### **Program Semantics**

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

year 2014-2015

course 03 24 September 2014

### Goal

#### Discuss several flavors of **concrete** semantics:

- independently from programming languages (transition systems)
- defined in a constructive way (as fixpoints)
- compare their expressive power (link by abstractions)

#### Plan:

- introduction: classic examples of program semantics
- transition systems
- state semantics (forward and backward)
- trace semantics (finite and infinite)
- relational semantics
- state and trace properties

### Flavors of program semantics

### Small-step operational semantics of the $\lambda-$ calculus

#### Goal:

Illustrate through a simple example ( $\lambda$ -calculus) different favors and levels of semantics.

They feature some notion of states and transitions.

 $\Longrightarrow$  justifies transition systems as a universal model of semantics

### **Example:** $\lambda$ -calcul

### Small-step operational semantics of the $\lambda-$ calculus

Small-step operational semantics: (call-by-value)

$$\frac{M \rightsquigarrow M'}{(\lambda x.M)N \rightsquigarrow M[x/N]} \qquad \frac{M \rightsquigarrow M'}{M N \rightsquigarrow M' N} \qquad \frac{N \rightsquigarrow N'}{M N \rightsquigarrow M N'}$$

Models program execution as a sequence of term-rewriting  $\rightsquigarrow$  exposing each transition (low level).

## Big-step operational semantics of the $\lambda-$ calculus

Big-step operational semantics: (call-by-value)

$$\frac{1}{\lambda x.M \Downarrow \lambda x.M} \qquad \frac{M \Downarrow \lambda x.L \quad N \Downarrow V_2 \quad L[x/V_2] \Downarrow V_1}{M \; N \Downarrow V_1}$$

 $t \downarrow u$  associates to a term t its full evaluation u, abstracting away intermediate steps (higher level).

### Denotational semantics of the $\lambda$ -calculus

#### Denotational semantics:

The semantics  $[\![t]\!]_{\rho}$  of a term t in an environment  $\rho$  is given as an element of a Scott domain  $\mathcal{D}$ .

- $\mathcal D$  should satisfy the domain equation:  $\mathcal D \simeq \mathcal D \overset{\mathsf c}{ o} \mathcal D_\perp$  (CPO  $\mathcal D$  closed by continuous functions from  $\mathcal D$  to the lifted CPO  $\mathcal D_\perp$ )
- The semantics of a program function is a mathematical function.
   (very high level)

### Abstract machine semantics of the $\lambda$ -calculus

### Krivine abstract machine: (call-by-value)

- variables in  $\lambda$ -terms are replaced with De Bruijn indices  $(x \mapsto \text{number of nested } \lambda \text{ to reach } \lambda x)$
- $\lambda$ -terms are compiled into sequences of instructions:

### Abstract machine semantics of the $\lambda$ -calculus

- instructions are executed over configurations (C, e, s)
  - C: sequence of instructions to execute
  - e: environment
    - s: stack = list of pairs of (C, e) (closures)

#### with transitions:

- $\langle Access(0) \cdot C, (C_0, e_0) \cdot e, s \rangle \rightarrow \langle C_0, e_0, s \rangle$
- $\langle Access(n+1) \cdot C, (C_0, e_0) \cdot e, s \rangle \rightarrow \langle Access(n), e, s \rangle$
- $\langle Push(C') \cdot C, e, s \rangle \rightarrow \langle C, e, (C', e) \cdot s \rangle$
- $\langle \textit{Grab} \cdot \textit{C}, e, (\textit{C}_0, e_0) \cdot \textit{s} \rangle \rightarrow \langle \textit{C}, (\textit{s}_0, e_0) \cdot e, \textit{s} \rangle$
- ⇒ very low level. (but very efficient)

# **Transition systems**

# Transition systems: definition

Language-neutral formalism to discuss about program semantics.

### **Transition system:** $(\Sigma, \tau)$

- set of states Σ,
   (memory states, λ-terms, configurations, etc., generally infinite)
- transition relation  $\tau \subseteq \Sigma \times \Sigma$ .

 $(\Sigma, \tau)$  is a general form of small-step operational semantics.

$$(\sigma, \sigma') \in \tau$$
 is noted  $\sigma \to \sigma'$ :

starting in state  $\sigma$ , after an execution step, we can go to state  $\sigma'$ .

# Transition system: example

$$\begin{split} i \leftarrow 2; \\ n \leftarrow [-\infty, +\infty]; \\ \text{while } i < n \text{ do} \\ \text{if ? then} \\ i \leftarrow i + 1 \end{split}$$

$$\Sigma \stackrel{\mathrm{def}}{=} \{i, n\} \to \mathbb{Z}$$



### From programs to transition systems

**Example:** on a simple imperative language.

```
Language syntax
{}^{\ell}stat^{\ell} ::= {}^{\ell}X \leftarrow expr^{\ell} \qquad (assignment)
| {}^{\ell}if \ expr \bowtie 0 \ then \ {}^{\ell}stat^{\ell} \qquad (conditional)
| {}^{\ell}while \ {}^{\ell}expr \bowtie 0 \ do \ {}^{\ell}stat^{\ell} \qquad (loop)
| {}^{\ell}stat; {}^{\ell}stat^{\ell} \qquad (sequence)
```

- $X \in \mathbb{V}$ , where  $\mathbb{V}$  is a finite set of program variables,
- $\ell \in \mathcal{L}$  is a finite set of control labels,
- $\bowtie \in \{=, \leq, \ldots\}$ , the syntax of *expr* is left undefined. (see next course)

Program states:  $\Sigma \stackrel{\text{def}}{=} \mathcal{L} \times \mathcal{E}$  are composed of:

- a control state in L,
- ullet a memory state in  $\mathcal{E} \stackrel{\mathrm{def}}{=} \mathbb{V} \to \mathbb{R}$ .

### From programs to transition systems

<u>Transitions:</u>  $\tau[\ell stat^{\ell'}] \subseteq \Sigma \times \Sigma$  is defined by induction on the syntax.

Assuming that expression semantics is given as  $\mathsf{E}[\![e]\!]: \mathcal{E} \to \mathcal{P}(\mathbb{R})$ . (see next course)

$$\begin{split} \tau [ ^{\ell 1} X \leftarrow e^{\ell 2} ] & \stackrel{\mathrm{def}}{=} \quad \left\{ \left( \ell 1, \rho \right) \rightarrow \left( \ell 2, \rho [X \mapsto v] \right) \, | \, \rho \in \mathcal{E}, \, v \in \mathbb{E} \llbracket \, e \, \rrbracket \, \rho \, \right\} \\ \tau [ ^{\ell 1} \text{if } e \bowtie 0 \text{ then } ^{\ell 2} s^{\ell 3} ] & \stackrel{\mathrm{def}}{=} \\ & \left\{ \left( \ell 1, \rho \right) \rightarrow \left( \ell 2, \rho \right) \, | \, \rho \in \mathcal{E}, \, \exists v \in \mathbb{E} \llbracket \, e \, \rrbracket \, \rho \colon v \bowtie 0 \, \right\} \cup \\ & \left\{ \left( \ell 1, \rho \right) \rightarrow \left( \ell 3, \rho \right) \, | \, \rho \in \mathcal{E}, \, \exists v \in \mathbb{E} \llbracket \, e \, \rrbracket \, \rho \colon v \bowtie 0 \, \right\} \cup \tau [ ^{\ell 2} s^{\ell 3} ] \end{split}$$

$$\tau [ ^{\ell 1} \text{while } ^{\ell 2} e \bowtie 0 \text{ do } ^{\ell 3} s^{\ell 4} ] & \stackrel{\mathrm{def}}{=} \\ & \left\{ \left( \ell 1, \rho \right) \rightarrow \left( \ell 2, \rho \right) \, | \, \rho \in \mathcal{E} \, \right\} \cup \\ & \left\{ \left( \ell 2, \rho \right) \rightarrow \left( \ell 3, \rho \right) \, | \, \rho \in \mathcal{E}, \, \exists v \in \mathbb{E} \llbracket \, e \, \rrbracket \, \rho \colon v \bowtie 0 \, \right\} \cup \tau [ ^{\ell 3} s^{\ell 2} ] \\ & \left\{ \left( \ell 2, \rho \right) \rightarrow \left( \ell 4, \rho \right) \, | \, \rho \in \mathcal{E}, \, \exists v \in \mathbb{E} \llbracket \, e \, \rrbracket \, \rho \colon v \bowtie 0 \, \right\} \cup \tau [ ^{\ell 3} s^{\ell 2} ] \end{split}$$

### **State semantics**

### States and state operators

### Initial, final, blocking states

Transition systems  $(\Sigma, \tau)$  are often enriched with:

- ullet  $\mathcal{I}\subseteq\Sigma$  a set of distinguished initial states,
- $\mathcal{F} \subseteq \Sigma$  a set of distinguished final states.

(e.g., limit observation to executions starting in an initial state and ending in a final state)

### Blocking states $\mathcal{B}$ :

- states with no successor  $\mathcal{B} \stackrel{\text{def}}{=} \{ \sigma \mid \forall \sigma' \in \Sigma : \sigma \not\to \sigma' \},$
- model correct program termination and program errors, (correct exit, program stuck, unhandled exception, etc.)
- often include (or equal) final states F.

Note: we can always remove blocking states by completing  $\tau$ :

$$\tau' \stackrel{\text{def}}{=} \tau \cup \{ (\sigma, \sigma) \mid \sigma \in \mathcal{B} \}.$$
 (add self-loops)

# Post-image, pre-image

### Forward and backward images, in $\mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$ :

- successors: (forward, post-image)  $\operatorname{post}_{\tau}(S) \stackrel{\operatorname{def}}{=} \left\{ \left. \sigma' \, \right| \, \exists \sigma \in S \colon \sigma \to \sigma' \, \right\}$
- predecessors: (backward, pre-image)  $\operatorname{pre}_{\tau}(S) \stackrel{\mathrm{def}}{=} \{ \sigma \mid \exists \sigma' \in S : \sigma \to \sigma' \} \}$

$$\mathsf{post}_{\tau}$$
 and  $\mathsf{pre}_{\tau}$  are complete  $\cup -\mathsf{morphisms}$  in  $(\mathcal{P}(\Sigma), \subseteq, \cup, \cap, \emptyset, \Sigma)$ .

$$(\mathsf{post}_\tau(\cup_{i\in I}\,S_i) = \cup_{i\in I}\,\,\mathsf{post}_\tau(S_i),\,\,\mathsf{pre}_\tau(\cup_{i\in I}\,S_i) = \cup_{i\in I}\,\,\mathsf{pre}_\tau(S_i))$$

$$\mathsf{post}_\tau \ \mathsf{and} \ \mathsf{pre}_\tau \ \mathsf{are} \ \mathsf{strict}. \qquad (\mathsf{post}_\tau(\emptyset) = \mathsf{pre}_\tau(\emptyset) = \emptyset)$$

We have: 
$$\operatorname{pre}_{\tau}(S) = \bigcup \left\{ \operatorname{pre}_{\tau}(\{s\}) \, | \, s \in S \right\} \text{ and } \operatorname{post}_{\tau}(S) = \bigcup \left\{ \operatorname{post}_{\tau}(\{s\}) \, | \, s \in S \right\}.$$

## Dual images

### Dual post-images and pre-images:

- $\widetilde{\operatorname{pre}}_{\tau}(S) \stackrel{\operatorname{def}}{=} \{ \sigma \mid \forall \sigma' \colon \sigma \to \sigma' \implies \sigma' \in S \}$  (states such that all successors satisfy S)
- $\operatorname{post}_{\tau}(S) \stackrel{\mathrm{def}}{=} \{ \sigma' \mid \forall \sigma \colon \sigma \to \sigma' \implies \sigma \in S \}$  (states such that all predecessors satisfy S)

 $\widetilde{\mathsf{pre}}_\tau$  and  $\widetilde{\mathsf{post}}_\tau$  are complete  $\cap\mathsf{-morphisms}$  and not strict.

## Correspondences between images and dual images

$$\begin{array}{lll} \operatorname{post}_{\tau}(S) & \stackrel{\operatorname{def}}{=} & \left\{ \left. \sigma' \, | \, \exists \sigma \in S \colon \sigma \to \sigma' \, \right\} \right. \\ \operatorname{pre}_{\tau}(S) & \stackrel{\operatorname{def}}{=} & \left\{ \left. \sigma \, | \, \exists \sigma' \in S \colon \sigma \to \sigma' \, \right\} \right. \\ \left. \widetilde{\operatorname{pre}}_{\tau}(S) & \stackrel{\operatorname{def}}{=} & \left\{ \left. \sigma \, | \, \forall \sigma' \colon \sigma \to \sigma' \, \Longrightarrow \, \sigma' \in S \, \right\} \right. \\ \left. \widetilde{\operatorname{post}}_{\tau}(S) & \stackrel{\operatorname{def}}{=} & \left\{ \left. \sigma' \, | \, \forall \sigma \colon \sigma \to \sigma' \, \Longrightarrow \, \sigma \in S \, \right\} \right. \end{array}$$

We have the following correspondences:

inverse

$$\begin{split} \operatorname{pre}_{\tau} &= \operatorname{post}_{\left(\tau^{-1}\right)} & \operatorname{post}_{\tau} &= \operatorname{pre}_{\left(\tau^{-1}\right)} \\ & \widetilde{\operatorname{pre}}_{\tau} &= \widetilde{\operatorname{post}}_{\left(\tau^{-1}\right)} & \widetilde{\operatorname{post}}_{\tau} &= \widetilde{\operatorname{pre}}_{\left(\tau^{-1}\right)} \\ & (\operatorname{where} \ \tau^{-1} \ \stackrel{\operatorname{def}}{=} \left\{ \left(\sigma, \sigma'\right) \, | \, (\sigma', \sigma) \in \tau \right\} ) \end{split}$$

### Correspondences between images and dual images

$$\begin{array}{lll} \operatorname{post}_{\tau}(S) & \stackrel{\operatorname{def}}{=} & \left\{ \left. \sigma' \, | \, \exists \sigma \in S \colon \sigma \to \sigma' \, \right\} \right. \\ \operatorname{pre}_{\tau}(S) & \stackrel{\operatorname{def}}{=} & \left\{ \left. \sigma \, | \, \exists \sigma' \in S \colon \sigma \to \sigma' \, \right\} \right. \\ \left. \widetilde{\operatorname{pre}}_{\tau}(S) & \stackrel{\operatorname{def}}{=} & \left\{ \left. \sigma \, | \, \forall \sigma' \colon \sigma \to \sigma' \, \Longrightarrow \, \sigma' \in S \, \right\} \right. \\ \left. \widetilde{\operatorname{post}}_{\tau}(S) & \stackrel{\operatorname{def}}{=} & \left\{ \left. \sigma' \, | \, \forall \sigma \colon \sigma \to \sigma' \, \Longrightarrow \, \sigma \in S \, \right\} \right. \end{array}$$

### We have the following correspondences:

#### Galois connections

$$\begin{split} &(\mathcal{P}(\Sigma),\subseteq) \xleftarrow{\widetilde{\mathsf{pre}}_\tau} (\mathcal{P}(\Sigma),\subseteq) \text{ and } \\ &(\mathcal{P}(\Sigma),\subseteq) \xleftarrow{\widetilde{\mathsf{post}}_\tau} (\mathcal{P}(\Sigma),\subseteq). \end{split}$$

#### proof:

$$\begin{aligned} \mathsf{post}_\tau(A) \subseteq B &\iff \{\,\sigma' \,|\, \exists \sigma \in A \colon \sigma \to \sigma'\,\} \subseteq B \iff (\,\forall \sigma \in A \colon \sigma \to \sigma'\, \iff \sigma' \in B\,) \iff (A \subseteq \{\,\sigma \,|\, \forall \sigma' \colon \sigma \to \sigma'\, \implies \sigma' \in B\,\}) \iff A \subseteq \widetilde{\mathsf{pre}}_\tau(B); \text{ other directions are similar.} \end{aligned}$$

## Deterministic systems

#### Determinism:

- $(\Sigma, \tau)$  is deterministic if  $\forall \sigma \in \Sigma$ :  $|\operatorname{post}_{\tau}(\{\sigma\})| = 1$ , (every state has a single successor, no blocking state)
- most transition systems are non-deterministic.
   (e.g., effect of input X ← [0,10], program termination)

#### We have the following correspondences:

- $\forall S : \mathcal{B} \subseteq \widetilde{\mathsf{pre}}_{\tau}(S) \subseteq \mathsf{pre}_{\tau}(S) \cup \mathcal{B}$ . When  $\mathcal{B} = \emptyset$ , then  $\widetilde{\mathsf{pre}}_{\tau}(S) \subseteq \mathsf{pre}_{\tau}(S)$ .
- If  $\tau$  is deterministic, then  $\mathcal{B} = \emptyset$ ,  $\operatorname{pre}_{\tau} = \widetilde{\operatorname{pre}}_{\tau}$  and  $\operatorname{post}_{\tau} = \widetilde{\operatorname{post}}_{\tau}$ .

