
Program Semantics
MPRI 2–6: Abstract Interpretation,

application to verification and static analysis

Antoine Miné

year 2014–2015

course 03
24 September 2014

course 03 Program Semantics Antoine Miné p. 1 / 127

Goal

Discuss several flavors of concrete semantics:

independently from programming languages (transition systems)

defined in a constructive way (as fixpoints)

compare their expressive power (link by abstractions)

Plan:

introduction: classic examples of program semantics

transition systems

state semantics (forward and backward)

trace semantics (finite and infinite)

relational semantics

state and trace properties

course 03 Program Semantics Antoine Miné p. 2 / 127

Flavors of program semantics

Flavors of program semantics

course 03 Program Semantics Antoine Miné p. 3 / 127

Flavors of program semantics

Small-step operational semantics of the λ−calculus

Goal:

Illustrate through a simple example (λ−calculus)
different favors and levels of semantics.

They feature some notion of states and transitions.
=⇒ justifies transition systems as a universal model of semantics

Example: λ−calcul

syntax: λ−terms

t ::= x (variable)

| λx .t (abstraction)

| t u (application)

course 03 Program Semantics Antoine Miné p. 4 / 127

Flavors of program semantics

Small-step operational semantics of the λ−calculus

Small-step operational semantics: (call-by-value)

(λx .M)N M[x/N]

M M ′

M N M ′ N

N N ′

M N M N ′

Models program execution as a sequence of term-rewriting
exposing each transition (low level).

course 03 Program Semantics Antoine Miné p. 5 / 127

Flavors of program semantics

Big-step operational semantics of the λ−calculus

Big-step operational semantics: (call-by-value)

λx .M ⇓ λx .M
M ⇓ λx .L N ⇓ V2 L[x/V2] ⇓ V1

M N ⇓ V1

t ⇓ u associates to a term t its full evaluation u,
abstracting away intermediate steps (higher level).

course 03 Program Semantics Antoine Miné p. 6 / 127

Flavors of program semantics

Denotational semantics of the λ−calculus

Denotational semantics:

J x K ρ
def
= ρ(x)

J t u K ρ
def
= J t K ρ(J u K ρ)

Jλx .t K ρ
def
= λv .J t K ρ[x 7→v]

The semantics J t K ρ of a term t in an environment ρ
is given as an element of a Scott domain D.

D should satisfy the domain equation: D ' D c→ D⊥
(CPO D closed by continuous functions from D to the lifted CPO D⊥)

The semantics of a program function
is a mathematical function.
(very high level)

course 03 Program Semantics Antoine Miné p. 7 / 127

Flavors of program semantics

Abstract machine semantics of the λ−calculus

Krivine abstract machine: (call-by-value)

variables in λ−terms are replaced with De Bruijn indices
(x 7→ number of nested λ to reach λx)

λ−terms are compiled into sequences of instructions:

I def
= Grab | Access(Z) | Push(I) | I; I

J · K ∈ t → I

J n K def
= Access(n)

JλN K def
= Grab; JN K

JN M K def
= Push(JM K); JN K

course 03 Program Semantics Antoine Miné p. 8 / 127

Flavors of program semantics

Abstract machine semantics of the λ−calculus

instructions are executed over configurations (C , e, s)

C : sequence of instructions to execute
e: environment
s: stack = list of pairs of (C , e) (closures)

with transitions:

〈Access(0) · C , (C0, e0) · e, s〉 → 〈C0, e0, s〉
〈Access(n + 1) · C , (C0, e0) · e, s〉 → 〈Access(n), e, s〉
〈Push(C ′) · C , e, s〉 → 〈C , e, (C ′, e) · s〉
〈Grab · C , e, (C0, e0) · s〉 → 〈C , (s0, e0) · e, s〉

=⇒ very low level. (but very efficient)

course 03 Program Semantics Antoine Miné p. 9 / 127

Transition systems

Transition systems

course 03 Program Semantics Antoine Miné p. 10 / 127

Transition systems

Transition systems: definition

Language-neutral formalism to discuss about program semantics.

Transition system: (Σ, τ)

set of states Σ,
(memory states, λ−terms, configurations, etc., generally infinite)

transition relation τ ⊆ Σ× Σ.

(Σ, τ) is a general form of small-step operational semantics.

