable
iterations

constructive | monotonic CPO Ifp, () transfinite
Tarski iteration

ACC Kleene | monotonic poset Ifp, () finite
iteration
course 02 Order Theory Antoine Miné p. 44 / 66



Galois connections




Given two posets (C, <) and (A, C), the pair
(a: C— A v:A— C)is a Galois connection iff:

Vae A ceC,alc)Ca < c<~(a)

which is noted (C, <) % (A ).

C A

@ « is the upper adjoint or abstraction; A is the abstract domain.
@ ~ is the lower adjoint or concretization; C is the concrete domain.



Galois connections

Properties of Galois connections

Assuming Va, c, a(c) C a <= ¢ < 7(a), we have:
Q 7o« is extensive: V¢, ¢ < y(a(c))
proof: a(c) C a(c) = ¢ < y(a(c))
@ « o~ is reductive: Ya, a(y(a)) C a
© o is monotonic
proof: c < ¢/ = ¢ <~y(a(c’)) = a(c) C a(c’)
© 7 is monotonic
Q yoaoy=1y
proof: a(y(a)) E a(v(a)) = ~(a) < v(a(v(a))) and
aJda(v(a)) = ~(a) =2 v(a(v(a)))

Q coyoa=«
@ «o~isidempotent: coyoaoy=ao7y
© o« is idempotent
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Galois connections

Alternate characterization

If the pair (a: C — A, : A — C) satisfies:

© 7 is monotonic,
@ « is monotonic,
© 7o« is extensive

©Q « oy is reductive

then («,7) is a Galois connection.

(proof left as exercise)

course 02 Order Theory
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Galois connections

Uniqueness of the adjoint

Given (C, <) % (A D),
each adjoint can be uniquely defined in term of the other:

@ afc)=N{alc<n(a)}
@ 7(a) =Vv{clalc)Ca}

Proof: of 1

Va, c <v(a) = afc)C a.

Hence, a(c) is a lower bound of {a|c < ~(a) }.

Assume that a’ is another lower bound.

Then, Va, c < vy(a) = &' C a.

By Galois connection, we have then Va, a(c)Ca = a’' C a.
This implies 2’ C «a(c).

Hence, the greatest lower bound of {a|c < ~(a) } exists,

and equals a(c).

The proof of 2 is similar (by duality).
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Galois connections

Properties of Galois connections (cont.)

If (a: C— Av:A— C), then:
Q@ VX C C,if VX exists, then a(V X) =U{a(x)|[xe X} .

@ VX CA, if MX exists, then v(MX) = A{y(x)|x € X }.

Proof: of 1

By definition of lubs, Vx € X, x < Vv X.

By monotony, Vx € X, a(x) C a(V X).

Hence, a(V X) is an upper bound of { a(x)|x € X }.
Assume that y is another upper bound of { a(x)|x € X }.
Then, Vx € X, a(x) C y.

By Galois connection Vx € X, x < v(y).

By definition of lubs, V X < ~(y).

By Galois connection, a(V X) C y.

Hence, { a(x)|x € X } has a lub, which equals a(V X).

The proof of 2 is similar (by duality).
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Galois connections

Deriving Galois connections

Given (C, <) % (A,C), we have:
e duality: (A, J) &= — (C,>)
(a(c) Ea <= c < ~(a)isexactly y(a) > ¢ <= ada(c))

@ point-wise lifting by some set S:
(S — C,<) &= (S — A, ) where
fF<f' <= Vs, f(s) < f'(s), ((F))(s)

Given (X1,C4) <7:> (X2,52) —)‘w (X3, C3):

e composition: (Xi,C1) <71——72> (X3,C3)

azoan
((a20a1)(c) Tz a <= a1(c) T2 12(a) <= c L1 (11072)(a))

course 02 Order Theory Antoine Miné

. v(f(s)),
FEF = Vs, f(s) C f(s), (a(F))(s) = a(f(s)).
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Galois connections

Galois connection example

Abstract domain of intervals of integers Z
represented as pairs of bounds (a, b).