### Reachability state semantics

### Forward reachability

 $\mathcal{R}(\mathcal{I})$ : states reachable from  $\mathcal{I}$  in the transition system

$$\mathcal{R}(\mathcal{I}) \stackrel{\text{def}}{=} \{ \sigma \mid \exists n \geq 0, \sigma_0, \dots, \sigma_n : \sigma_0 \in \mathcal{I}, \sigma = \sigma_n, \forall i : \sigma_i \to \sigma_{i+1} \} \\
= \bigcup_{n \geq 0} \mathsf{post}_{\tau}^n(\mathcal{I})$$

(reachable  $\iff$  reachable from  $\mathcal{I}$  in n steps of  $\tau$  for some  $n \geq 0$ )

 $\mathcal{R}(\mathcal{I})$  can be expressed in fixpoint form:

$$\mathcal{R}(\mathcal{I}) = \mathsf{lfp} \,\, F_{\mathcal{R}} \,\, \mathsf{where} \,\, F_{\mathcal{R}}(S) \stackrel{\mathrm{def}}{=} \, \mathcal{I} \cup \mathsf{post}_{\tau}(S)$$

 $(F_{\mathcal{R}} \text{ shifts } S \text{ and adds back } \mathcal{I})$ 

Alternate characterization:  $\mathcal{R} = \mathsf{lfp}_{\mathcal{I}} \ G_{\mathcal{R}} \ \mathsf{where} \ G_{\mathcal{R}}(S) \stackrel{\mathsf{def}}{=} S \cup \mathsf{post}_{\tau}(S).$   $(G_{\mathcal{R}} \ \mathsf{shifts} \ S \ \mathsf{by} \ \tau \ \mathsf{and} \ \mathsf{accumulates} \ \mathsf{the} \ \mathsf{result} \ \mathsf{with} \ S)$ 

(proofs on next slide)

# Forward reachability: proof

proof: of 
$$\mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}}$$
 where  $F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \operatorname{post}_{\tau}(S)$ 

 $(\mathcal{P}(\Sigma),\subseteq)$  is a CPO and  $\mathsf{post}_{\tau}$  is continuous, hence  $F_{\mathcal{R}}$  is continuous:  $F_{\mathcal{R}}(\cup_{i\in I}A_i)=\cup_{i\in I}F_{\mathcal{R}}(A_i)$ .

By Kleene's theorem, Ifp  $F_{\mathcal{R}} = \cup_{n \in \mathbb{N}} F_{\mathcal{R}}^n(\emptyset)$ .

We prove by recurrence on n that:  $\forall n: F_{\mathcal{R}}^n(\emptyset) = \cup_{i < n} \operatorname{post}_{\tau}^i(\mathcal{I})$ . (states reachable in less than n steps)

- $F_{\mathcal{R}}^0(\emptyset) = \emptyset$
- assuming the property at n,

$$\begin{array}{lcl} F_{\mathcal{R}}^{n+1}(\emptyset) & = & F_{\mathcal{R}}(\bigcup_{i < n} \mathsf{post}_{\tau}^{i}(\mathcal{I})) \\ & = & \mathcal{I} \cup \mathsf{post}_{\tau}(\bigcup_{i < n} \mathsf{post}_{\tau}^{i}(\mathcal{I})) \\ & = & \mathcal{I} \cup \bigcup_{i < n} \mathsf{post}_{\tau}(\mathsf{post}_{\tau}^{i}(\mathcal{I})) \\ & = & \mathcal{I} \cup \bigcup_{1 \leq i < n+1} \mathsf{post}_{\tau}^{i}(\mathcal{I}) \\ & = & \bigcup_{i < n+1} \mathsf{post}_{\tau}^{i}(\mathcal{I}) \end{array}$$

Hence: Ifp  $F_{\mathcal{R}} = \cup_{n \in \mathbb{N}} F_{\mathcal{R}}^n(\emptyset) = \cup_{i \in \mathbb{N}} \operatorname{post}_{\tau}^i(\mathcal{I}) = \mathcal{R}(\mathcal{I}).$ 

The proof is similar for the alternate form, given that  $\operatorname{lfp}_{\mathcal{I}} G_{\mathcal{R}} = \cup_{n \in \mathbb{N}} G_{\mathcal{R}}^n(\mathcal{I})$  and  $G_{\mathcal{R}}^n(\mathcal{I}) = F_{\mathcal{R}}^{n+1}(\emptyset) = \cup_{i \leq n} \operatorname{post}_{\mathcal{I}}^i(\mathcal{I})$ .



Transition system.



Initial states  $\mathcal{I}$ .



Iterate  $F^1_{\mathcal{R}}(\mathcal{I})$ .



Iterate  $F_{\mathcal{R}}^2(\mathcal{I})$ .



Iterate  $F_{\mathcal{R}}^3(\mathcal{I})$ .



States reachable from  $\mathcal{I}$ :  $\mathcal{R}(\mathcal{I}) = F_{\mathcal{R}}^{5}(\mathcal{I})$ .

## Forward reachability: applications

• Infer the set of possible states at program end:  $\mathcal{R}(\mathcal{I}) \cap \mathcal{F}$ .

# 

- initial states  $\mathcal{I}$ :  $j \in [0, 10]$  at control state •,
- final states F: any memory state at control state ●,
- $\Longrightarrow \mathcal{R}(\mathcal{I}) \cap \mathcal{F}$ : control at •, i = 100, and  $j \in [0, 110]$ .
- Prove the absence of run-time error:  $\mathcal{R}(\mathcal{I}) \cap \mathcal{B} \subseteq \mathcal{F}$ . (never block except when reaching the end of the program)

# Multiple forward fixpoints

Recall:  $\mathcal{R}(\mathcal{I}) = \mathsf{lfp}\,F_{\mathcal{R}}$  where  $F_{\mathcal{R}}(S) \stackrel{\mathsf{def}}{=} \mathcal{I} \cup \mathsf{post}_{\tau}(S)$ .

Note that  $F_R$  may have several fixpoints.

### Example:



#### Exercise:

Compute all the fixpoints of  $G_{\mathcal{R}}(S) \stackrel{\text{def}}{=} S \cup \text{post}_{\tau}(S)$  on this example.

# Forward reachability equation system

By partitioning forward reachability wrt. control states, we retrieve the equation system form of program semantics.

### **Control state partitioning**

We assume  $\Sigma \stackrel{\mathrm{def}}{=} \mathcal{L} \times \mathcal{E}$ ; note that:  $\mathcal{P}(\Sigma) \simeq \mathcal{L} \to \mathcal{P}(\mathcal{E})$ .

We have a Galois isomorphism:

$$(\mathcal{P}(\Sigma),\subseteq) \xrightarrow[\alpha_{\mathcal{L}}]{\gamma_{\mathcal{L}}} (\mathcal{L} \to \mathcal{P}(\mathcal{E}),\dot{\subseteq})$$

- $X \subseteq Y \stackrel{\text{def}}{\iff} \forall \ell \in \mathcal{L}: X(\ell) \subseteq Y(\ell)$
- $\alpha_{\mathcal{L}}(S) \stackrel{\text{def}}{=} \lambda \ell . \{ \rho \mid (\ell, \rho) \in S \}$
- $\gamma_{\mathcal{L}}(X) \stackrel{\text{def}}{=} \{ (\ell, \rho) | \ell \in \mathcal{L}, \rho \in X(\ell) \}$

Note that:  $\alpha_{\mathcal{L}} \circ \gamma_{\mathcal{L}} = \gamma_{\mathcal{L}} \circ \alpha_{\mathcal{L}} = id$ . (no abstraction)

## Forward reachability equation system: example

### $\underline{\mathsf{Idea:}} \quad \mathsf{compute} \ \alpha_{\mathcal{L}}(\mathcal{R}(\mathcal{I})) : \mathcal{L} \to \mathcal{P}(\mathcal{E})$

- introduce variables:  $\mathcal{X}_{\ell} = (\alpha_{\mathcal{L}}(\mathcal{R}(\mathcal{I})))(\ell) \in \mathcal{P}(\mathcal{E})$ ,
- decompose the fixpoint equation  $F_{\mathcal{R}}(S) = \mathcal{I} \cup \mathsf{post}_{\tau}(S)$  on  $\mathcal{L}$ :  $\alpha_{\mathcal{L}} \circ F_{\mathcal{R}} \circ \gamma_{\mathcal{L}}$  gives an equation system on  $(\mathcal{X}_{\ell})_{\ell \in \mathcal{L}}$ .

#### Example:

$$\begin{array}{l} {\ell 1} \ i \leftarrow 2; \\ {\ell 2} \ n \leftarrow [-\infty, +\infty]; \\ {\ell 3} \ \text{while} \ {\ell 4} \ i < n \ \text{do} \\ {\ell 5} \ \text{if} \ [0,1] = 0 \ \text{then} \\ {\ell 6} \ i \leftarrow i+1 \\ {\ell 7} \end{array}$$

- initial states  $\mathcal{I} \stackrel{\text{def}}{=} \{ (\ell 1, \rho) | \rho \in \mathcal{I}_1 \}$  for some  $\mathcal{I}_1 \subseteq \mathcal{E}$ ,
- $\mathbb{C}[\cdot]$ :  $\mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$  model assignments and tests (see next slide).

## Forward reachability equation system: construction

We derive the equation system  $eq(^{\ell}stat^{\ell'})$  from the program syntax  $^{\ell}stat^{\ell'}$  by induction:

$$\begin{split} & eq({}^{\ell 1}X \leftarrow e^{\ell 2}) \stackrel{\mathrm{def}}{=} \left\{ \left. \mathcal{X}_{\ell 2} = \mathsf{C} \right[\![\![ X \leftarrow e \, ]\!] \, \mathcal{X}_{\ell 1} \right\} \right. \\ & eq({}^{\ell 1} \text{if } e \bowtie 0 \text{ then } {}^{\ell 2} s^{\ell 3}) \stackrel{\mathrm{def}}{=} \\ & \left\{ \left. \mathcal{X}_{\ell 2} = \mathsf{C} \right[\![\![ e \bowtie 0 \, ]\!] \, \mathcal{X}_{\ell 1}, \, \mathcal{X}_{\ell 3} = \mathcal{X}_{\ell 3'} \cup \mathsf{C} \big[\![\![ e \bowtie 0 \, ]\!] \, \mathcal{X}_{\ell 1} \right\} \cup eq({}^{\ell 2} s^{\ell 3'}) \right. \\ & eq({}^{\ell 1} \text{while } {}^{\ell 2} e \bowtie 0 \text{ do } {}^{\ell 3} s^{\ell 4}) \stackrel{\mathrm{def}}{=} \\ & \left\{ \left. \mathcal{X}_{\ell 2} = \mathcal{X}_{\ell 1} \cup \mathcal{X}_{\ell 4'}, \, \mathcal{X}_{\ell 3} = \mathsf{C} \big[\![\![\![ e \bowtie 0 \, ]\!] \, \mathcal{X}_{\ell 2}, \, \mathcal{X}_{\ell 4} = \mathsf{C} \big[\![\![\![\![\![ e \bowtie 0 \, ]\!] \, \mathcal{X}_{\ell 2} \big] \right] \right. \\ & \left. eq({}^{\ell 1} s_1; {}^{\ell 2} s_2{}^{\ell 3}) \stackrel{\mathrm{def}}{=} eq({}^{\ell 1} s_1{}^{\ell 2}) \cup ({}^{\ell 2} s_2{}^{\ell 3}) \right. \end{split}$$

#### where:

- $\mathcal{X}^{\ell 3'}$ ,  $\mathcal{X}^{\ell 4'}$  are fresh variables storing intermediate results
- $C[X \leftarrow e] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho[X \mapsto v] | \rho \in \mathcal{X}, v \in E[e] \rho \}$  $C[e \bowtie 0] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho \in \mathcal{X} | \exists v \in E[\rho] \rho v \bowtie 0 \}$

#### Co-reachability state semantics

## Backward reachability

 $\mathcal{C}(\mathcal{F})$ : states co-reachable from  $\mathcal{F}$  in the transition system:

$$\mathcal{C}(\mathcal{F}) \stackrel{\text{def}}{=} \{ \sigma \mid \exists n \geq 0, \sigma_0, \dots, \sigma_n : \sigma = \sigma_0, \sigma_n \in \mathcal{F}, \forall i : \sigma_i \to \sigma_{i+1} \} \\
= \bigcup_{n \geq 0} \operatorname{pre}_{\tau}^n(\mathcal{F})$$

 $\mathcal{C}(\mathcal{F})$  can also be expressed in fixpoint form:

$$\mathcal{C}(\mathcal{F}) = \mathsf{lfp}\, F_\mathcal{C} \; \mathsf{where} \; F_\mathcal{C}(S) \stackrel{\scriptscriptstyle \mathrm{def}}{=} \; \mathcal{F} \cup \mathsf{pre}_{ au}(S) \; | \;$$

Alternate characterization:  $C(\mathcal{F}) = \mathsf{lfp}_{\mathcal{T}} \ G_{\mathcal{C}} \ \mathsf{where} \ G_{\mathcal{C}}(S) = G_{\mathcal{C}} \cup \mathsf{pre}_{\tau}(S)$ 

<u>Justification:</u>  $C(\mathcal{F})$  in  $\tau$  is exactly  $\mathcal{R}(\mathcal{F})$  in  $\tau^{-1}$ .

## Backward reachability: graphical illustration



Transition system.

## Backward reachability: graphical illustration



Final states  $\mathcal{F}$ .

## Backward reachability: graphical illustration



States co-reachable from  $\mathcal{F}$ .

## Backward reachability: applications

•  $\mathcal{I} \cap \mathcal{C}(\mathcal{B} \setminus \mathcal{F})$ Initial states that have at least one erroneous execution.

#### program

•  $j \leftarrow 0$ ; while i > 0 do  $i \leftarrow i - 1$ ;  $j \leftarrow j + [0, 10]$ done •

- initial states  $\mathcal{I}$ :  $i \in [0, 100]$  at •
- final states F: any memory state at ●
- blocking states  $\mathcal{B}$ : final, or j > 200 at any location
- $\mathcal{I} \cap \mathcal{C}(\mathcal{B} \setminus \mathcal{F})$ : at •, i > 20
- $\mathcal{I} \cap (\Sigma \setminus \mathcal{C}(\mathcal{B}))$ Initial states that necessarily cause the program to loop.
- Iterate forward and backward analyses interactively
   abstract debugging [Bour93].

## Backward reachability equation system: example

#### Principle:

Use  $(\mathcal{P}(\Sigma),\subseteq) \stackrel{\gamma_{\mathcal{L}}}{\underset{\alpha_{\mathcal{L}}}{\longleftrightarrow}} (\mathcal{L} \to \mathcal{P}(\mathcal{E}), \subseteq)$  on  $F_{\mathcal{C}}(S) \stackrel{\text{def}}{=} \mathcal{F} \cup \operatorname{pre}_{\tau}(S)$  to derive an equation system  $\alpha_{\mathcal{L}} \circ F_{\mathcal{C}} \circ \gamma_{\mathcal{L}}$ .

#### Example:

$$\begin{array}{l} { \ell 1 } \ i \leftarrow 2; \\ { \ell 2 } \ n \leftarrow [-\infty, +\infty]; \\ { \ell 3 } \ \text{while} \begin{array}{l} { \ell 4 } \ i < n \ \text{do} \\ { \ell 5 } \ \text{if} \ [0,1] = 0 \ \text{then} \\ { \ell 6 } \ i \leftarrow i + 1 \end{array} \\ \end{array}$$

- final states  $\mathcal{F} \stackrel{\text{def}}{=} \{ (\ell 8, \rho) | \rho \in \mathcal{F}_8 \}$  for some  $\mathcal{F}_8 \subseteq \mathcal{E}$ ,
- $C[X \to e] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho \mid \exists v \in E[e] \rho : \rho[X \mapsto v] \in X \}.$

#### Pre-condition state semantics

#### Sufficient preconditions

 $\mathcal{S}(\mathcal{Y})$ : states with executions staying in  $\mathcal{Y}$ .

$$\mathcal{S}(\mathcal{Y}) \stackrel{\text{def}}{=} \{ \sigma \mid \forall n \geq 0, \sigma_0, \dots, \sigma_n : (\sigma = \sigma_0 \land \forall i : \sigma_i \to \sigma_{i+1}) \implies \sigma_n \in \mathcal{Y} \}$$
$$= \bigcap_{n \geq 0} \widetilde{\mathsf{pre}}_{\tau}^n(\mathcal{Y})$$

 $\mathcal{S}(\mathcal{Y})$  can be expressed in fixpoint form:

$$S(\mathcal{Y}) = \operatorname{\mathsf{gfp}} F_{\mathcal{S}} \text{ where } F_{\mathcal{S}}(S) \stackrel{\text{def}}{=} \mathcal{Y} \cap \widetilde{\operatorname{\mathsf{pre}}}_{\tau}(S)$$

proof sketch: similar to that of  $\mathcal{R}(\mathcal{I})$ , in the dual.