(σ, σ′) ∈ τ is noted σ → σ′:

starting in state σ, after an execution step, we can go to state σ′.

course 03 Program Semantics Antoine Miné p. 11 / 127

Transition systems

Transition system: example

i ← 2;
n← [−∞,+∞];
while i < n do

if ? then
i ← i + 1

Σ
def
= {i , n} → Z

n

i

...

course 03 Program Semantics Antoine Miné p. 12 / 127

Transition systems

From programs to transition systems

Example: on a simple imperative language.

Language syntax

`stat` ::= `X ← expr ` (assignment)

| `if expr ./ 0 then `stat` (conditional)

| `while `expr ./ 0 do `stat` (loop)

| `stat; `stat` (sequence)

X ∈ V, where V is a finite set of program variables,

` ∈ L is a finite set of control labels,

./ ∈ {=,≤, . . .}, the syntax of expr is left undefined.
(see next course)

Program states: Σ
def
= L × E are composed of:

a control state in L,

a memory state in E def
= V→ R.

course 03 Program Semantics Antoine Miné p. 13 / 127

Transition systems

From programs to transition systems

Transitions: τ [`stat`
′
] ⊆ Σ× Σ is defined by induction on the syntax.

Assuming that expression semantics is given as EJ e K : E → P(R).
(see next course)

τ [`1X ← e`2]
def
= { (`1, ρ)→ (`2, ρ[X 7→ v]) | ρ ∈ E , v ∈ EJ e K ρ }

τ [`1if e ./ 0 then `2s`3]
def
=

{ (`1, ρ)→ (`2, ρ) | ρ ∈ E , ∃v ∈ EJ e K ρ: v ./ 0 } ∪
{ (`1, ρ)→ (`3, ρ) | ρ ∈ E , ∃v ∈ EJ e K ρ: v 6./ 0 } ∪ τ [`2s`3]

τ [`1while `2e ./ 0 do `3s`4]
def
=

{ (`1, ρ)→ (`2, ρ) | ρ ∈ E } ∪
{ (`2, ρ)→ (`3, ρ) | ρ ∈ E , ∃v ∈ EJ e K ρ: v ./ 0 } ∪
{ (`2, ρ)→ (`4, ρ) | ρ ∈ E , ∃v ∈ EJ e K ρ: v 6./ 0 } ∪ τ [`3s`2]

τ [`1s1; `2s2
`3]

def
= τ [`1s1

`2] ∪ τ [`2s2
`3]

course 03 Program Semantics Antoine Miné p. 14 / 127

State semantics

State semantics

course 03 Program Semantics Antoine Miné p. 15 / 127

State semantics States and state operators

States and state operators

course 03 Program Semantics Antoine Miné p. 16 / 127

State semantics States and state operators

Initial, final, blocking states

Transition systems (Σ, τ) are often enriched with:

I ⊆ Σ a set of distinguished initial states,

F ⊆ Σ a set of distinguished final states.
(e.g., limit observation to executions starting in an initial state
and ending in a final state)

Blocking states B:

states with no successor B def
= {σ | ∀σ′ ∈ Σ:σ 6→ σ′ },

model correct program termination and program errors,
(correct exit, program stuck, unhandled exception, etc.)

often include (or equal) final states F .

Note: we can always remove blocking states by completing τ :

τ ′
def
= τ ∪ { (σ, σ) |σ ∈ B }. (add self-loops)

course 03 Program Semantics Antoine Miné p. 17 / 127

State semantics States and state operators

Post-image, pre-image

Forward and backward images, in P(Σ)→ P(Σ):

successors: (forward, post-image)

postτ (S)
def
= {σ′ | ∃σ ∈ S :σ → σ′ }

predecessors: (backward, pre-image)

preτ (S)
def
= {σ | ∃σ′ ∈ S :σ → σ′ }

postτ and preτ are complete ∪−morphisms in
(P(Σ),⊆,∪,∩, ∅,Σ).
(postτ (∪i∈I Si) = ∪i∈I postτ (Si), preτ (∪i∈I Si) = ∪i∈I preτ (Si))

postτ and preτ are strict. (postτ (∅) = preτ (∅) = ∅)

We have: preτ (S) = ∪ { preτ ({s}) | s ∈ S } and postτ (S) = ∪ { postτ ({s}) | s ∈ S }.

course 03 Program Semantics Antoine Miné p. 18 / 127

State semantics States and state operators

Dual images

Dual post-images and pre-images:

p̃reτ (S)
def
= {σ | ∀σ′:σ → σ′ =⇒ σ′ ∈ S }

(states such that all successors satisfy S)

p̃ostτ (S)
def
= {σ′ | ∀σ:σ → σ′ =⇒ σ ∈ S }

(states such that all predecessors satisfy S)

p̃reτ and p̃ostτ are complete ∩−morphisms and not strict.