We have: (P(Z),C) < (I.C)

o | £ (ZU{-0}) x (ZU {+0})

o (a,b)C(d,b) < a>ad Ab<V
o y(a,b) = {xeZla<x<b}

o a(X) £ (min X, max X)

proof:

course 02 Order Theory Antoine Miné p. 52 / 66



Galois connections

Galois connection example

Abstract domain of intervals of integers Z
represented as pairs of bounds (a, b).
v

We have: (P(Z),C) &= (/,E)
o | £ (ZU{—o00}) x (ZU {+o0})
o (a,b)C(d,b) < a>adAb<V
“{xeZla<x<b}
° a(X) & (min X, max X)

a(X) C (a,b)

<= minX >aAmaxX<bhb
< VxeX:al<x<bh

— VxeXixe{yla<y<b}
< Vx € X:x € y(a, b)

< X Cr(a,b)
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Galois connections

Galois embeddings

If (C,<) &= (A,C), the following properties are equivalent:
Q ais surjective (Va€ A, 3ce C,a(c) = a)
@ 7 is injective (Va,a’ € A,y(a) =~(a') = a=2)
Q@ aovy=id (Va € A, id(a) = a)

Such (a,7) is called a Galois embedding, which is noted
(C,<) = (A.C)

Proof:
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Galois connections

Galois embeddings

If (C,<) % (A,), the following properties are equivalent:

Q « is surjective (Va€ A, 3ce C,a(c) = a)
@ 7 is injective (Va,a’ € A,y(a) =~(a') = a=2)
Q@ aovy=id (Va € A, id(a) = a)

Such (a,7) is called a Galois embedding, which is noted

~

/
(€, <) == (A,C)

Proof: 1 — 2

Assume that v(a) = ~(a’).

By surjectivity, take c, ¢’ such that a = a(c), a’ = a(c’).

Then y(a(c)) = Y(a(c')).
And a(7(a()) = a(y(a(c'))).

Asaoyoa=a, a(c) = ac).
Hence a = a’.
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Galois connections

Galois embeddings

If (C,<) &= (A,C), the following properties are equivalent:
Q ais surjective (Va€ A, 3ce C,a(c) = a)
@ 7 is injective (Va,a’ € A,y(a) =~(a') = a=2)
Q@ aovy=id (Va € A, id(a) = a)

Such (a,7) is called a Galois embedding, which is noted
(C,<) = (A.C)

Proof: 2 — 3

Given a € A, we know that v(a(vy(a))) = v(a).
By injectivity of v, a(v(a)) = a.
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Galois connections

Galois embeddings

If (C,<) &= (A,C), the following properties are equivalent:
Q ais surjective (Va€ A, 3ce C,a(c) = a)
@ 7 is injective (Va,a’ € A,y(a) =~(a') = a=2)
Q@ aovy=id (Va € A, id(a) = a)

Such (a,7) is called a Galois embedding, which is noted
(C,<) = (A.C)

Proof: 3 — 1

Given a € A, we have a(y(a)) = a.
Hence, 3c € C, a(c) = a, using ¢ = v(a).
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.~ Galois comnections
Galois embeddings (cont.) _

(C,<) &= (A, D)

C a A

A Galois connection can be made into an embedding by quotienting
A by the equivalence relation a = 3’ <= ~(a) = v(a).



Galois connections

Galois embedding example

Abstract domain of intervals of integers Z
represented as pairs of ordered bounds (a, b) or L.

We have: (P(2),C) % (1,6)

def

= {(a,b)|]ac ZU{-0},be ZU{+0},a<b}U{L}
,b)C (b)) <= a>ad Ab<Pb, VxLLCx
ab)def{XGZ\a<x<b} (L) =10

) = (min X, max X), or L if X =1
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Galois connections

Galois embedding example

Abstract domain of intervals of integers Z
represented as pairs of ordered bounds (a, b) or L.

We have: (P(2),C) % (1,6)

o | = {(ab)|lacZU{-—x},beZU{+xx},a<b}U{L}
( b)C (d,b) < a>ad Ab<Pb, Vx1LLCx

(a,b) £ {xeZla<x<b}, ~L)=0

a( ) < (min X, maxX), or Lif X =0

Q

proof:

Quotient of the “pair of bounds” domain (ZU {—o0}) x (ZU {+0o0}) by the relation
(3,b) = (/) <= ~(a,b) = 4(a', b')

ie, (@a<bra=a Ab=b)V(a>bra >P).
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p: X — X is an upper closure in the poset (X, L) if it is:
@ monotonic: x C x' = p(x) C p(x'),
@ extensive: x C p(x), and
© idempotent: pop =p.




Galois connections

Upper closures and Galois connections

Given (C. <) £ (A,C),
~v o« is an upper closure on (C, <).

Given an upper closure p on (X,C), we have a Galois embedding:
id

— we can rephrase abstract interpretation using upper closures
instead of Galois connections, but we lose:

@ the notion of abstract representation
(a data-structure A representing elements in p(X))

@ the ability to have several distinct abstract representations
for a single concrete object

(non-necessarily injective ~y versus id)
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Fixpoint approximations




Fixpoint approximations

Abstractions in the concretization framework

Given a concrete (C, <) and an abstract (A, C) posets
and a monotonic concretization v : A — C

(v(a) is the “meaning” of a in C; we use intervals in our examples)

@ a € Ais a sound abstraction of ¢ € C if ¢ < v(a).