 $F_{\mathcal{S}}$  is continuous in the dual CPO  $(\mathcal{P}(\Sigma),\supseteq)$ , because  $\widetilde{\mathsf{pre}}_{\tau}$  is:

 $F_{\mathcal{S}}(\cap_{i\in I}A_i)=\cap_{i\in I}F_{\mathcal{S}}(A_i).$ 

By Kleene's theorem in the dual, gfp  $F_S = \bigcap_{n \in \mathbb{N}} F_S^n(\Sigma)$ .

We would prove by recurrence that  $F_{\mathcal{S}}^n(\Sigma) = \bigcap_{i < n} \widetilde{\operatorname{pre}}_{\tau}^i(\mathcal{Y})$ .

## Sufficient preconditions and reachability

#### Correspondence with reachability:

We have a Galois connection:

$$(\mathcal{P}(\Sigma),\subseteq) \xrightarrow[\mathcal{R}]{\mathcal{S}} (\mathcal{P}(\Sigma),\subseteq)$$

- $\mathcal{R}(\mathcal{I}) \subseteq \mathcal{Y} \iff \mathcal{I} \subseteq \mathcal{S}(\mathcal{Y})$
- so  $S(\mathcal{Y}) = \bigcup \{ X \mid \mathcal{R}(X) \subseteq \mathcal{Y} \}$ ( $S(\mathcal{Y})$  is the largest initial set whose reachability is in  $\mathcal{Y}$ )

We retrieve Dijkstra's weakest liberal preconditions.

(proof sketch on next slide)

# Sufficient preconditions and reachability (proof)

#### proof sketch:

Recall that  $\mathcal{R}(\mathcal{I}) = \operatorname{lfp}_{\mathcal{I}} G_{\mathcal{R}}$  where  $G_{\mathcal{R}}(S) = S \cup \operatorname{post}_{\tau}(S)$ . Likewise,  $\mathcal{S}(\mathcal{Y}) = \operatorname{gfp}_{\mathcal{Y}} G_{\mathcal{S}}$  where  $G_{\mathcal{S}}(S) = S \cap \widetilde{\operatorname{pre}}_{\tau}(S)$ .

Recall the Galois connection  $(\mathcal{P}(\Sigma),\subseteq) \xrightarrow{\widehat{\mathsf{pre}}_{\mathcal{T}}} (\mathcal{P}(\Sigma),\subseteq).$ 

As a consequence  $(\mathcal{P}(\Sigma),\subseteq) \xrightarrow{G_{\mathcal{S}}} (\mathcal{P}(\Sigma),\subseteq)$ .

The Galois connection can be lifted to fixpoint operators:

$$(\mathcal{P}(\Sigma),\subseteq) \xrightarrow{x \mapsto \mathsf{ffp}_x \ G_{\mathcal{S}}} (\mathcal{P}(\Sigma),\subseteq).$$

Exercise: complete the proof sketch.

## Sufficient preconditions: application

Initial states such that all executions are correct:

$$\mathcal{I}\cap\mathcal{S}(\mathcal{F}\cup(\Sigma\setminus\mathcal{B})).$$

(the only blocking states reachable from initial states are final states)

#### program

•  $i \leftarrow 0$ ; while i < 100 do  $i \leftarrow i + 1$ ;  $j \leftarrow j + [0, 1]$ done •

- ullet initial states  $\mathcal{I}$ :  $j \in [0,10]$  at ullet
- final states F: any memory state at ●
- blocking states  $\mathcal{B}$ : final, or j > 105 at any location
- $\mathcal{I} \cap \mathcal{S}(\mathcal{F} \cup (\Sigma \setminus \mathcal{B}))$ : at •,  $i \in [0, 5]$  (note that  $\mathcal{I} \cap \mathcal{C}(\mathcal{F} \cup (\Sigma \setminus \mathcal{B}))$  gives  $\mathcal{I}$ )

<u>Applications:</u> infer contracts; optimize (hoist) tests; infer counter-examples.



Final states  $\mathcal{F}$ .



Set of final or non-blocking states  $\mathcal{Y} = \mathcal{F} \cup (\Sigma \setminus \mathcal{B})$ .



Sufficient preconditions S(Y).



Sufficient preconditions S(Y).



$$\mathcal{C}(\mathcal{F})$$

$$\mathcal{S}(\mathcal{Y}) \subsetneq \mathcal{C}(\mathcal{F})$$

#### Sufficient precondition equation system: example

#### Principle:

use 
$$(\mathcal{P}(\Sigma), \subseteq) \xrightarrow{\gamma_{\mathcal{L}}} (\mathcal{L} \to \mathcal{P}(\mathcal{E}), \subseteq)$$
 on  $F_{\mathcal{S}}(S) \stackrel{\text{def}}{=} \mathcal{Y} \cap \widetilde{\mathsf{pre}}_{\tau}(S)$  to derive an equation system  $\alpha_{\mathcal{L}} \circ F_{\mathcal{S}} \circ \gamma_{\mathcal{L}}$ 

#### Example:

$$\mathcal{X}_{1} = \overline{C} \llbracket i \leftarrow 2 \rrbracket \mathcal{X}_{2}$$

$$\mathcal{X}_{1} = \overline{C} \llbracket i \leftarrow 2 \rrbracket \mathcal{X}_{2}$$

$$\mathcal{X}_{2} = \overline{C} \llbracket n \leftarrow [-\infty, +\infty] \rrbracket \mathcal{X}_{3}$$

$$\mathcal{X}_{3} = \mathcal{X}_{4}$$

$$\mathcal{X}_{4} = \overline{C} \llbracket i < n \rrbracket \mathcal{X}_{5} \cap \overline{C} \llbracket i \leq n \rrbracket \mathcal{X}_{8}$$

$$\mathcal{X}_{5} = \mathcal{X}_{6} \cap \mathcal{X}_{7}$$

$$\mathcal{X}_{7} = \mathcal{X}_{4}$$

$$\mathcal{X}_{8} = \mathcal{F}_{8}$$

$$\mathcal{X}_{1} = \overline{C} \llbracket i \leftarrow 2 \rrbracket \mathcal{X}_{2}$$

$$\mathcal{X}_{2} = \overline{C} \llbracket i \leftarrow i + 1 \rrbracket \mathcal{X}_{3}$$

$$\mathcal{X}_{3} = \mathcal{X}_{4}$$

$$\mathcal{X}_{4} = \overline{C} \llbracket i \leftarrow i + 1 \rrbracket \mathcal{X}_{7}$$

$$\mathcal{X}_{6} = \overline{C} \llbracket i \leftarrow i + 1 \rrbracket \mathcal{X}_{7}$$

- "stay in" states  $\mathcal{Y} \stackrel{\text{def}}{=} \{ (\ell, \rho) | \ell \neq \ell 8 \lor \rho \in \mathcal{F}_8 \}$  for some  $\mathcal{F}_8 \subseteq \mathcal{E}$ ,
- $C \cdot \mathbb{I} \cdot \mathbb{I}$  is the Galois adjoint of  $C \cdot \mathbb{I} \cdot \mathbb{I}$ .

#### **Trace semantics**

#### Traces and trace operations

## Sequences, traces

#### <u>Trace:</u> sequence of elements from $\Sigma$

- $\epsilon$ : empty trace (unique)
- ullet  $\sigma$ : trace of length 1 (assimilated to a state)
- $\sigma_0, \ldots, \sigma_{n-1}$ : trace of length n
- $\sigma_0, \ldots, \sigma_n, \ldots$ : infinite trace (length  $\omega$ )

#### Trace sets:

- $\Sigma^n$ : the set of traces of length n
- $\Sigma^{\leq n} \stackrel{\text{def}}{=} \cup_{i \leq n} \Sigma^i$ : the set of traces of length at most n
- $\Sigma^* \stackrel{\text{def}}{=} \cup_{i \in \mathbb{N}} \Sigma^i$ : the set of finite traces
- $\Sigma^{\omega}$ : the set of infinite traces
- $\Sigma^{\infty} \stackrel{\text{def}}{=} \Sigma^* \cup \Sigma^{\omega}$ : the set of all traces

## Trace operations

#### Operations on traces:

- length:  $|t| \in \mathbb{N} \cup \{\omega\}$  of a trace  $t \in \Sigma^{\infty}$
- concatenation ·
  - $(\sigma_0, \ldots, \sigma_n) \cdot (\sigma'_0, \ldots) \stackrel{\text{def}}{=} \sigma_0, \ldots, \sigma_n, \sigma'_0, \ldots$  (append to a finite trace)
  - $ullet \ t \cdot t' \stackrel{\mathrm{def}}{=} t \ \mathrm{if} \ t \in \Sigma^\omega$  (append to an infinite trace does nothing)
  - $\bullet \ \epsilon \cdot t \stackrel{\text{def}}{=} t \cdot \epsilon \stackrel{\text{def}}{=} t \quad (\epsilon \text{ is neutral})$
- junction ^
  - $(\sigma_0, \ldots, \sigma_n)^{\frown}(\sigma'_0, \sigma'_1, \ldots) \stackrel{\text{def}}{=} \sigma_0, \ldots, \sigma_n, \sigma'_1, \ldots$  when  $\sigma_n = \sigma'_0$  undefined if  $\sigma_n \neq \sigma'_0$
  - $\epsilon \cap t$  and  $t \cap \epsilon$  are undefined
  - $t^{\frown}t' \stackrel{\text{def}}{=} t$ , if  $t \in \Sigma^{\omega}$

# Trace operations (cont.)

#### Extension to sets of traces:

- $\bullet \ A \cdot B \stackrel{\text{def}}{=} \{ a \cdot b \mid a \in A, \ b \in B \}$
- $A \cap B \stackrel{\text{def}}{=} \{ a \cap b \mid a \in A, b \in B, a \cap b \text{ defined } \}$
- $A^0 = \{\epsilon\}$  (neutral element for ·)  $A^{n+1} \stackrel{\mathrm{def}}{=} A \cdot A^n,$   $A^{\omega} \stackrel{\mathrm{def}}{=} A \cdot A \cdot \cdots$   $A^* \stackrel{\mathrm{def}}{=} \cup_{n < \omega} A^n,$   $A^{\infty} \stackrel{\mathrm{def}}{=} \cup_{n \leq \omega} A^n$
- $A^{\frown 0} = \sum$  (neutral element for  $\frown$ )  $A^{\frown n+1} \stackrel{\text{def}}{=} A^{\frown} A^{\frown n}$ ,  $A^{\frown \omega} \stackrel{\text{def}}{=} A^{\frown} A^{\frown \cdots}$   $A^{\frown *} \stackrel{\text{def}}{=} \bigcup_{n < \omega} A^{\frown n}$ ,  $A^{\frown \omega} \stackrel{\text{def}}{=} \bigcup_{n < \omega} A^{\frown n}$

Note:  $A^n \neq \{a^n \mid a \in A\}, A^{n} \neq \{a^{n} \mid a \in A\} \text{ when } |A| > 1$ 

#### Distributivity of junction

distributes over finite and infinite ∪:

$$A^{\frown}(\bigcup_{i \in I} B_i) = \bigcup_{i \in I} (A^{\frown}B_i)$$
 and  $(\bigcup_{i \in I} A_i)^{\frown}B = \bigcup_{i \in I} (A_i^{\frown}B)$  where  $I$  can be finite or infinite.

 distributes finite ∩ but not infinite ∩ example:

$$\{a^{\omega}\}^{\frown} (\cap_{n\in\mathbb{N}} \{ a^m \mid n \ge m \}) = \{a^{\omega}\}^{\frown} \emptyset = \emptyset \text{ but }$$
  
 
$$\cap_{n\in\mathbb{N}} (\{a^{\omega}\}^{\frown} \{ a^m \mid n \ge m \}) = \cap_{n\in\mathbb{N}} \{a^{\omega}\} = \{a^{\omega}\}$$

• but, if  $A \subseteq \Sigma^*$ , then  $A^{\frown}(\cap_{i \in I} B_i) = \bigcup_{i \in I} (A^{\frown} B_i)$  even for infinite I

Note: concatenation  $\cdot$  distributes infinite  $\cap$  and  $\cup$ .

#### Traces of a transition system

#### **Execution traces:**

Non-empty sequences of states linked by the transition relation  $\tau$ .

- can be finite (in  $\mathcal{P}(\Sigma^*)$ ) or infinite (in  $\mathcal{P}(\Sigma^{\omega})$ )
- can be anchored at initial states, or final states, or none

#### Atomic traces:

- $\mathcal{I}$ : initial states  $\simeq$  set of traces of length 1
- ullet  ${\cal F}$ : final states  $\simeq$  set of traces of length 1
- $\tau$ : transition relation  $\simeq$  set of traces of length 2  $(\{ \sigma, \sigma' \mid \sigma \to \sigma' \})$

(as 
$$\Sigma \simeq \Sigma^1$$
 and  $\Sigma \times \Sigma \simeq \Sigma^2$ )

#### Finite trace semantics

#### Prefix trace semantics

 $\mathcal{T}_p(\mathcal{I})$ : partial, finite execution traces starting in  $\mathcal{I}$ .

$$\mathcal{T}_{p}(\mathcal{I}) \stackrel{\text{def}}{=} \{ \sigma_{0}, \dots, \sigma_{n} \mid n \geq 0, \sigma_{0} \in \mathcal{I}, \forall i : \sigma_{i} \to \sigma_{i+1} \} \\
= \bigcup_{n \geq 0} \mathcal{I}^{\frown}(\tau^{\frown n})$$

(traces of length n, for any n, starting in  $\mathcal{I}$  and following  $\tau$ )

 $\mathcal{T}_p(\mathcal{I})$  can be expressed in fixpoint form:

$$\mathcal{T}_p(\mathcal{I}) = \mathsf{lfp}\, F_p \; \mathsf{where} \; F_p(\mathcal{T}) \stackrel{\mathrm{def}}{=} \mathcal{I} \cup \mathcal{T}^{\frown} au$$

 $(F_p$  appends a transition to each trace, and adds back  $\mathcal{I})$ 

(proof on next slide)

# Prefix trace semantics: proof

proof of: 
$$T_p(\mathcal{I}) = \operatorname{lfp} F_p$$
 where  $F_p(T) = \mathcal{I} \cup T \cap \tau$ 

Similar to the proof of  $\mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}}$  where  $F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \operatorname{post}_{\tau}(S)$ .

 $F_p$  is continuous in a CPO  $(\mathcal{P}(\Sigma^*),\subseteq)$ :  $F_p(\cup_{i\in I} T_i) = \mathcal{I} \cup (\cup_{i\in I} T_i)^\frown \tau = \mathcal{I} \cup (\cup_{i\in I} T_i^\frown \tau) = \cup_{i\in I} (\mathcal{I} \cup T_i^\frown \tau)$ , hence (Kleene), Ifp  $F_p = \cup_{n\geq 0} F_p^i(\emptyset)$ 

We prove by recurrence on n that  $\forall n: F_p^n(\emptyset) = \bigcup_{i < n} \mathcal{I}^{\frown} \tau^{\frown i}$ :

- $F_p^0(\emptyset) = \emptyset$ ,
- $F_p^{n+1}(\emptyset) = \mathcal{I} \cup F_p^n(\emptyset) \cap \tau = \mathcal{I} \cup (\cup_{i < n} \mathcal{I} \cap \tau^{-i}) \cap \tau = \mathcal{I} \cup \cup_{i < n} (\mathcal{I} \cap \tau^{-i}) \cap \tau = \mathcal{I} \cap \tau^{-0} \cup \cup_{i < n} (\mathcal{I} \cap \tau^{-i+1}) = \cup_{i < n+1} \mathcal{I} \cap \tau^{-i}.$

Thus, Ifp 
$$F_p = \bigcup_{n \in \mathbb{N}} F_p^n(\emptyset) = \bigcup_{n \in \mathbb{N}} \bigcup_{i < n} \mathcal{I}^{\frown} \tau^{\frown i} = \bigcup_{i \in \mathbb{N}} \mathcal{I}^{\frown} \tau^{\frown i}$$
.