course 03 Program Semantics Antoine Miné p. 19 / 127

State semantics States and state operators

Correspondences between images and dual images

postτ (S)
def
= {σ′ | ∃σ ∈ S :σ → σ′ }

preτ (S)
def
= {σ | ∃σ′ ∈ S :σ → σ′ }

p̃reτ (S)
def
= {σ | ∀σ′:σ → σ′ =⇒ σ′ ∈ S }

p̃ostτ (S)
def
= {σ′ | ∀σ:σ → σ′ =⇒ σ ∈ S }

We have the following correspondences:

inverse
preτ = post(τ−1) postτ = pre(τ−1)

p̃reτ = p̃ost(τ−1) p̃ostτ = p̃re(τ−1)

(where τ−1 def
= { (σ, σ′) | (σ′, σ) ∈ τ })

course 03 Program Semantics Antoine Miné p. 20 / 127

State semantics States and state operators

Correspondences between images and dual images

postτ (S)
def
= {σ′ | ∃σ ∈ S :σ → σ′ }

preτ (S)
def
= {σ | ∃σ′ ∈ S :σ → σ′ }

p̃reτ (S)
def
= {σ | ∀σ′:σ → σ′ =⇒ σ′ ∈ S }

p̃ostτ (S)
def
= {σ′ | ∀σ:σ → σ′ =⇒ σ ∈ S }

We have the following correspondences:

Galois connections

(P(Σ),⊆) −−−−−→←−−−−−
postτ

p̃reτ
(P(Σ),⊆) and

(P(Σ),⊆) −−−−−→←−−−−−
preτ

p̃ostτ
(P(Σ),⊆).

proof:

postτ (A) ⊆ B ⇐⇒ {σ′ | ∃σ ∈ A:σ → σ′ } ⊆ B ⇐⇒ (∀σ ∈ A:σ →
σ′ =⇒ σ′ ∈ B) ⇐⇒ (A ⊆ {σ | ∀σ′:σ → σ′ =⇒ σ′ ∈ B }) ⇐⇒ A ⊆
p̃reτ (B); other directions are similar.

course 03 Program Semantics Antoine Miné p. 20 / 127

State semantics States and state operators

Deterministic systems

Determinism:

(Σ, τ) is deterministic if ∀σ ∈ Σ: | postτ ({σ})| = 1,
(every state has a single successor, no blocking state)

most transition systems are non-deterministic.
(e.g., effect of input X ← [0, 10], program termination)

We have the following correspondences:

∀S :B ⊆ p̃reτ (S) ⊆ preτ (S) ∪ B.

When B = ∅, then p̃reτ (S) ⊆ preτ (S).

If τ is deterministic, then B = ∅,
preτ = p̃reτ and postτ = p̃ostτ .

course 03 Program Semantics Antoine Miné p. 21 / 127

State semantics Reachability state semantics

Reachability state semantics

course 03 Program Semantics Antoine Miné p. 22 / 127

State semantics Reachability state semantics

Forward reachability

R(I): states reachable from I in the transition system

R(I)
def
= {σ | ∃n ≥ 0, σ0, . . . , σn:σ0 ∈ I, σ = σn, ∀i :σi → σi+1 }
=

⋃
n≥0 postnτ (I)

(reachable ⇐⇒ reachable from I in n steps of τ for some n ≥ 0)

R(I) can be expressed in fixpoint form:

R(I) = lfp FR where FR(S)
def
= I ∪ postτ (S)

(FR shifts S and adds back I)

Alternate characterization: R = lfpI GR where GR(S)
def
= S ∪ postτ (S).

(GR shifts S by τ and accumulates the result with S)

(proofs on next slide)

course 03 Program Semantics Antoine Miné p. 23 / 127

State semantics Reachability state semantics

Forward reachability: proof

proof: of R(I) = lfpFR where FR(S)
def
= I ∪ postτ (S)

(P(Σ),⊆) is a CPO and postτ is continuous, hence FR is continuous:
FR(∪i∈I Ai) = ∪i∈I FR(Ai).

By Kleene’s theorem, lfpFR = ∪n∈N F n
R(∅).

We prove by recurrence on n that: ∀n:F n
R(∅) = ∪i<n postiτ (I).