(e.g.: [0,10] is a sound abstraction of {0, 1,2,5} in the integer interval domain)

@ g:A— Ais asound abstraction of f : C — C
if Va € A:(fov)(a) < (vog)(a).
(e.g.: A([a, b].[-o00, +00] is a sound abstraction of AX.{x+ 1|x € X } in the

interval domain)

@ g: A— Ais an exact abstraction of f: C — C if
foy=ryog.
(e.g.: A([a, b].[a+ 1, b+ 1] is an exact abstraction of AX.{x+1|x € X } in

the interval domain)
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Fixpoint approximations

Abstractions in the Galois connection framework

Assume now that (C, <) % (A D).

@ sound abstractions

o ¢ < (a) is equivalent to a(c) C a.

o (fox)(a) < (yog)(a) is equivalent to (awo f ov)(a) E g(a).
e Given c € C, its best abstraction is a(c).

(proof: recall that a(c) =M{a|c < ~v(a)}, so, a(c) is the smallest sound

abstraction of ¢)

(e.g.: @({0,1,2,5}) = [0, 5] in the interval domain)

@ Given f : C — C, its best abstraction is o f o~y

(proof: g sound <= Va, (o fo~)(a) C g(a), so ao f o~ is the smallest

sound abstraction of f)

(e.g.: g([a, b]) = [2a,2b] is the best abstraction in the interval domain of
f(X) = {2x]|x € X} it is not an exact abstraction as

'*/(g([o, 1])) = {07 172} 2 {07 2} = f("/([ov 1]))
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Fixpoint approximations

Composition of sound, best, and exact abstractions

If g and g’ soundly abstract respectively f and f’ then:

course 02

if f is monotonic,
then g o g’ is a sound abstraction of f o f,

(proof: Va, (fof'ovy)(a) < (fovyog')(a) < (yogog')(a))
if g, g’ are exact abstractions of f and f/,

then g o g’ is an exact abstraction,

(proof: fof'oy=foyog' =vyogog’)

if g and g’ are the best abstractions of f and f’,
then g o g’ is not always the best abstraction!

(e.g.: g([a, b]) = [a,min(b,1)] and g’([a, b]) = [2a, 2b] are the best abstractions
of f(X)={xe€ X|x<1}and f(X)={2x|x € X} in the interval domain,
but g o g’ is not the best abstraction of f o f’ as (g o g’)([0, 1]) = [0, 1] while

(aofof’oy)([0,1]) = [0,0])

Order Theory Antoine Miné
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Fixpoint approximations

(Tarskian) Fixpoint transfer

If we have:

% (A, C) between CPOs

@ monotonic concrete and abstract functions
F:CoC, fl:A A

@ a commutation condition ao f = flo «

@ a Galois connection (C, <)

@ an element a and its abstraction a' = a(a)

then a(lfp, f) = Ifp,: fF.

(proof on next slide)
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Fixpoint approximations

(Tarskian) Fixpoint transfer (proof)

Proof:

By the constructive Tarksi theorem, Ifp, f is the limit of transfinite iterations:
def def def . .

a0 = a, ant1 = f(an), and ap = V {am|m < n} for limit ordinals n.

Likewise, Ifp_ 4 f is the limit of a transfinite iteration ah.
We prove by transfinite induction that a} = a(an) for all ordinals n:
° ag = a(ap), by definition;

° afH_l = fﬁ(aﬁn) = ff(a(an)) = a(f(an)) = a(ans1) for successor ordinals, by

commutation;

° 4} :|_|{aftn|m< ny=l{a(am)im<n}=a(\/{am|m< n})=ala,) for
limit ordinals, by commutation and the fact that « is always continuous in
Galois connections.

Hence, Ifp,; f# = a(Ifp, ).
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Fixpoint approximations

(Kleenian) Fixpoint approximation

If we have:
@ a complete lattice (C,<,V,A, L, T)
@ a monotonic concrete function f
@ a sound abstraction ! : A — A of f
(VxP: (f o) (x*) < (v o £2)(x*))
@ a post-fixpoint af of f1  (ri(at) C at)
then a is a sound abstraction of Ifp f: Ifp f < ~(af).

Proof:

By definition, f#(af) C a.

By monotony, v(f%(a%)) < v(at).

By soundness, f(v(a?)) < ~(a?).

By Tarski's theorem Ifp f = A { x| f(x) < x}.

Hence, Ifp f < ~(at).

Other fixpoint transfer / approximation theorems can be
constructed. ..
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