Note: we also have  $\mathcal{T}_p(\mathcal{I}) = \mathsf{lfp}_{\mathcal{I}} \, G_p$  where  $G_p(T) = T \cup T \cap \tau$ .

## Prefix trace semantics: graphical illustration



$$\mathcal{I} \stackrel{\text{def}}{=} \{a\}$$

$$\tau \stackrel{\text{def}}{=} \{(a, b), (b, b), (b, c)\}$$

 $\underline{\mathsf{lterates:}} \quad \mathcal{T}_p(\mathcal{I}) = \mathsf{lfp}\, F_p \text{ where } F_p(T) \stackrel{\mathrm{def}}{=} \mathcal{I} \cup T^{\frown} \tau.$ 

- $F_p^0(\emptyset) = \emptyset$
- $F_p^1(\emptyset) = \mathcal{I} = \{a\}$
- $F_p^2(\emptyset) = \{a, ab\}$
- $F_p^3(\emptyset) = \{a, ab, abb, abc\}$
- $F_p^n(\emptyset) = \{ a, ab^i, ab^jc \mid i \in [1, n-1], j \in [1, n-2] \}$
- $\mathcal{T}_p(\mathcal{I}) = \bigcup_{n>0} F_p^n(\emptyset) = \{ a, ab^i, ab^i c \mid i \geq 1 \}$

## Prefix trace semantics: expressive power

The prefix trace semantics is the collection of finite observations of program executions.

 $\implies$  Semantics of testing.

#### Limitations:

- no information on infinite executions. (we will add infinite traces later)
- can bound maximal execution time:  $\mathcal{T}_p(\mathcal{I}) \subseteq \Sigma^{\leq n}$ but cannot bound minimal execution time. (we will consider maximal traces later)

Program Semantics Antoine Miné p. 54 / 127

#### Abstracting traces into states

<u>Idea:</u> view state semantics as abstractions of traces semantics.

We have a Galois embedding between finite traces and states:

$$(\mathcal{P}(\Sigma^*),\subseteq) \xrightarrow{\gamma_{\rho}} (\mathcal{P}(\Sigma),\subseteq)$$

- $\alpha_p(T) \stackrel{\text{def}}{=} \{ \sigma \in \Sigma \mid \exists \sigma_0, \dots, \sigma_n \in T : \sigma = \sigma_n \}$  (last state in traces in T)
- $\gamma_p(S) \stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \in \Sigma^* \mid \sigma_n \in S \}$  (traces ending in a state in S)

(proof on next slide)

# Abstracting traces into states (proof)

<u>proof of:</u>  $(\alpha_p, \gamma_p)$  forms a Galois embedding.

Instead of the definition  $\alpha(c) \subseteq a \iff c \subseteq \gamma(a)$ , we use the alternate characterization of Galois connections:  $\alpha$  and  $\gamma$  are monotonic,  $\gamma \circ \alpha$  is extensive, and  $\alpha \circ \gamma$  is reductive.

Embedding means that, additionally,  $\alpha \circ \gamma = id$ .

- ullet  $\alpha_{\it p}$ ,  $\gamma_{\it p}$  are  $\cup -$ morphisms, hence monotonic
- $(\alpha_p \circ \gamma_p)(S)$ =  $\{\sigma \mid \exists \sigma_0, \dots, \sigma_n \in \gamma_p(S) : \sigma = \sigma_n\}$ =  $\{\sigma \mid \exists \sigma_0, \dots, \sigma_n : \sigma_n \in S, \sigma = \sigma_n\}$ = S

## Abstracting prefix traces into reachability

#### Recall that:

- $\mathcal{T}_p(\mathcal{I}) = \operatorname{lfp} F_p$  where  $F_p(T) \stackrel{\text{def}}{=} \mathcal{I} \cup T \cap \tau$ ,
- $\mathcal{R}(\mathcal{I}) = \text{lfp } F_{\mathcal{R}} \text{ where } F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \text{post}_{\tau}(S)$ ,
- $(\mathcal{P}(\Sigma^*),\subseteq) \stackrel{\gamma_p}{\longleftarrow} (\mathcal{P}(\Sigma),\subseteq).$

We have:  $\alpha_p \circ F_p = F_{\mathcal{R}} \circ \alpha_p$ ;

by fixpoint transfer, we get:  $\alpha_p(\mathcal{T}_p(\mathcal{I})) = \mathcal{R}(\mathcal{I})$ .

(proof on next slide)

# Abstracting prefix traces into reachability (proof)

```
\underline{\text{proof:}} \text{ of } \alpha_{p} \circ F_{p} = F_{\mathcal{R}} \circ \alpha_{p} \\
(\alpha_{p} \circ F_{p})(T) \\
= \alpha_{p}(\mathcal{I} \cup T \cap \tau) \\
= \{ \sigma \mid \exists \sigma_{0}, \dots, \sigma_{n} \in \mathcal{I} \cup T \cap \tau : \sigma = \sigma_{n} \} \\
= \mathcal{I} \cup \{ \sigma \mid \exists \sigma_{0}, \dots, \sigma_{n} \in T \cap \tau : \sigma = \sigma_{n} \} \\
= \mathcal{I} \cup \{ \sigma \mid \exists \sigma_{0}, \dots, \sigma_{n} \in T : \sigma_{n} \to \sigma \} \\
= \mathcal{I} \cup \text{post}_{\tau}(\{ \sigma \mid \exists \sigma_{0}, \dots, \sigma_{n} \in T : \sigma = \sigma_{n} \}) \\
= \mathcal{I} \cup \text{post}_{\tau}(\alpha_{p}(T)) \\
= (F_{\mathcal{R}} \circ \alpha_{p})(T)
```

# Abstracting traces into states (example)

# $j \leftarrow 0;$ $i \leftarrow 0;$ $k \leftarrow 0;$ while $k < 100 ext{ do}$ $k \leftarrow i + 1;$ $k \leftarrow j + [0, 1]$ done

- prefix trace semantics: i and j are increasing and  $0 \le j \le i \le 100$
- forward reachable state semantics: 0 < i < i < 100

⇒ the abstraction forgets the ordering of states.

#### Prefix closure

#### Prefix partial order: $\leq$ on $\Sigma^{\infty}$

$$x \leq y \iff \exists u \in \Sigma^{\infty} : x \cdot u = y$$

 $(\Sigma^{\infty}, \preceq)$  is a CPO, while  $(\Sigma^*, \preceq)$  is not complete.

Prefix closure: 
$$\rho_{p}: \mathcal{P}(\Sigma^{\infty}) \to \mathcal{P}(\Sigma^{\infty})$$

$$\rho_{p}(T) \stackrel{\text{def}}{=} \{ u \mid \exists t \in T : u \leq t, u \neq \epsilon \}$$

 $\rho_p$  is an upper closure operator on  $\mathcal{P}(\Sigma^{\infty} \setminus \{\epsilon\})$ . (monotonic, extensive  $T \subseteq \rho_p(T)$ , idempotent  $\rho_p \circ \rho_p = \rho_p$ )

The prefix trace semantics is closed by prefix:

$$\rho_p(\mathcal{T}_p(\mathcal{I})) = \mathcal{T}_p(\mathcal{I}).$$

(note that  $\epsilon \notin \mathcal{T}_p(\mathcal{I})$ , which is why we disallowed  $\epsilon$  in  $\rho_p$ )

## Ordering abstraction

#### Another Galois embedding between finite traces and states:

$$(\mathcal{P}(\Sigma^*),\subseteq) \xrightarrow{\gamma_o} (\mathcal{P}(\Sigma),\subseteq)$$

- $\alpha_o(T) \stackrel{\text{def}}{=} \{ \sigma \mid \exists \sigma_0, \dots, \sigma_n \in T, i \leq n : \sigma = \sigma_i \}$  (set of all states appearing in some trace in T)
- $\gamma_o(S) \stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \mid n \ge 0, \forall i \le n : \sigma_i \in S \}$  (traces composed of elements from S)

#### proof sketch:

$$\alpha_o$$
 and  $\gamma_o$  are monotonic, and  $\alpha_o \circ \gamma_o = id$ .  $(\gamma_o \circ \alpha_o)(T) = \{ \sigma_0, \dots, \sigma_n \, | \, \forall i \leq n : \exists \sigma'_0, \dots, \sigma'_m \in T, j \leq m : \sigma_i = \sigma'_j \} \supseteq T$ .

# Ordering abstraction

We have: 
$$\alpha_o(\mathcal{T}_p(\mathcal{I})) = \mathcal{R}(\mathcal{I})$$
.

#### proof:

We have  $\alpha_o = \alpha_p \circ \rho_p$  (i.e.: a state is in a trace if it is the last state of one of its prefix).

Recall the prefix trace abstraction into states:  $\mathcal{R}(\mathcal{I}) = \alpha_p(\mathcal{T}_p(\mathcal{I}))$  and the fact that the prefix trace esemantics is closed by prefix:  $\rho_p(\mathcal{T}_p(\mathcal{I})) = \mathcal{T}_p(\mathcal{I})$ .

We get 
$$\alpha_o(\mathcal{T}_p(\mathcal{I})) = \alpha_p(\rho_p(\mathcal{T}_p(\mathcal{I}))) = \alpha_p(\mathcal{T}_p(\mathcal{I})) = \mathcal{R}(\mathcal{I}).$$

#### alternate proof: generalized fixpoint transfer

Recall that  $\mathcal{T}_p(\mathcal{I}) = \operatorname{lfp} F_p$  where  $F_p(T) \stackrel{\mathrm{def}}{=} \mathcal{I} \cup T \cap \tau$  and  $\mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}}$  where  $F_{\mathcal{R}}(S) \stackrel{\mathrm{def}}{=} \mathcal{I} \cup \operatorname{post}_{\tau}(S)$ , but  $\alpha_o \circ F_p = F_{\mathcal{R}} \circ \alpha_o$  does not hold in general, so, fixpoint transfer theorems do not apply directly.

However,  $\alpha_o \circ F_p = F_{\mathcal{R}} \circ \alpha_o$  holds for sets of traces closed by prefix. By induction, the Kleene iterates  $a_p^n$  and  $a_{\mathcal{R}}^n$  involved in the computation of Ifp  $F_p$  and Ifp  $F_{\mathcal{R}}$  satisfy  $\forall n: \alpha_o(a_p^n) = a_{\mathcal{R}}^n$ , and so  $\alpha_o(\text{Ifp } F_p) = \text{Ifp } F_{\mathcal{R}}$ .

course 03 Program Semantics Antoine Miné p. 62 / 127

## Suffix trace semantics

#### Similar results on the suffix trace semantics:

- $\mathcal{T}_s(\mathcal{F}) \stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \mid n \geq 0, \sigma_n \in \mathcal{F}, \forall i : \sigma_i \rightarrow \sigma_{i+1} \}$  (traces following  $\tau$  and ending in a state in  $\mathcal{F}$ )
- $\mathcal{T}_s(\mathcal{F}) = \bigcup_{n>0} \tau^{n} \mathcal{F}$
- $\mathcal{T}_s(\mathcal{F}) = \operatorname{lfp} F_s$  where  $F_s(T) \stackrel{\text{def}}{=} \mathcal{F} \cup \tau \widehat{T}$ ( $F_s$  prepends a transition to each trace, and adds back  $\mathcal{F}$ )
- $\alpha_s(\mathcal{T}_s(\mathcal{F})) = \frac{\mathcal{C}(\mathcal{F})}{\text{where } \alpha_s(\mathcal{T})} \stackrel{\text{def}}{=} \{ \sigma \mid \exists \sigma_0, \dots, \sigma_n \in \mathcal{T} : \sigma = \sigma_0 \}$
- $\rho_s(\mathcal{T}_s(\mathcal{F})) = \mathcal{T}_s(\mathcal{F})$ where  $\rho_s(\mathcal{T}) \stackrel{\text{def}}{=} \{ u \mid \exists t \in \Sigma^{\infty} : t \cdot u \in \mathcal{T}, u \neq \epsilon \}$ (closed by suffix)
- $\alpha_o(\mathcal{T}_s(\mathcal{F})) = \mathcal{C}(\mathcal{F})$

course 03 Program Semantics Antoine Miné p. 63 / 127

## Suffix trace semantics: graphical illustration



$$\mathcal{F} \stackrel{\mathrm{def}}{=} \{c\}$$
 $au \stackrel{\mathrm{def}}{=} \{(a,b),(b,b),(b,c)\}$ 

<u>Iterates:</u>  $\mathcal{T}_s(\mathcal{F}) = \operatorname{lfp} F_s$  where  $F_s(T) \stackrel{\text{def}}{=} \mathcal{F} \cup \tau \cap T$ .

- $F_s^0(\emptyset) = \emptyset$
- $F_s^1(\emptyset) = \mathcal{F} = \{c\}$
- $F_s^2(\emptyset) = \{c, bc\}$
- $F_s^3(\emptyset) = \{c, bc, bbc, abc\}$
- $F_s^n(\emptyset) = \{ c, b^i c, ab^j c \mid i \in [1, n-1], j \in [1, n-2] \}$
- $\mathcal{T}_s(\mathcal{F}) = \bigcup_{n \geq 0} F_s^n(\emptyset) = \{c, b^i c, ab^i c \mid i \geq 1\}$

course 03 Program Semantics Antoine Miné p. 64 / 127

## Finite partial trace semantics

#### $\mathcal{T}$ : all finite partial finite execution traces.

(not necessarily starting in  $\mathcal I$  or ending in  $\mathcal F$ )

$$\mathcal{T} \stackrel{\text{def}}{=} \left\{ \sigma_0, \dots, \sigma_n \mid n \ge 0, \forall i : \sigma_i \to \sigma_{i+1} \right\} \\
= \bigcup_{n \ge 0} \Sigma^{\frown} \tau^{\frown n} \\
= \bigcup_{n \ge 0} \tau^{\frown n \frown} \Sigma$$

- $\mathcal{T} = \mathcal{T}_p(\Sigma)$ , hence  $\mathcal{T} = \operatorname{lfp} F_{p*}$  where  $F_{p*}(T) \stackrel{\text{def}}{=} \Sigma \cup T \cap \tau$  (prefix partial traces from any initial state)
- $T = T_s(\Sigma)$ , hence  $T = \text{Ifp } F_{s*}$  where  $F_{s*}(T) \stackrel{\text{def}}{=} \Sigma \cup \tau \cap T$  (suffix partial traces to any final state)

• 
$$F_{p*}^n(\emptyset) = F_{s*}^n(\emptyset) = \bigcup_{i < n} \Sigma^{\frown} \tau^{\frown i} = \bigcup_{i < n} \tau^{\frown i \frown} \Sigma = \mathcal{T} \cap \Sigma^{< n}$$

• 
$$\mathcal{T}_p(\mathcal{I}) = \mathcal{T} \cap (\mathcal{I} \cdot \Sigma^*)$$
 (restricted initial states)

• 
$$\mathcal{T}_s(\mathcal{F}) = \mathcal{T} \cap (\Sigma^* \cdot \mathcal{F})$$
 (restricted final states)

course 03 Program Semantics Antoine Miné p. 65 / 127

## Partial trace semantics: graphical illustration



$$\tau \stackrel{\text{def}}{=} \{(a,b),(b,b),(b,c)\}$$

 $\underline{\mathsf{lterates:}} \quad \mathcal{T}(\Sigma) = \mathsf{lfp} \, F_{p*} \text{ where } F_{p*}(T) \stackrel{\mathrm{def}}{=} \Sigma \cup T \cap \tau.$ 

- $F_{p*}^0(\emptyset) = \emptyset$
- $F_{p*}^1(\emptyset) = \Sigma = \{a, b, c\}$
- $F_{p*}^2(\emptyset) = \{a, b, c, ab, bb, bc\}$
- $F_{p*}^3(\emptyset) = \{a, b, c, ab, bb, bc, abb, abc, bbb, bbc\}$
- $F_{p*}^n(\emptyset) = \{ ab^i, ab^jc, b^ic, b^k \mid i \in [0, n-1], j \in [1, n-2], k \in [1, n] \}$
- $\mathcal{T} = \bigcup_{n \geq 0} F_{p*}^n(\emptyset) = \{ ab^i, ab^jc, b^ic, b^j | i \geq 0, j > 1 \}$

(using  $F_{s*}(T) \stackrel{\text{def}}{=} \Sigma \cup \tau \widehat{\phantom{T}}$ , we get the exact same iterates)

course 03 Program Semantics Antoine Miné p. 66 / 127

# Abstracting partial traces to prefix traces

<u>Idea:</u> anchor partial traces at initial states  $\mathcal{I}$ .