(states reachable in less than n steps)

F 0
R(∅) = ∅

assuming the property at n,
F n+1
R (∅) = FR(

⋃
i<n postiτ (I))

= I ∪ postτ (
⋃

i<n postiτ (I))
= I ∪

⋃
i<n postτ (postiτ (I))

= I ∪
⋃

1≤i<n+1 postiτ (I)

=
⋃

i<n+1 postiτ (I)

Hence: lfpFR = ∪n∈N F n
R(∅) = ∪i∈N postiτ (I) = R(I).

The proof is similar for the alternate form, given that lfpI GR = ∪n∈NGn
R(I) and

Gn
R(I) = F n+1

R (∅) = ∪i≤n postiτ (I).

course 03 Program Semantics Antoine Miné p. 24 / 127

State semantics Reachability state semantics

Forward reachability: graphical illustration

Transition system.

course 03 Program Semantics Antoine Miné p. 25 / 127

State semantics Reachability state semantics

Forward reachability: graphical illustration

Initial states I.

course 03 Program Semantics Antoine Miné p. 25 / 127

State semantics Reachability state semantics

Forward reachability: graphical illustration

Iterate F 1
R(I).

course 03 Program Semantics Antoine Miné p. 25 / 127

State semantics Reachability state semantics

Forward reachability: graphical illustration

Iterate F 2
R(I).

course 03 Program Semantics Antoine Miné p. 25 / 127

State semantics Reachability state semantics

Forward reachability: graphical illustration

Iterate F 3
R(I).

course 03 Program Semantics Antoine Miné p. 25 / 127

State semantics Reachability state semantics

Forward reachability: graphical illustration

States reachable from I: R(I) = F 5
R(I).

course 03 Program Semantics Antoine Miné p. 25 / 127

State semantics Reachability state semantics

Forward reachability: applications

Infer the set of possible states at program end: R(I) ∩ F .

example

• i ← 0;
while i < 100 do
i ← i + 1;
j ← j + [0, 1]

done •

initial states I: j ∈ [0, 10] at control state •,
final states F : any memory state at control state •,
=⇒ R(I) ∩ F : control at •, i = 100, and j ∈ [0, 110].

Prove the absence of run-time error: R(I) ∩ B ⊆ F .
(never block except when reaching the end of the program)

course 03 Program Semantics Antoine Miné p. 26 / 127

State semantics Reachability state semantics

Multiple forward fixpoints

Recall: R(I) = lfpFR where FR(S)
def
= I ∪ postτ (S).

Note that FR may have several fixpoints.

Example:

Initial state I R(I) = lfpFR gfpFR

Exercise:

Compute all the fixpoints of GR(S)
def
= S ∪ postτ (S) on this example.

course 03 Program Semantics Antoine Miné p. 27 / 127

State semantics Reachability state semantics

Forward reachability equation system

By partitioning forward reachability wrt. control states,
we retrieve the equation system form of program semantics.

Control state partitioning

We assume Σ
def
= L × E ; note that: P(Σ) ' L → P(E).

We have a Galois isomorphism:

(P(Σ),⊆) −−−−→−→←←−−−−−
αL

γL
(L → P(E), ⊆̇)

X ⊆̇Y
def⇐⇒ ∀` ∈ L:X (`) ⊆ Y (`)

αL(S)
def
= λ`.{ ρ | (`, ρ) ∈ S }

γL(X)
def
= { (`, ρ) | ` ∈ L, ρ ∈ X (`) }

Note that: αL ◦ γL = γL ◦ αL = id . (no abstraction)

course 03 Program Semantics Antoine Miné p. 28 / 127

State semantics Reachability state semantics

Forward reachability equation system: example

Idea: compute αL(R(I)) : L → P(E)

introduce variables: X` = (αL(R(I)))(`) ∈ P(E),

decompose the fixpoint equation FR(S) = I ∪ postτ (S) on L:
αL ◦ FR ◦ γL gives an equation system on (X`)`∈L.