We have a Galois connection:

$$(\mathcal{P}(\Sigma^*),\subseteq) \xrightarrow{\alpha_{\mathcal{I}}} (\mathcal{P}(\Sigma^*),\subseteq)$$

- $\bullet \ \alpha_{\mathcal{I}}(\mathcal{T}) \stackrel{\mathrm{def}}{=} \ \mathcal{T} \cap (\mathcal{I} \cdot \Sigma^*)$  (keep only traces starting in  $\mathcal{I}$ )
- $\bullet \ \gamma_{\mathcal{I}}(T) \stackrel{\mathrm{def}}{=} \ T \cup ((\Sigma \setminus \mathcal{I}) \cdot \Sigma^*) \qquad \qquad (\mathsf{add} \ \mathsf{all} \ \mathsf{traces} \ \mathsf{not} \ \mathsf{starting} \ \mathsf{in} \ \mathcal{I})$

We then have:  $\mathcal{T}_p(\mathcal{I}) = \alpha_{\mathcal{I}}(\mathcal{T})$ .

(similarly 
$$\mathcal{T}_s(\mathcal{F}) = \alpha_{\mathcal{F}}(\mathcal{T})$$
 where  $\alpha_{\mathcal{F}}(\mathcal{T}) \stackrel{\mathrm{def}}{=} \mathcal{T} \cap (\Sigma^* \cdot \mathcal{F})$ )

(proof on next slide)

course 03 Program Semantics Antoine Miné p. 67 / 127

# Abstracting partial traces to prefix traces (proof)

### proof

 $\alpha_{\mathcal{T}}$  and  $\gamma_{\mathcal{T}}$  are monotonic.

$$(\alpha_{\mathcal{I}} \circ \gamma_{\mathcal{I}})(T) = (T \cup (\Sigma \setminus \mathcal{I}) \cdot \Sigma^*) \cap \mathcal{I} \cdot \Sigma^*) = T \cap \mathcal{I} \cdot \Sigma^* \subseteq T.$$

$$(\gamma_{\mathcal{I}} \circ \alpha_{\mathcal{I}})(T) = (T \cap \mathcal{I} \cdot \Sigma^*) \cup (\Sigma \setminus \mathcal{I}) \cdot \Sigma^* = T \cup (\Sigma \setminus \mathcal{I}) \cdot \Sigma^* \supseteq T.$$
So, we have a Galois connection.

A direct proof of  $\mathcal{T}_p(\mathcal{I}) = \alpha_{\mathcal{I}}(\mathcal{T})$  is straightforward, by definition of  $\mathcal{T}_p$ ,  $\alpha_{\mathcal{I}}$ , and  $\mathcal{T}$ .

We can also retrieve the result by fixpoint transfer.

$$\mathcal{T} = \operatorname{lfp} F_{p*} \text{ where } F_{p*}(T) \stackrel{\text{def}}{=} \Sigma \cup T \widehat{\tau}.$$

$$\mathcal{T}_p = \operatorname{lfp} F_p \text{ where } F_p(T) \stackrel{\text{def}}{=} \mathcal{I} \cup T \widehat{\tau}.$$

We have: 
$$(\alpha_{\mathcal{I}} \circ F_{p*})(T) = (\Sigma \cup T \cap \tau) \cap (\mathcal{I} \cdot \Sigma^*) = \mathcal{I} \cup ((T \cap \tau) \cap (\mathcal{I} \cdot \Sigma^*) = \mathcal{I} \cup ((T \cap (\mathcal{I} \cdot \Sigma^*)) \cap \tau) = (F_p \circ \alpha_{\mathcal{I}})(T).$$

course 03 Program Semantics Antoine Miné p. 68 / 127

## Maximal trace semantics

course 03 Program Semantics Antoine Miné p. 69 / 127

## Maximal traces

## $\underline{\mathsf{Maximal\ traces:}}\quad \mathcal{M}_\infty \in \mathcal{P}(\Sigma^\infty)$

- ullet sequences of states linked by the transition relation au,
- start in any state  $(\mathcal{I} = \Sigma)$ ,
- ullet either finite and stop in a blocking state  $(\mathcal{F} = \mathcal{B})$ ,
- or infinite.

(maximal traces cannot be "extended" by adding a new transition in  $\tau$  at their end)

$$\mathcal{M}_{\infty} \stackrel{\text{def}}{=} \left\{ \sigma_{0}, \dots, \sigma_{n} \in \Sigma^{*} \mid \sigma_{n} \in \mathcal{B}, \forall i < n: \sigma_{i} \to \sigma_{i+1} \right\} \cup \left\{ \sigma_{0}, \dots, \sigma_{n}, \dots \in \Sigma^{\omega} \mid \forall i < \omega: \sigma_{i} \to \sigma_{i+1} \right\}$$

(can be anchored at  $\mathcal I$  and  $\mathcal F$  as:  $\mathcal M_\infty \cap (\mathcal I \cdot \Sigma^\infty) \cap ((\Sigma^* \cdot \mathcal F) \cup \Sigma^\omega))$ 

course 03 Program Semantics Antoine Miné p. 70 / 127

# Partitioned fixpoint formulation of maximal traces

**Goal:** we look for a fixpoint characterization of  $\mathcal{M}_{\infty}$ .

We consider separately finite and infinite maximal traces.

#### • Finite traces:

From the suffix partial trace semantics, recall:

$$\mathcal{M}_{\infty} \cap \Sigma^* = \mathcal{T}_s(\mathcal{B}) = \operatorname{lfp} F_s$$
where  $F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau \cap T$  in  $(\mathcal{P}(\Sigma^*), \subseteq)$ .

#### • Infinite traces:

Additionally, we will prove:  $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{gfp} G_s$  where  $G_s(T) \stackrel{\mathrm{def}}{=} \tau^{\frown} T$  in  $(\mathcal{P}(\Sigma^{\omega}), \subseteq)$ .

(proof on next slide)

# Partitioned fixpoint formulation of maximal traces (proof)

$$\begin{array}{ll} \underline{\operatorname{proof:}} & \text{ of } \mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{gfp} G_s \text{ where } G_s(T) \stackrel{\operatorname{def}}{=} \tau^{\frown} T \text{ in } (\mathcal{P}(\Sigma^{\omega}),\subseteq). \\ G_s \text{ is continuous in } (\mathcal{P}(\Sigma^{\omega}),\supseteq) \colon G_s(\cap_{i\in I} T_i) = \cap_{i\in I} G_s(T_i). \\ \text{By Kleene's theorem in the dual: } \operatorname{gfp} G_s = \cap_{n\in \mathbb{N}} G_s^n(\Sigma^{\omega}). \\ \text{We prove by recurrence on } n \text{ that } \forall n \colon G_s^n(\Sigma^{\omega}) = \tau^{\frown n} \cap \Sigma^{\omega} \colon \\ \bullet & G_s^0(\Sigma^{\omega}) = \Sigma^{\omega} = \tau^{\frown 0} \cap \Sigma^{\omega}, \\ \bullet & G_s^{n+1}(\Sigma^{\omega}) = \tau^{\frown} G_s^n(\Sigma^{\omega}) = \tau^{\frown} (\tau^{\frown n} \cap \Sigma^{\omega}) = \tau^{\frown n+1} \cap \Sigma^{\omega}. \\ \operatorname{gfp} G_s & = \bigcap_{n\in \mathbb{N}} \tau^{\frown n} \cap \Sigma^{\omega} \end{array}$$

 $= \{ \sigma_0, \ldots \in \Sigma^{\omega} \mid \forall n \ge 0 : \sigma_0, \ldots, \sigma_{n-1} \in \tau^{\frown n} \}$ =  $\{ \sigma_0, \ldots \in \Sigma^{\omega} \mid \forall n > 0 : \forall i < n : \sigma_i \to \sigma_{i+1} \}$ 

 $=\mathcal{M}_{\infty}\cap\Sigma^{\omega}$ 

course 03 Program Semantics Antoine Miné p. 72 / 127

# Infinite trace semantics: graphical illustration



$$\mathcal{B} \stackrel{\text{def}}{=} \{c\}$$
 $\tau \stackrel{\text{def}}{=} \{(a,b),(b,b),(b,c)\}$ 

<u>Iterates:</u>  $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{gfp} G_{s}$  where  $G_{s}(T) \stackrel{\text{def}}{=} \tau^{\frown} T$ .

- $G_s^0(\Sigma^\omega) = \Sigma^\omega$
- $G^1_s(\Sigma^\omega) = ab\Sigma^\omega \cup bb\Sigma^\omega \cup bc\Sigma^\omega$
- $G_s^2(\Sigma^\omega) = abb\Sigma^\omega \cup bbb\Sigma^\omega \cup abc\Sigma^\omega \cup bbc\Sigma^\omega$
- $G_s^3(\Sigma^\omega) = abbb\Sigma^\omega \cup bbbb\Sigma^\omega \cup abbc\Sigma^\omega \cup bbbc\Sigma^\omega$
- $G_s^n(\Sigma^\omega) = \{ ab^n t, b^{n+1} t, ab^{n-1} ct, b^n ct \mid t \in \Sigma^\omega \}$
- $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \cap_{n \geq 0} G_s^n(\Sigma^{\omega}) = \{ab^{\omega}, b^{\omega}\}$

course 03 Program Semantics Antoine Miné p. 73 / 127

# Least fixpoint formulation of maximal traces

<u>Idea:</u> To get a fixpoint formulation for whole  $\mathcal{M}_{\infty}$ , merge finite and infinite maximal trace fixpoint forms.

## Fixpoint fusion

$$\mathcal{M}_{\infty} \cap \Sigma^*$$
 is best defined on  $(\Sigma^*, \subseteq, \cup, \cap, \emptyset, \Sigma^*)$ .  $\mathcal{M}_{\infty} \cap \Sigma^{\omega}$  is best defined on  $(\Sigma^{\omega}, \supseteq, \cap, \cup, \Sigma^{\omega}, \emptyset)$ .

We mix them into a new complete lattice  $(\Sigma^{\infty}, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$ :

• 
$$A \sqsubseteq B \iff (A \cap \Sigma^*) \subseteq (B \cap \Sigma^*) \land (A \cap \Sigma^{\omega}) \supseteq (B \cap \Sigma^{\omega})$$

• 
$$A \sqcup B \stackrel{\text{def}}{=} ((A \cap \Sigma^*) \cup (B \cap \Sigma^*)) \cup ((A \cap \Sigma^\omega) \cap (B \cap \Sigma^\omega))$$

• 
$$A \sqcap B \stackrel{\text{def}}{=} ((A \cap \Sigma^*) \cap (B \cap \Sigma^*)) \cup ((A \cap \Sigma^\omega) \cup (B \cap \Sigma^\omega))$$

• 
$$\perp \stackrel{\text{def}}{=} \Sigma^{\omega}$$

$$\bullet \ \top \stackrel{\mathrm{def}}{=} \Sigma^*$$

In this lattice,  $\mathcal{M}_{\infty} = \mathsf{lfp} \; F_s$  where  $F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau ^{\frown} T$ .

(proof on next slides)

# Fixpoint fusion theorem

#### **Theorem:** fixpoint fusion

```
If X_1 = \operatorname{lfp} F_1 in (\mathcal{P}(\mathcal{D}_1), \sqsubseteq_1) and X_2 = \operatorname{lfp} F_2 in (\mathcal{P}(\mathcal{D}_2), \sqsubseteq_2) and \mathcal{D}_1 \cap \mathcal{D}_2 = \emptyset, then X_1 \cup X_2 = \operatorname{lfp} F in (\mathcal{P}(\mathcal{D}_1 \cup \mathcal{D}_2), \sqsubseteq) where:
```

- $F(X) \stackrel{\text{def}}{=} F_1(X \cap \mathcal{D}_1) \cup F_2(X \cap \mathcal{D}_2),$
- $\bullet \ A \sqsubseteq B \iff (A \cap \mathcal{D}_1) \sqsubseteq_1 (B \cap \mathcal{D}_1) \wedge (A \cap \mathcal{D}_2) \sqsubseteq_2 (B \cap \mathcal{D}_2).$

#### proof:

We have:

 $F(X_1 \cup X_2) = F_1((X_1 \cup X_2) \cap \mathcal{D}_1) \cup F_2((X_1 \cup X_2) \cap \mathcal{D}_2) = F_1(X_1) \cup F_2(X_2) = X_1 \cup X_2$ , hence  $X_1 \cup X_2$  is a fixpoint of F.

Let Y be a fixpoint. Then  $Y=F(Y)=F_1(Y\cap \mathcal{D}_1)\cup F_2(Y\cap \mathcal{D}_2)$ , hence,  $Y\cap \mathcal{D}_1=F_1(Y\cap \mathcal{D}_1)$  and  $Y\cap \mathcal{D}_1$  is a fixpoint of  $F_1$ . Thus,  $X_1\sqsubseteq_1 Y\cap \mathcal{D}_1$ . Likewise,  $X_2\sqsubseteq_2 Y\cap \mathcal{D}_2$ . We deduce that  $X=X_1\cup X_2\sqsubseteq (Y\cap \mathcal{D}_1)\cup (Y\cap \mathcal{D}_2)=Y$ , and so, X is F's least fixpoint.

<u>note:</u> we also have  $gfp F = gfp F_1 \cup gfp F_2$ .

course 03 Program Semantics Antoine Miné p. 75 / 127

# Least fixpoint formulation of maximal traces (proof)

<u>proof:</u> of  $\mathcal{M}_{\infty} = \text{Ifp } F_s \text{ where } F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau ^{\frown} T$ .

We have:

- $\mathcal{M}_{\infty} \cap \Sigma^* = \operatorname{lfp} F_s \text{ in } (\mathcal{P}(\Sigma^*), \subseteq),$
- $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{lfp} G_s$  in  $(\mathcal{P}(\Sigma^{\omega}), \supseteq)$  where  $G_s(T) \stackrel{\operatorname{def}}{=} \tau \cap T$ ,
- in  $\mathcal{P}(\Sigma^{\infty})$ , we have  $F_s(A) = (F_s(A) \cap \Sigma^*) \cup (F_s(A) \cap \Sigma^{\omega}) = F_s(A \cap \Sigma^*) \cup G_s(A \cap \Sigma^{\omega})$ .

So, by fixpoint fusion in  $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$ , we have:

$$\mathcal{M}_{\infty} = (\mathcal{M}_{\infty} \cap \Sigma^*) \cup (\mathcal{M}_{\infty} \cap \Sigma^{\omega}) = \mathsf{lfp}\, F_s.$$

course 03 Program Semantics Antoine Miné p. 76 / 127

## Greatest fixpoint formulation of finite maximal traces

Actually, a fixpoint formulation in  $(\Sigma^{\infty}, \subseteq)$  also exists.

## Alternate fixpoint for finite maximal traces:

We saw that 
$$\mathcal{M}_{\infty} \cap \Sigma^* = \operatorname{lfp} F_s$$
 where  $F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau \cap T$  in  $(\mathcal{P}(\Sigma^*), \subseteq)$ .

Additionally, we have 
$$\mathcal{M}_{\infty} \cap \Sigma^* = \operatorname{gfp} F_s$$
 in  $(\mathcal{P}(\Sigma^*), \subseteq)$ .

```
(F_s \text{ has a unique fixpoint in } (\mathcal{P}(\Sigma^*),\subseteq).)
```

(proof on next slide)

course 03 Program Semantics Antoine Miné p. 77 / 127

## Greatest fixpoint formulation of finite maximal traces

<u>proof:</u> of  $\mathcal{M}_{\infty} \cap \Sigma^* = \operatorname{gfp} F_s$  where  $F_s(T) \stackrel{\operatorname{def}}{=} \mathcal{B} \cup \tau \cap T$ .

 $F_s$  is continuous in the dual  $(\mathcal{P}(\Sigma^*),\supseteq)$ :  $F_s(\cap_{i\in I}A_i)=\cap_{i\in I}F_s(A_i)$ . By Kleene's theorem in the dual  $(\mathcal{P}(\Sigma^*),\supseteq)$ , we get:  $\operatorname{gfp}F_s=\cap_{n\in\mathbb{N}}F_s^n(\Sigma^*)$ .

We prove by recurrence on n that  $\forall n : F_s^n(\Sigma^*) = (\cup_{i < n} \tau^{-i} \cap \mathcal{B}) \cup (\tau^{-n} \cap \Sigma^*)$ : i.e.,  $F_s^n(\Sigma^*)$  are the maximal finite traces of length at most n-1, and the partial traces of length exactly n followed by any sequence of states:

• 
$$F_s^0(\Sigma^*) = \Sigma^* = \tau^{0} \Sigma^*$$

$$\begin{aligned} \bullet & F_s(F_s^n(\Sigma^*)) = \mathcal{B} \cup (\tau \cap F_s^n(\Sigma^*)) \\ &= \mathcal{B} \cup \tau \cap ((\cup_{i < n} \tau \cap^i \cap \mathcal{B}) \cup (\tau \cap^n \cap \Sigma^*)) \\ &= \mathcal{B} \cup (\cup_{i < n} \tau \cap^\tau \cap^i \cap \mathcal{B}) \cup (\tau \cap^\tau \cap^\tau \cap \Sigma^*) \\ &= \mathcal{B} \cup (\cup_{1 < i < n+1} \tau \cap^i \cap \mathcal{B}) \cup (\tau \cap^{n+1} \cap \Sigma^*) \\ &= (\cup_{i < n+1} \tau \cap^i \cap \mathcal{B}) \cup (\tau \cap^{n+1} \cap \Sigma^*) \end{aligned}$$

We get:

$$\bigcap_{n\in\mathbb{N}}F^n_s(\Sigma^*)=\bigcap_{n\in\mathbb{N}}\left(\bigcup_{i< n}\tau^{-i}\cap\mathcal{B}\right)\cup\left(\tau^{-n}\cap\Sigma^*\right)=\bigcup_{n\in\mathbb{N}}\tau^{-n}\cap\mathcal{B}=\mathcal{M}_\infty\cap\Sigma^*.$$

course 03 Program Semantics Antoine Miné p. 78 / 127

## Greatest fixpoint of finite traces: graphical illustration



$$\mathcal{B} \stackrel{\text{def}}{=} \{c\}$$
 $\tau \stackrel{\text{def}}{=} \{(a,b),(b,b),(b,c)\}$ 

 $\underline{\mathsf{Iterates:}} \quad \mathcal{M}_{\infty} \cap \Sigma^* = \mathsf{gfp}\, F_s \text{ where } F_s(T) \stackrel{\mathrm{def}}{=} \mathcal{B} \cup \tau^{\frown} T.$ 

- $F_s^0(\Sigma^*) = \Sigma^*$
- $F_s^1(\Sigma^*) = \{c\} \cup ab\Sigma^* \cup bb\Sigma^* \cup bc\Sigma^*$
- $F_s^2(\Sigma^*) = \{bc, c\} \cup abb\Sigma^* \cup bbb\Sigma^* \cup abc\Sigma^* \cup bbc\Sigma^*$
- $F_s^3(\Sigma^*) = \{abc, bbc, bc, c\} \cup abbb\Sigma^* \cup bbbb\Sigma^* \cup abbc\Sigma^* \cup bbbc\Sigma^*$
- $F_s^n(\Sigma^*) = \{ ab^i c, b^j c \mid i \in [1, n-2], j \in [0, n-1] \} \cup \{ ab^n t, b^{n+1} t, ab^{n-1} ct, b^n ct \mid t \in \Sigma^* \}$
- $\mathcal{M}_{\infty} \cap \Sigma^* = \bigcap_{n \geq 0} F_s^n(\Sigma^*) == \{ ab^i c, b^j c \mid i \geq 1, j \geq 0 \}$

course 03 Program Semantics Antoine Miné p. 79 / 127

## Greatest fixpoint formulation of maximal traces

#### From:

- $\mathcal{M}_{\infty} \cap \Sigma^* = \operatorname{gfp} F_s$  in  $(\mathcal{P}(\Sigma^*), \subseteq)$  where  $F_s(T) \stackrel{\operatorname{def}}{=} \mathcal{B} \cup \tau \cap T$
- $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{\mathsf{gfp}} G_{s}$  in  $(\mathcal{P}(\Sigma^{\omega}), \subseteq)$  where  $G_{s}(T) \stackrel{\mathrm{def}}{=} \tau^{\frown} T$

we deduce:  $\mathcal{M}_{\infty} = \mathsf{gfp}\, F_s$  in  $(\mathcal{P}(\Sigma^{\infty}), \subseteq)$ .

proof: similar to  $\mathcal{M}_{\infty} = \operatorname{lfp} F_s$  in  $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$ , by fixpoint fusion.

course 03 Program Semantics Antoine Miné p. 80 / 127

## Partial trace semantics

course 03 Program Semantics Antoine Miné p. 81 / 127

## Finite and infinite partial trace semantics

<u>Idea:</u> complete partial traces  $\mathcal{T}$  with infinite traces.

 $\mathcal{T}_{\infty}$ : all finite and infinite sequences of states linked by the transition relation  $\tau$ :

$$\mathcal{T}_{\infty} \stackrel{\text{def}}{=} \left\{ \sigma_{0}, \dots, \sigma_{n} \in \Sigma^{*} \mid \forall i < n : \sigma_{i} \to \sigma_{i+1} \right\} \cup \left\{ \sigma_{0}, \dots, \sigma_{n}, \dots \in \Sigma^{\omega} \mid \forall i < \omega : \sigma_{i} \to \sigma_{i+1} \right\}$$

(partial finite traces do not necessarily end in a blocking state)

Fixpoint form similar to  $\mathcal{M}_{\infty}$ :

- $\mathcal{T}_{\infty} = \mathsf{lfp}\, F_{s*}$  in  $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$  where  $F_{s*}(T) \stackrel{\mathsf{def}}{=} \Sigma \cup \tau^{\frown} T$ ,
- $\mathcal{T}_{\infty} = \operatorname{gfp} F_{s*}$  in  $(\mathcal{P}(\Sigma^{\infty}), \subseteq)$ .

proof: similar to the proofs of  $\mathcal{M}_{\infty}=\operatorname{gfp} F_s$  and  $\mathcal{M}_{\infty}=\operatorname{lfp} F_s$ .

course 03 Program Semantics Antoine Miné p. 82 / 127

## Finite trace abstraction

Finite partial traces  $\mathcal{T}$  are an abstraction of all partial traces  $\mathcal{T}_{\infty}$ .

We have a Galois embedding:

$$(\mathcal{P}(\Sigma^{\infty}),\sqsubseteq) \stackrel{\gamma_*}{\longleftarrow_{\alpha_*}} (\mathcal{P}(\Sigma^*),\subseteq)$$

•  $\sqsubseteq$  is the fused ordering on  $\Sigma^* \cup \Sigma^{\omega}$ :

$$A \sqsubseteq B \iff (A \cap \Sigma^*) \subseteq (B \cap \Sigma^*) \land (A \cap \Sigma^{\omega}) \supseteq (B \cap \Sigma^{\omega})$$

- $\alpha_*(T) \stackrel{\text{def}}{=} T \cap \Sigma^*$  (remove infinite traces)
- $\gamma_*(T) \stackrel{\text{def}}{=} T$  (embedding)
- $\mathcal{T} = \alpha_*(\mathcal{T}_{\infty})$

(proof on next slide)

# Finite trace abstraction (proof)

#### proof:

We have Galois embedding because:

- $\bullet$   $\alpha_*$  and  $\gamma_*$  are monotonic,
- given  $T \subseteq \Sigma^*$ , we have  $(\alpha_* \circ \gamma_*)(T) = T \cap \Sigma^* = T$ ,
- $(\gamma_* \circ \alpha_*)(T) = T \cap \Sigma^* \supseteq T$ , as we only remove infinite traces.

Recall that  $\mathcal{T}_{\infty} = \operatorname{lfp} F_{s*}$  in  $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$  and  $\mathcal{T} = \operatorname{lfp} F_{s*}$  in  $(\mathcal{P}(\Sigma^{*}), \subseteq)$ , where  $F_{s*}(\mathcal{T}) \stackrel{\mathrm{def}}{=} \Sigma \cup \mathcal{T}^{\frown} \tau$ .

As  $\alpha_* \circ F_{s*} = F_{s*} \circ \alpha_*$  and  $\alpha_*(\emptyset) = \emptyset$ , we can apply the fixpoint transfer theorem to get  $\alpha_*(\mathcal{T}_{\infty}) = \mathcal{T}$ .

course 03 Program Semantics Antoine Miné p. 84 / 127

# Finite trace abstraction (proof)

#### alternate proof:

It is also possible to use the characterizations  $\mathcal{T}_{\infty}=\operatorname{gfp} F_{s*}$  in  $(\mathcal{P}(\Sigma^{\infty}),\subseteq)$  and  $\mathcal{T}=\operatorname{gfp} F_{s*}$  in  $(\mathcal{P}(\Sigma^{*}),\subseteq)$ , and use a fixpoint transfer theorem for greatest fixpoints. Similarly to the fixpoint transfer for least fixpoints, this theorem uses the constructive version of Tarski's theorem, but in the dual:  $\mathcal{T}_{\infty}$  is the limit of transfinite iterations  $a_0=\Sigma^{\infty},\ a_{n+1}=F_{s*}(a_n),\$ and  $a_n=\cap\{a_m\mid m< n\}$  for transfinite ordinals, while  $\mathcal{T}$  is the limit of a similar iteration from  $a'_0=\Sigma^*.$  We conclude by noting that  $a'_0=\alpha_*(a_0),\ \alpha_*\circ F_{s*}=F_{s*}\circ\alpha_*,\$ and  $\alpha_*$  is co-continuous:  $\alpha_*(\cap_{i\in I}T_i)=\cap_{i\in I}\alpha_*(T_i).$ 

Note that, while the adjoint of  $\alpha_*$  for  $\sqsubseteq$  was  $\gamma_*(T) \stackrel{\text{def}}{=} T$ , the adjoint for  $\subseteq$  is  $\gamma'_*(T) \stackrel{\text{def}}{=} T \cup \Sigma^{\omega}$ .

course 03 Program Semantics Antoine Miné p. 85 / 127

## Prefix abstraction

<u>Idea:</u> complete maximal traces by adding (non-empty) prefixes.

We have a Galois connection:

$$(\mathcal{P}(\Sigma^{\infty}\setminus\{\epsilon\}),\subseteq) \xrightarrow{\gamma_{\preceq}} (\mathcal{P}(\Sigma^{\infty}\setminus\{\epsilon\}),\subseteq)$$

•  $\alpha_{\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^{\infty} \setminus \{\epsilon\} \mid \exists u \in T : t \preceq u \}$  (set of all non-empty prefixes of traces in T)

•

$$\gamma_{\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^{\infty} \setminus \{\epsilon\} \mid \forall u \in \Sigma^{\infty} \setminus \{\epsilon\} : u \preceq t \implies u \in T \}$$
 (traces with non-empty prefixes in  $T$ )

#### proof:

 $\alpha_{\prec}$  and  $\gamma_{\prec}$  are monotonic.

$$(\alpha_{\preceq} \circ \gamma_{\preceq})(T) = \{ t \in T \mid \rho_p(t) \subseteq T \} \subseteq T \quad \text{(prefix-closed trace sets)}.$$

$$(\gamma_{\preceq} \circ \alpha_{\preceq})(T) = \rho_p(T) \supseteq T.$$

course 03 Program Semantics Antoine Miné p. 86 / 127

## Abstraction from maximal traces to partial traces

# Finite and infinite partial traces $\mathcal{T}_{\infty}$ are an abstraction of maximal traces $\mathcal{M}_{\infty}$ : $\mathcal{T}_{\infty} = \alpha_{\preceq}(\mathcal{M}_{\infty})$ .

#### proof:

Firstly,  $\mathcal{T}_{\infty}$  and  $\alpha_{\preceq}(\mathcal{M}_{\infty})$  coincide on infinite traces. Indeed,  $\mathcal{T}_{\infty} \cap \Sigma^{\omega} = \mathcal{M}_{\infty} \cap \Sigma^{\omega}$  and  $\alpha_{\preceq}$  does not add infinite traces, so:  $\mathcal{T}_{\infty} \cap \Sigma^{\omega} = \alpha_{\preceq}(\mathcal{M}_{\infty}) \cap \Sigma^{\omega}$ .

We now prove that they also coincide on finite traces. Assume  $\sigma_0,\ldots,\sigma_n\in\alpha_{\preceq}(\mathcal{M}_{\infty})$ , then  $\forall i< n:\sigma_i\to\sigma_{i+1}$ , so,  $\sigma_0,\ldots,\sigma_n\in\mathcal{T}_{\infty}$ . Assume  $\sigma_0,\ldots,\sigma_n\in\mathcal{T}_{\infty}$ , then it can be completed into a maximal trace, either finite or infinite, and so,  $\sigma_0,\ldots,\sigma_n\in\alpha_{\prec}(\mathcal{M}_{\infty})$ .

Note: no fixpoint transfer applies here.

course 03 Program Semantics Antoine Miné p. 87 / 127

## Finite prefix abstraction

We can abstract directly from maximal traces  $\mathcal{M}_{\infty}$  to finite partial traces  $\mathcal{T}$ .

Consider the following Galois connection:

$$(\mathcal{P}(\Sigma^{\infty}\setminus\{\epsilon\}),\subseteq) \xrightarrow{\gamma_{*\preceq}} (\mathcal{P}(\Sigma^{*}\setminus\{\epsilon\}),\subseteq)$$

- $\alpha_{*\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^* \setminus \{\epsilon\} \mid \exists u \in T : t \preceq u \}$ (set of all non-empty prefixes of traces T)
- $\gamma_{*\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^{\infty} \setminus \{\epsilon\} \mid \forall u \in \Sigma^* \setminus \{\epsilon\} : u \preceq t \implies u \in T \}$  (traces with non-empty prefixes in T)

We have  $\mathcal{T} = \alpha_{*\prec}(\mathcal{M}_{\infty})$ .

(proof on next slide)

course 03 Program Semantics Antoine Miné p. 88 / 127

# Finite prefix abstraction (proof)

#### proof:

 $\alpha_{*} \prec$  and  $\gamma_{*} \prec$  are monotonic.

$$\begin{split} &(\alpha_{*\preceq} \circ \gamma_{*\preceq})(T) = \{\, t \in T \,|\, \rho_p(t) \subseteq T \,\} \subseteq T \quad \text{(prefix-closed trace sets)}. \\ &(\gamma_{*\preceq} \circ \alpha_{*\preceq})(T) = \rho_p(T) \cup \{\, t \in \Sigma^\omega \,|\, \forall u \in \Sigma^* \colon u \preceq t \implies u \in \rho_p(T) \,\} \supseteq T. \end{split}$$

As 
$$\alpha_{*\preceq} = \alpha_* \circ \alpha_{\preceq}$$
,

we have: 
$$\alpha_* \preceq (\mathcal{M}_{\infty}) = \alpha_* (\alpha_{\preceq} (\mathcal{M}_{\infty})) = \alpha_* (\mathcal{T}_{\infty}) = \mathcal{T}.$$

#### Remarks:

- $\bullet \quad \gamma_{*\prec} \circ \alpha_{*\prec} \neq id$ it closes trace sets by limits of finite traces.
- $\circ$   $\gamma_* \prec \neq \gamma_{\prec} \circ \gamma_*$ this is because  $\gamma_*(T) \stackrel{\text{def}}{=} T$  is the adjoint of  $\alpha_*$  in  $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$ , while we need to compose  $\alpha_{\prec}$  with the adjoint of  $\alpha_*$  in  $(\mathcal{P}(\Sigma^{\infty}),\subseteq)$ , which is  $\gamma'(T) \stackrel{\text{def}}{=} T \cup \Sigma^{\omega}$ .

course 03 Program Semantics Antoine Miné p. 89 / 127

# (Partial) hierarchy of semantics



course 03 Program Semantics Antoine Miné p. 90 / 127

## **Relational semantics**

course 03 Program Semantics Antoine Miné p. 91 / 127

## Big-step semantics

course 03 Program Semantics Antoine Miné p. 92 / 127

## Finite big-step semantics

Pairs of states linked by a sequence of transitions in  $\tau$ .

$$\mathcal{BS} \stackrel{\text{def}}{=} \{ (\sigma_0, \sigma_n) \in \Sigma \times \Sigma \mid n \geq 0, \exists \sigma_1, \dots, \sigma_{n-1} : \forall i < n : \sigma_i \to \sigma_{i+1} \}$$

(symmetric and transitive closure of au)

### Fixpoint form:

$$\mathcal{BS} = \mathsf{lfp}\, F_B$$
 where  $F_B(R) \stackrel{\text{def}}{=} id \cup \{ (\sigma, \sigma'') \mid \exists \sigma' \colon (\sigma, \sigma') \in R, \sigma' \to \sigma'' \}.$ 

course 03 Program Semantics Antoine Miné p. 93 / 127

## Relational abstraction

Relational abstraction: allows skipping intermediate steps.