Example:

`1 i ← 2;
`2 n← [−∞,+∞];
`3 while `4 i < n do

`5 if [0, 1] = 0 then
`6 i ← i + 1

`7

`8

X1 = I1

X2 = CJ i ← 2 KX1

X3 = CJ n← [−∞,+∞] KX2

X4 = X3 ∪ X7

X5 = CJ i < n KX4

X6 = X5

X7 = X5 ∪ CJ i ← i + 1 KX6

X8 = CJ i ≥ n KX4

initial states I def
= { (`1, ρ) | ρ ∈ I1 } for some I1 ⊆ E ,

CJ · K : P(E)→ P(E) model assignments and tests (see next slide).

course 03 Program Semantics Antoine Miné p. 29 / 127

State semantics Reachability state semantics

Forward reachability equation system: construction

We derive the equation system eq(`stat`
′
)

from the program syntax `stat`
′

by induction:

eq(`1X ← e`2)
def
= {X`2 = CJX ← e KX`1 }

eq(`1if e ./ 0 then `2s`3)
def
=

{X`2 = CJ e ./ 0 KX`1, X`3 = X`3′ ∪ CJ e 6./ 0 KX`1 } ∪ eq(`2s`3
′
)

eq(`1while `2e ./ 0 do `3s`4)
def
=

{X`2 = X`1 ∪ X`4′ , X`3 = CJ e ./ 0 KX`2, X`4 = CJ e 6./ 0 KX`2 } ∪
eq(`3s`4

′
)

eq(`1s1; `2s2
`3)

def
= eq(`1s1

`2) ∪ (`2s2
`3)

where:

X `3′ , X `4′ are fresh variables storing intermediate results

CJX ← e KX def
= { ρ[X 7→ v] | ρ ∈ X , v ∈ EJ e K ρ }

CJ e ./ 0 KX def
= { ρ ∈ X | ∃v ∈ EJ ρ K ρ: v ./ 0 }

course 03 Program Semantics Antoine Miné p. 30 / 127

State semantics Co-reachability state semantics

Co-reachability state semantics

course 03 Program Semantics Antoine Miné p. 31 / 127

State semantics Co-reachability state semantics

Backward reachability

C(F): states co-reachable from F in the transition system:

C(F)
def
= {σ | ∃n ≥ 0, σ0, . . . , σn:σ = σ0, σn ∈ F , ∀i :σi → σi+1 }
=

⋃
n≥0 prenτ (F)

C(F) can also be expressed in fixpoint form:

C(F) = lfpFC where FC(S)
def
= F ∪ preτ (S)

Alternate characterization: C(F) = lfpI GC where GC(S) = GC ∪ preτ (S)

Justification: C(F) in τ is exactly R(F) in τ−1.

course 03 Program Semantics Antoine Miné p. 32 / 127

State semantics Co-reachability state semantics

Backward reachability: graphical illustration

Transition system.

course 03 Program Semantics Antoine Miné p. 33 / 127

State semantics Co-reachability state semantics

Backward reachability: graphical illustration

Final states F .

course 03 Program Semantics Antoine Miné p. 33 / 127

State semantics Co-reachability state semantics

Backward reachability: graphical illustration

States co-reachable from F .

course 03 Program Semantics Antoine Miné p. 33 / 127

State semantics Co-reachability state semantics

Backward reachability: applications

I ∩ C(B \ F)
Initial states that have at least one erroneous execution.

program

• j ← 0;
while i > 0 do
i ← i − 1;
j ← j + [0, 10]

done •

initial states I: i ∈ [0, 100] at •

final states F : any memory state at •

blocking states B: final, or j > 200 at any
location

I ∩ C(B \ F): at •, i > 20

I ∩ (Σ \ C(B))
Initial states that necessarily cause the program to loop.

Iterate forward and backward analyses interactively
=⇒ abstract debugging [Bour93].

course 03 Program Semantics Antoine Miné p. 34 / 127

State semantics Co-reachability state semantics

Backward reachability equation system: example

Principle:

Use (P(Σ),⊆) −−−−→←−−−−
αL

γL
(L → P(E), ⊆̇) on FC(S)

def
= F ∪ preτ (S)

to derive an equation system αL ◦ FC ◦ γL.

Example:

`1 i ← 2;
`2 n← [−∞,+∞];
`3 while `4 i < n do

`5 if [0, 1] = 0 then
`6 i ← i + 1

`7

`8

X1 = CJ i → 2 KX2

X2 = CJ n→ [−∞,+∞] KX3

X3 = X4

X4 = CJ i < n KX5 ∪ CJ i ≤ n KX8

X5 = X6 ∪ X7

X6 = CJ i → i + 1 KX7

X7 = X4

X8 = F8

final states F def
= { (`8, ρ) | ρ ∈ F8 } for some F8 ⊆ E ,

CJX → e KX def
= { ρ | ∃v ∈ EJ e K ρ: ρ[X 7→ v] ∈ X }.

course 03 Program Semantics Antoine Miné p. 35 / 127

State semantics Pre-condition state semantics

Pre-condition state semantics

course 03 Program Semantics Antoine Miné p. 36 / 127

State semantics Pre-condition state semantics

Sufficient preconditions

S(Y): states with executions staying in Y.