We have a Galois embedding:

$$(\mathcal{P}(\Sigma^*),\subseteq) \xrightarrow{\gamma_{io}} (\mathcal{P}(\Sigma\times\Sigma),\subseteq)$$

- $\alpha_{io}(T) \stackrel{\text{def}}{=} \{ (\sigma, \sigma') \mid \exists \sigma_0, \dots, \sigma_n \in T : \sigma = \sigma_0, \sigma' = \sigma_n \}$  (first and last state of a trace in T)
- $\gamma_{io}(R) \stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \in \Sigma^* \mid \exists (\sigma, \sigma') \in R : \sigma = \sigma_0, \sigma' = \sigma_n \}$  (traces respecting the first and last states from R)

#### proof sketch:

 $\gamma_{io}$  and  $\alpha_{io}$  are monotonic.  $(\gamma_{io} \circ \alpha_{io})(T) = \{ \sigma_0, \dots, \sigma_n \mid \exists \sigma'_0, \dots, \sigma'_m \in T : \sigma_0 = \sigma'_0, \sigma_n = \sigma'_m \}.$   $(\alpha_{io} \circ \gamma_{io})(R) = R.$ 

course 03 Program Semantics Antoine Miné p. 94 / 127

## Finite big-step semantics as an abstraction

The finite big-step semantics is an abstraction of the finite trace semantics:  $\mathcal{BS} = \alpha_{io}(\mathcal{T})$ .

```
proof sketch: by fixpoint transfer.
```

```
We have \mathcal{T} = \operatorname{lfp} F_{p*} where F_{p*}(T) \stackrel{\operatorname{def}}{=} \Sigma \cup T \cap \tau.

Moreover, F_B(R) \stackrel{\operatorname{def}}{=} id \cup \{ (\sigma, \sigma'') | \exists \sigma' : (\sigma, \sigma') \in R, \sigma' \to \sigma'' \}.

Then, \alpha_{io} \circ F_{p*} = F_B \circ \alpha_{io} because \alpha_{io}(\Sigma) = id and \alpha_{io}(T \cap \tau) = \{ (\sigma, \sigma'') | \exists \sigma' : (\sigma, \sigma') \in \alpha_{io}(T) \wedge \sigma' \to \sigma'' \}.

By fixpoint transfer: \alpha_{io}(T) = \operatorname{lfp} F_B.
```

We have a similar result using  $F_{s*}(T) \stackrel{\text{def}}{=} \Sigma \cup \tau \cap T$  and  $F'_{p}(R) \stackrel{\text{def}}{=} id \cup \{ (\sigma, \sigma'') \mid \exists \sigma' : (\sigma', \sigma'') \in R \land \sigma \to \sigma' \}.$ 

# Finite big-step semantics (example)

# program $i \leftarrow [0, +\infty];$

while i > 0 do  $i \leftarrow i - [0, 1]$ ; done

Finite big-step semantics  $\mathcal{BS}$ :  $\{(\rho, \rho') | 0 \le \rho'(i) \le \rho(i) \}$ .

course 03 Program Semantics Antoine Miné p. 96 / 127

## **Denotational semantics**

course 03 Program Semantics Antoine Miné p. 97 / 127

# Denotational semantics (relation form)

In the denotational semantics, we forget all the intermediate steps and only keep the input / output relation:

- $(\sigma, \sigma') \in \Sigma \times \mathcal{B}$ : finite execution starting in  $\sigma$ , stopping in  $\sigma'$ ,
- $(\sigma, \bullet)$ : non-terminating execution starting in  $\sigma$ .

Construction by abstraction: of the maximal trace semantics  $\mathcal{M}_{\infty}$ .

$$(\mathcal{P}(\Sigma^{\infty}),\subseteq) \xrightarrow{\underset{\alpha_d}{\gamma_d}} (\mathcal{P}(\Sigma \times (\Sigma \cup \{\spadesuit\})),\subseteq)$$

- $\alpha_d(T) \stackrel{\text{def}}{=} \alpha_{io}(T \cap \Sigma^*) \cup \{ (\sigma, \blacktriangle) \mid \exists t \in \Sigma^\omega : \sigma \cdot t \in T \}$
- $\gamma_d(R) \stackrel{\text{def}}{=} \gamma_{io}(R \cap (\Sigma \times \Sigma)) \cup \{ \sigma \cdot t \mid (\sigma, \blacktriangle) \in R, t \in \Sigma^{\omega} \}$  (extension of  $(\alpha_{io}, \gamma_{io})$  to infinite traces)

The denotational semantics is  $\mathcal{DS} \stackrel{\text{def}}{=} \alpha_d(\mathcal{M}_{\infty})$ .

course 03 Program Semantics Antoine Miné p. 98 / 127

# Denotational fixpoint semantics

•  $F_d(R) \stackrel{\text{def}}{=} \{ (\sigma, \sigma) \mid \sigma \in \mathcal{B} \} \cup$ 

We have:  $\mathcal{DS} = \operatorname{lfp} F_d$ 

<u>Idea:</u> as  $\mathcal{M}_{\infty}$ , separate terminating and non-terminating behaviors, and use a fixpoint fusion theorem.

```
in (\mathcal{P}(\Sigma \times (\Sigma \cup \{ \spadesuit \})), \sqsubseteq^*, \sqcup^*, \sqcap^*, \perp^*, \top^*), where

• \bot^* \stackrel{\mathrm{def}}{=} \{ (\sigma, \spadesuit) \mid \sigma \in \Sigma \}

• T^* \stackrel{\mathrm{def}}{=} \{ (\sigma, \sigma') \mid \sigma, \sigma' \in \Sigma \}

• A \sqsubseteq^* B \iff ((A \cap \top^*) \subseteq (B \cap \top^*)) \wedge ((A \cap \bot^*) \supseteq (B \cap \bot^*))

• A \sqcup^* B \stackrel{\mathrm{def}}{=} ((A \cap \top^*) \cup (B \cap \top^*)) \cup ((A \cap \bot^*) \cup (B \cap \bot^*))

• A \sqcap^* B \stackrel{\mathrm{def}}{=} ((A \cap \top^*) \cap (B \cap \top^*)) \cup ((A \cap \bot^*) \cup (B \cap \bot^*))
```

course 03 Program Semantics Antoine Miné p. 99 / 127

 $\{(\sigma, \sigma'') \mid \exists \sigma' : \sigma \to \sigma' \land (\sigma', \sigma'') \in R \}$ 

# Denotational fixpoint semantics (proof)

#### proof:

We cannot use directly a fixpoint transfer on  $\mathcal{M}_{\infty} = \operatorname{lfp} F_s$  in  $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$  because our Galois connection  $(\alpha_d, \gamma_d)$  uses the  $\subseteq$  order, not  $\sqsubseteq$ .

Instead, we use fixpoint transfer separately on finite and infinite executions, and then apply fixpoint fusion.

Recall that 
$$\mathcal{M}_{\infty} \cap \Sigma^* = \operatorname{lfp} F_s$$
 in  $(\mathcal{P}(\Sigma^*), \subseteq)$  where  $F_s(T) \stackrel{\operatorname{def}}{=} \mathcal{B} \cup \tau \cap T$  and  $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{gfp} G_s$  in  $(\mathcal{P}(\Sigma^{\omega}), \subseteq)$  where  $G_s(T) \stackrel{\operatorname{def}}{=} \cup \tau \cap T$ .

For finite execution, we have  $\alpha_d \circ F_s = F_d \circ \alpha_d$  in  $\mathcal{P}(\Sigma^*) \to \mathcal{P}(\Sigma \times \Sigma)$ .

We can apply directly fixpoint transfer and get that:  $\mathcal{DS} \cap (\Sigma \times \Sigma) = \operatorname{lfp} F_d$ .

course 03 Program Semantics Antoine Miné p. 100 / 127

# Denotational fixpoint semantics (proof cont.)

#### proof sketch: for infinite executions

We have  $\alpha_d \circ G_s = G_d \circ \alpha_d$  in  $\mathcal{P}(\Sigma^\omega) \to \mathcal{P}(\Sigma \times \{ \spadesuit \})$ , where

$$G_d(R) \stackrel{\mathrm{def}}{=} \{ (\sigma, \sigma'') \mid \exists \sigma' \colon \sigma \to \sigma' \land (\sigma', \sigma'') \in R \}.$$

The fixpoint theorem for gfp we used in the alternate proof of  $\mathcal{T}=\alpha_*(\mathcal{T}_\infty)$  does not apply here because  $\alpha_d$  is not co-continuous:  $\alpha_d(\cap_{i\in I}S_i)=\cap_{\in I}\alpha_d(S_i)$  does not hold; consider for example:  $I=\mathbb{N}$  and  $S_i=\{\ a^nb^\omega\ |\ n>i\ \}$ :  $\cap_{i\in\mathbb{N}}S_i=\emptyset$ , but  $\forall i:\alpha_d(S_i)=\{(a,\spadesuit)\}$ .

We use instead a fixpoint transfer based on Tarksi's theorem.

We have gfp  $G_s = \bigcup \{X \mid X \subseteq G_s(X)\}.$ 

Thus,  $\alpha_d(\mathsf{gfp}\,G_s) = \alpha_d(\cup \{X \mid X \subseteq G_s(X)\}) = \cup \{\alpha_d(X) \mid X \subseteq G_s(X)\}$  as  $\alpha_d$  is a complete  $\cup$  morphism. The proof is finished by noting that the commutation  $\alpha_d \circ G_s = G_d \circ \alpha_d$  and the Galois embedding  $(\alpha_d, \gamma_d)$  imply that  $\{\alpha_d(X) \mid X \subseteq G_s(X)\} = \{\alpha_d(X) \mid \alpha_d(X) \subseteq G_d(\alpha_d(X))\} = \{Y \mid Y \subseteq G_d(Y)\}.$ 

(the complete proof can be found in [Cous02])

course 03 Program Semantics Antoine Miné p. 101 / 127

# Denotational semantics (example)

# program $i \leftarrow [0, +\infty];$

 $i \leftarrow [0, +\infty];$ while i > 0 do  $i \leftarrow i - [0, 1];$ done

#### Denotational semantics $\mathcal{DS}$ :

$$\{ (\rho, \rho') \mid \rho(i) \geq 0 \land \frac{\rho'(i)}{\rho(i)} = 0 \} \cup \{ (\rho, \blacktriangle) \mid \rho(i) \geq 0 \}.$$

(quite different from the big-step semantics)

course 03 Program Semantics Antoine Miné p. 102 / 127

# Denotational semantics (functional form)

**Note:** denotational semantics are often presented as functions, not relations

This is possible using the following Galois isomorphism:

$$(\mathcal{P}(\Sigma\times(\Sigma\cup\{\spadesuit\})),\sqsubseteq^*)\stackrel{\gamma_{df}}{\underline{\longleftarrow}}(\Sigma\to\mathcal{P}(\Sigma\cup\{\spadesuit\}),\dot\sqsubseteq^*)$$

- $\alpha_{df}(R) \stackrel{\text{def}}{=} \lambda \sigma. \{ \sigma' \mid (\sigma, \sigma') \in R \}$
- $\gamma_{df}(f) \stackrel{\text{def}}{=} \{ (\sigma, \sigma') | \sigma' \in f(\sigma) \}$
- $f \stackrel{\perp}{=} {}^* f \stackrel{\text{def}}{\iff} \forall \sigma \colon (f(\sigma) \cap \Sigma \subseteq g(\sigma) \cap \Sigma) \land (\spadesuit \in g(\sigma) \implies \spadesuit \in f(\sigma))$

We get that:  $\alpha_{df}(\mathcal{DS}) = \operatorname{lfp} F'_d$  where  $F'_d(f) \stackrel{\operatorname{def}}{=} (\alpha_{df} \circ F_d \circ \gamma_{df})(f) = (\lambda \sigma. \{ \sigma \mid \sigma \in \mathcal{B} \}) \dot{\cup} (f \circ \operatorname{post}_{\tau}).$  (proof by fixpoint transfer, as  $F'_d \circ \alpha_{df} = F_d \circ \alpha_{df}$ )

course 03 Program Semantics Antoine Miné p. 103 / 127

# Another part of the hierarchy of semantics



See [Cou82] for more semantics in this diagram.

course 03 Program Semantics Antoine Miné p. 104 / 127

## **State properties**

course 03 Program Semantics Antoine Miné p. 105 / 127

# State properties

```
State property: P \in \mathcal{P}(\Sigma).
```

Verification problem:  $\mathcal{R}(\mathcal{I}) \subseteq P$ .

(all the states reachable from  $\mathcal{I}$  are in P)

### Examples:

- absence of blocking:  $P \stackrel{\text{def}}{=} \Sigma \setminus \mathcal{B}$ ,
- the variables remain in a safe range,
- dangerous program locations cannot be reached.

course 03 Program Semantics Antoine Miné p. 106 / 127

## Invariance proof method

### **Invariance proof method:** find an inductive invariant $I \subseteq \Sigma$

- I ⊆ I
   (contains initial states)
- $\forall \sigma \in I : \sigma \to \sigma' \implies \sigma' \in I$  (invariant by program transition)

that implies the desired property:  $I \subseteq P$ .

Link with the state semantics  $\mathcal{R}(\mathcal{I})$ :

Given 
$$F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \mathsf{post}_{\tau}(S)$$
, we have  $F_{\mathcal{R}}(I) \subseteq I$   $\Longrightarrow I$  is a post-fixpoint of  $F_{\mathcal{R}}$ .

Recall that 
$$\mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}}$$
  
 $\Longrightarrow \mathcal{R}(\mathcal{I})$  is the tightest inductive invariant.

course 03 Program Semantics Antoine Miné p. 107 / 127

# Hoare logic proof method

#### Idea:

- ullet annotate program points with local sate invariants in  $\mathcal{P}(\Sigma)$
- use logic rules to prove their correctness

$$\frac{\{P\} \operatorname{stat}_1 \{R\} \quad \{R\} \operatorname{stat}_2 \{Q\}}{\{P[e/X]\} X \leftarrow e \{P\}} \\ \frac{\{P\} \operatorname{stat}_1; \operatorname{stat}_2 \{Q\}}{\{P\} \operatorname{stat}_1; \operatorname{stat}_2 \{Q\}} \\ \\ \frac{\{P \wedge b\} \operatorname{stat} \{Q\} \quad P \wedge \neg b \Rightarrow Q}{\{P\} \operatorname{if } b \operatorname{ then } \operatorname{stat} \{Q\}} \\ \frac{\{P\} \operatorname{stat} \{Q\} \quad P' \Rightarrow P \quad Q \Rightarrow Q'}{\{P'\} \operatorname{stat} \{Q'\}} \\ \\ \frac{\{P\} \operatorname{stat} \{Q'\}}{\{P'\} \operatorname{stat} \{Q'\}}$$

Link with the state semantics  $\mathcal{R}(\mathcal{I})$ :

Equivalent to an invariant proof, partitioned by program location. Any post-fixpoint of  $\alpha_{\mathcal{L}} \circ F_{\mathcal{R}} \circ \gamma_{\mathcal{L}}$  gives valid Hoare triples.  $\alpha_{\mathcal{L}}(\mathcal{R}(\mathcal{I})) = \mathsf{lfp}(\alpha_{\mathcal{L}} \circ F_{\mathcal{R}} \circ \gamma_{\mathcal{L}})$  gives the tightest Hoare triples.

course 03 Program Semantics Antoine Miné p. 108 / 127

## Weakest liberal precondition proof methods

Idea: Start with a postcondition  $\mathcal{F} \in \mathcal{P}(\Sigma)$  and compute preconditions backwards  $P \Rightarrow wlp(stat, Q)$ 

- $wlp(X \leftarrow e, Q) \stackrel{\text{def}}{=} Q[e/X]$
- $wlp((stat_1; stat_2), Q) \stackrel{\text{def}}{=} wlp(stat_1, wlp(stat_2, Q))$
- $wlp(\mathbf{if}\ b\ \mathbf{then}\ stat, Q) \stackrel{\text{def}}{=} (b \Rightarrow wlp(stat, Q)) \land (\neg b \Rightarrow Q)$
- $wlp(\textbf{while } b \textbf{ do } stat, Q) \stackrel{\text{def}}{=} I \wedge ((I \wedge b) \Rightarrow wlp(stat, I)) \wedge ((I \wedge \neg b) \Rightarrow Q)$ (where the loop invariant I is generally provided by the user)

$$(P \Rightarrow wlp(stat, Q))$$
 is equivalent to  $\{P\}$  stat  $\{Q\}$ 

### Link with the state semantics $S(\mathcal{Y})$ :

(recall 
$$S(\mathcal{Y}) = \operatorname{gfp} F_{\mathcal{S}}$$
 where  $F_{\mathcal{S}}(S) \stackrel{\operatorname{def}}{=} \mathcal{Y} \cap \widetilde{\operatorname{pre}}_{\tau}(S)$ )

Equivalent to sufficient preconditions, partitioned by location: any pre-fixpoint of  $\alpha_{\mathcal{L}} \circ F_{\mathcal{S}} \circ \gamma_{\mathcal{L}}$  gives valid liberal preconditions;  $\alpha_{\mathcal{L}}(\mathcal{S}(\mathcal{F})) = \text{gfp}(\alpha_{\mathcal{L}} \circ F_{\mathcal{R}} \circ \gamma_{\mathcal{L}})$  gives the weakest liberal preconditions while inferring loop invariants!

## **Trace properties**

course 03 Program Semantics Antoine Miné p. 110 / 127

# Trace properties

```
Trace property: P \in \mathcal{P}(\Sigma^{\infty})
```

Verification problem:  $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq P$ 

(or, equivalently, as  $\mathcal{M}_{\infty} \subseteq P'$  where  $P' \stackrel{\text{def}}{=} P \cup ((\Sigma \setminus \mathcal{I}) \cdot \Sigma^{\infty})$ )

### Examples:

- termination:  $P \stackrel{\text{def}}{=} \Sigma^*$ .
- non-termination:  $P \stackrel{\text{def}}{=} \Sigma^{\omega}$ ,
- any state property  $S \subseteq \Sigma$ :  $P \stackrel{\text{def}}{=} S^{\infty}$ ,
- maximal execution time:  $P \stackrel{\text{def}}{=} \Sigma^{\leq k}$ ,
- minimal execution time:  $P \stackrel{\text{def}}{=} \Sigma^{\geq k}$ ,
- ordering, e.g.:  $P \stackrel{\text{def}}{=} (\Sigma \setminus \{b\})^* \cdot a \cdot \Sigma^* \cdot b \cdot \Sigma^{\infty}$ . (a and b occur, and a occurs before b)

# Safety properties

### <u>Idea:</u> a safety property P models that "nothing bad ever occurs"

- P is provable by exhaustive testing; (observe the prefix trace semantics: T<sub>P</sub>(I) ⊆ P)
- *P* is disprovable by finding a single finite execution not in *P*.

### Examples:

- any state property:  $P \stackrel{\text{def}}{=} S^{\infty}$  for  $S \subseteq \Sigma$ ,
- ordering:  $P \stackrel{\text{def}}{=} \Sigma^{\infty} \setminus ((\Sigma \setminus \{a\})^* \cdot b \cdot \Sigma^{\infty})$ , (no b can appear without an a before, but we can have only a, or neither a nor b) (not a state property)
- but termination  $P \stackrel{\text{def}}{=} \Sigma^*$  is not a safety property. (disproving requires exhibiting an *infinite* execution)

course 03 Program Semantics Antoine Miné p. 112 / 127

# Definition of safety properties

**Reminder:** finite prefix abstraction (simplified to allow  $\epsilon$ )

$$(\mathcal{P}(\Sigma^{\infty}),\subseteq) \xrightarrow{\gamma_{*\preceq}} (\mathcal{P}(\Sigma^{*}),\subseteq)$$

- $\bullet \ \alpha_{*\prec}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^* \mid \exists u \in T : t \leq u \}$
- $\bullet \ \gamma_{*\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^{\infty} \, | \, \forall u \in \Sigma^* \colon u \preceq t \implies u \in T \}$

The associated upper closure  $\rho_{*\preceq} \stackrel{\text{def}}{=} \gamma_{\preceq} \circ \alpha_{\preceq}$  is:  $\rho_{*\preceq} = \lim \circ \rho_p$  where:

- $\bullet \ \rho_p(T) \stackrel{\text{def}}{=} \{ u \in \Sigma^{\infty} \mid \exists t \in T : u \leq t \},\$
- $\lim(T) \stackrel{\text{def}}{=} T \cup \{ t \in \Sigma^{\omega} \mid \forall u \in \Sigma^* : u \leq t \implies u \in T \}.$

**<u>Definition:</u>**  $P \in \mathcal{P}(\Sigma^{\infty})$  is a safety property if  $P = \rho_{*\prec}(P)$ .

course 03 Program Semantics Antoine Miné p. 113 / 127

# Definition of safety properties (examples)

**<u>Definition:</u>**  $P \subseteq \mathcal{P}(\Sigma^{\infty})$  is a safety property if  $P = \rho_{*\preceq}(P)$ .

### Examples and counter-examples:

• state property  $P \stackrel{\text{def}}{=} S^{\infty}$  for  $S \subseteq \Sigma$ :

$$\rho_p(S^\infty) = \lim(S^\infty) = S^\infty \Longrightarrow \text{safety};$$

• termination  $P \stackrel{\text{def}}{=} \Sigma^*$ :

$$\rho_p(\Sigma^*) = \Sigma^*$$
, but  $\lim(\Sigma^*) = \Sigma^{\infty} \neq \Sigma^* \Longrightarrow$  not safety;

• even number of steps  $P \stackrel{\text{def}}{=} (\Sigma^2)^{\infty}$ :

$$\rho_p((\Sigma^2)^\infty) = \Sigma^\infty \neq (\Sigma^2)^\infty \Longrightarrow$$
 not safety.

course 03 Program Semantics Antoine Miné p. 114 / 127

# Proving safety properties

### **Invariance proof method:** find an inductive invariant *I*

- set of finite traces  $I \subseteq \Sigma^*$
- $\mathcal{I} \subseteq I$  (contains traces reduced to an initial state)
- $\forall \sigma_0, \dots, \sigma_n \in I : \sigma_n \to \sigma_{n+1} \implies \sigma_0, \dots, \sigma_n, \sigma_{n+1} \in I$  (invariant by program transition)

and implies the desired property:  $I \subseteq P$ .

### Link with the finite prefix trace semantics $\mathcal{T}_p(\mathcal{I})$ :

An inductive invariant is a post-fixpoint of  $F_p$ :  $F_p(I) \subseteq I$  where  $F_p(T) \stackrel{\text{def}}{=} \mathcal{I} \cup T \cap \tau$ .

 $\mathcal{T}_p(\mathcal{I}) = \operatorname{lfp} F_p$  is the tightest inductive invariant.

# Correctness of the invariant method for safety

#### **Soundness:**

if P is a safety property and an inductive invariant I exists then:  $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq P$ 

#### proof:

Using the Galois connection between  $\mathcal{M}_{\infty}$  and  $\mathcal{T}$ , we get:

$$\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq \rho_{* \preceq}(\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty})) = \gamma_{* \preceq}(\alpha_{* \preceq}(\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}))) = \gamma_{* \prec}(\alpha_{* \prec}(\mathcal{M}_{\infty}) \cap (\mathcal{I} \cdot \Sigma^{*})) = \gamma_{* \prec}(\mathcal{T} \cap (\mathcal{I} \cdot \Sigma^{*})) = \gamma_{* \prec}(\mathcal{T}_{\rho}(\mathcal{I})).$$

Using the link between invariants and the finite prefix trace semantics, we have:  $\mathcal{T}_{\mathcal{P}}(\mathcal{I}) \subseteq I \subseteq \mathcal{P}$ .

As 
$$P$$
 is a safety property,  $P = \gamma_{*\preceq}(P)$ , so,  $\gamma_{*\preceq}(\mathcal{T}_p(\mathcal{I})) \subseteq \gamma_{*\preceq}(P) = P$ , and so,  $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq P$ .

### Completeness: an inductive invariant always exists

proof:  $\mathcal{T}_p(\mathcal{I})$  provides an inductive invariant.

course 03 Program Semantics Antoine Miné p. 116 / 127

# Disproving safety properties

#### **Proof method:**

A safety property P can be disproved by constructing a finite prefix of execution that does not satisfy the property:

$$\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \not\subseteq P \implies \exists t \in \mathcal{T}_{p}(\mathcal{I}): t \notin P$$

#### proof:

By contradiction, assume that no such trace exists, i.e.,  $\mathcal{T}_p(\mathcal{I}) \subseteq P$ .

We proved in the previous slide that this implies  $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq P$ .

### Examples:

- disproving a state property  $P \stackrel{\text{def}}{=} S^{\infty}$ :  $\Rightarrow$  find a partial execution containing a state in  $\Sigma \setminus S$ ;
- disproving an order property  $P \stackrel{\text{def}}{=} \Sigma^{\infty} \setminus ((\Sigma \setminus \{a\})^* \cdot b \cdot \Sigma^{\infty})$  $\Rightarrow$  find a partial execution where b appears and not a.

course 03 Program Semantics Antoine Miné p. 117 / 127

# Liveness properties

### **Idea:** liveness property $P \in \mathcal{P}(\Sigma^{\infty})$

Liveness properties model that "something good eventually occurs"

- P cannot be proved by testing (if nothing good happens in a prefix execution, it can still happen in the rest of the execution)
- $\bullet$  disproving P requires exhibiting an infinite execution not in P

### Examples:

- termination:  $P \stackrel{\text{def}}{=} \Sigma^*$ ,
- inevitability:  $P \stackrel{\text{def}}{=} \Sigma^* \cdot a \cdot \Sigma^{\infty}$ , (a eventually occurs in all executions)
- state properties are not liveness properties.

course 03 Program Semantics Antoine Miné p. 118 / 127

# Definition of liveness properties

**<u>Definition:</u>**  $P \in \mathcal{P}(\Sigma^{\infty})$  is a liveness property if  $\rho_{*\preceq}(P) = \Sigma^{\infty}$ .

### Examples and counter-examples:

- termination  $P \stackrel{\text{def}}{=} \Sigma^*$ :
  - $\rho_p(\Sigma^*) = \Sigma^*$  and  $\lim(\Sigma^*) = \Sigma^{\infty} \Longrightarrow$  liveness;
- inevitability:  $P \stackrel{\text{def}}{=} \Sigma^* \cdot a \cdot \Sigma^{\infty}$

$$\rho_p(P) = P \cup \Sigma^*$$
 and  $\lim(P \cup \Sigma^*) = \Sigma^{\infty} \Longrightarrow$  liveness;

• state property  $P \stackrel{\text{def}}{=} S^{\infty}$  for  $S \subseteq \Sigma$ :

$$\rho_p(S^{\infty}) = \lim(S^{\infty}) = S^{\infty} \neq \Sigma^{\infty} \text{ if } S \neq \Sigma \Longrightarrow \text{ not liveness;}$$

• maximal execution time  $P \stackrel{\text{def}}{=} \Sigma^{\leq k}$ :

$$\rho_p(\Sigma^{\leq k}) = \lim(\Sigma^{\leq k}) = \sum^{\leq k} \neq \sum^{\infty} \implies \text{not liveness};$$

• the only property which is both safety and liveness is  $\Sigma^{\infty}$ .

course 03 Program Semantics Antoine Miné p. 119 / 127

# Proving liveness properties

### Variance proof method: (informal definition)

Find a decreasing quantity until something good happens.

### Example: termination proof

- find  $f: \Sigma \to \mathcal{S}$  where  $(\mathcal{S}, \sqsubseteq)$  is well-ordered; (f is called a "ranking function")
- $\sigma \in \mathcal{B} \implies \mathbf{f} = \min \mathcal{S}$ ;
- $\sigma \to \sigma' \implies f(\sigma') \sqsubset f(\sigma)$ .

(f counts the number of steps remaining before termination)

course 03 Program Semantics Antoine Miné p. 120 / 127

# Disproving liveness properties

### **Property:**

If *P* is a liveness property, then  $\forall t \in \Sigma^* : \exists u \in P : t \leq u$ .

#### proof:

```
By definition of liveness, \rho_{*\preceq}(P) = \Sigma^{\infty}, so t \in \rho_{*\preceq}(P) = \lim(\alpha_p(P)). As t \in \Sigma^* and \lim only adds infinite traces, t \in \alpha_p(P).
```

By definition of  $\alpha_p$ ,  $\exists u \in P : t \leq u$ .

### Consequence:

• liveness cannot be disproved by testing.

course 03 Program Semantics Antoine Miné p. 121 / 127

# Trace topology

### **Topology** on X, defined by

- a family  $\mathcal{C} \subseteq \mathcal{P}(X)$  of closed sets
  - $c, c' \in \mathcal{C} \implies c \cup c' \in \mathcal{C}$  (closed by finite unions) •  $C \subseteq \mathcal{C} \implies \bigcap \{c \mid c \in C\} \in \mathcal{C}$  (closed by intersections)
- ullet open sets  ${\cal O}$  are derived from closed sets:

$$\mathcal{O} \stackrel{\mathrm{def}}{=} \{ X \setminus c \, | \, c \in \mathcal{C} \}$$

(closed by unions and finite intersections) (we can alternatively define a topology by  $\mathcal{O}$ , and derive  $\mathcal{C}$  from  $\mathcal{O}$ )

### **Definition:** we define a topology on traces by setting:

- $X \stackrel{\text{def}}{=} \Sigma^{\infty}$
- $\mathcal{C} \stackrel{\text{def}}{=} \{ P \in \mathcal{P}(\Sigma^{\infty}) | P \text{ is a safety property } \}$

course 03 Program Semantics Antoine Miné p. 122 / 127

# Closure and density

### Topological closure: $\rho: \mathcal{P}(X) \to \mathcal{P}(X)$

- $\rho(x) \stackrel{\text{def}}{=} \cap \{ c \in \mathcal{C} \mid x \subseteq c \};$   $(\rho \text{ is an upper closure operator in } (\mathcal{P}(X), \subseteq))$  $(\rho(x) = x \iff x \in \mathcal{C})$
- on our trace topology,  $\rho = \rho_{*} \prec$ .

#### Dense sets:

- $x \subseteq X$  is dense if  $\rho(x) = X$ ;
- on our trace topology, dense sets are liveness properties.

course 03 Program Semantics Antoine Miné p. 123 / 127

## Decomposition theorem

### **Theorem:** decomposition on a topological space

Any set  $x \subseteq X$  is the intersection of a closed set and a dense set.

#### proof:

```
We have x = \rho(x) \cap (x \cup (X \setminus \rho(x))). Indeed: \rho(x) \cap (x \cup (X \setminus \rho(x))) = (\rho(x) \cap x) \cup (\rho(x) \cap (X \setminus \rho(x))) = \rho(x) \cap x = x \text{ as } x \subseteq \rho(x).
```

- $\rho(x)$  is closed
- $x \cup (X \setminus \rho(x))$  is dense because:  $\rho(x \cup (X \setminus \rho(x))) \supseteq \rho(x) \cup \rho(X \setminus \rho(x))$   $\supseteq \rho(x) \cup (X \setminus \rho(x))$ = X

### Consequence: on trace properties

Every trace property is the conjunction of a safety property and a liveness property. (proving a trace property can be decomposed into a soundness proof and a liveness proof)

course 03 Program Semantics Antoine Miné p. 124 / 127

# Beyond trace properties

### Some verification problems cannot be expressed as $\mathcal{M}_{\infty} \subseteq P$

### Examples:

Program equivalence

```
Do two programs (\Sigma, \tau_1) and (\Sigma, \tau_2) have the exact same executions? i.e., \mathcal{M}_{\infty}[\tau_1] = \mathcal{M}_{\infty}[\tau_2]
```

Non-interference

```
Does changing the initial value of X change its final value? \forall \sigma_0, \ldots, \sigma_n \in \mathcal{M}_\infty \colon \forall \sigma'_0 \colon \sigma_0 \equiv \sigma'_0 \Longrightarrow \exists \sigma'_0, \ldots, \sigma'_m \in \mathcal{M}_\infty \colon \sigma'_m \equiv \sigma_m where (\ell, \rho) \equiv (\ell', \rho') \iff \ell = \ell' \land \forall V \neq X \colon \rho(V) = \rho'(V)
```

### New verification problem: $\mathcal{M}_{\infty} \in H$ where $H \in \mathcal{P}(\mathcal{P}(\Sigma^{\infty}))$

- generalizes trace properties:  $\mathcal{M}_{\infty} \subseteq P$  reduces to  $\mathcal{M}_{\infty} \in \mathcal{P}(P)$ ;
- program equivalence is  $\mathcal{M}_{\infty}[\tau_1] \in {\mathcal{M}_{\infty}[\tau_2]}$ ; etc.

Reading assignment: hyperproperties.

# **Bibliography**

course 03 Program Semantics Antoine Miné p. 126 / 127

# Bibliography

[Bour93] **F. Bourdoncle**. Abstract debugging of higher-order imperative languages. In PLDI, 46-55, ACM Press, 1993.

[Cous02] **P. Cousot**. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. In Theoretical Comp. Sc., 277(1–2):47–103.

[Plot81] **G. Plotkin**. The origins of structural operational semantics. In J. of Logic and Algebraic Prog., 60:60-61, 1981.

course 03 Program Semantics Antoine Miné p. 127 / 127