S(Y)
def
= {σ | ∀n ≥ 0, σ0, . . . , σn: (σ = σ0 ∧ ∀i :σi → σi+1) =⇒ σn ∈ Y }
=

⋂
n≥0 p̃renτ (Y)

S(Y) can be expressed in fixpoint form:

S(Y) = gfpFS where FS(S)
def
= Y ∩ p̃reτ (S)

proof sketch: similar to that of R(I), in the dual.

FS is continuous in the dual CPO (P(Σ),⊇), because p̃reτ is:
FS(∩i∈I Ai) = ∩i∈I FS(Ai).
By Kleene’s theorem in the dual, gfpFS = ∩n∈N F n

S(Σ).

We would prove by recurrence that F n
S(Σ) = ∩i<n p̃reiτ (Y).

course 03 Program Semantics Antoine Miné p. 37 / 127

State semantics Pre-condition state semantics

Sufficient preconditions and reachability

Correspondence with reachability:

We have a Galois connection:

(P(Σ),⊆) −−−→←−−−R
S

(P(Σ),⊆)

R(I) ⊆ Y ⇐⇒ I ⊆ S(Y)

so S(Y) =
⋃
{X |R(X) ⊆ Y }

(S(Y) is the largest initial set whose reachability is in Y)

We retrieve Dijkstra’s weakest liberal preconditions.

(proof sketch on next slide)

course 03 Program Semantics Antoine Miné p. 38 / 127

State semantics Pre-condition state semantics

Sufficient preconditions and reachability (proof)

proof sketch:

Recall that R(I) = lfpI GR where GR(S) = S ∪ postτ (S).

Likewise, S(Y) = gfpY GS where GS(S) = S ∩ p̃reτ (S).

Recall the Galois connection (P(Σ),⊆) −−−−−→←−−−−−
postτ

p̃reτ
(P(Σ),⊆).

As a consequence (P(Σ),⊆) −−−−→←−−−−
GR

GS
(P(Σ),⊆).

The Galois connection can be lifted to fixpoint operators:

(P(Σ),⊆) −−−−−−−−−→←−−−−−−−−−
x 7→lfpx GR

x 7→gfpx GS
(P(Σ),⊆).

Exercise: complete the proof sketch.

course 03 Program Semantics Antoine Miné p. 39 / 127

State semantics Pre-condition state semantics

Sufficient preconditions: application

Initial states such that all executions are correct:
I ∩ S(F ∪ (Σ \ B)).
(the only blocking states reachable from initial states are final states)

program

• i ← 0;
while i < 100 do
i ← i + 1;
j ← j + [0, 1]

done •

initial states I: j ∈ [0, 10] at •
final states F : any memory state at •
blocking states B: final, or j > 105 at
any location

I ∩ S(F ∪ (Σ \ B)): at •, i ∈ [0, 5]
(note that I ∩ C(F ∪ (Σ \ B)) gives I)

Applications: infer contracts; optimize (hoist) tests;
infer counter-examples.

course 03 Program Semantics Antoine Miné p. 40 / 127

State semantics Pre-condition state semantics

Sufficient preconditions: graphical illustration

Final states F .

course 03 Program Semantics Antoine Miné p. 41 / 127

State semantics Pre-condition state semantics

Sufficient preconditions: graphical illustration

Set of final or non-blocking states Y = F ∪ (Σ \ B).

course 03 Program Semantics Antoine Miné p. 41 / 127

State semantics Pre-condition state semantics

Sufficient preconditions: graphical illustration

Sufficient preconditions S(Y).

course 03 Program Semantics Antoine Miné p. 41 / 127

State semantics Pre-condition state semantics

Sufficient preconditions: graphical illustration

Sufficient preconditions S(Y). C(F)

S(Y) (C(F)

course 03 Program Semantics Antoine Miné p. 41 / 127

State semantics Pre-condition state semantics

Sufficient precondition equation system: example

Principle:

use (P(Σ),⊆) −−−−→←−−−−
αL

γL
(L → P(E), ⊆̇) on FS(S)

def
= Y ∩ p̃reτ (S)

to derive an equation system αL ◦ FS ◦ γL
Example:

`1 i ← 2;
`2 n← [−∞,+∞];
`3 while `4 i < n do

`5 if [0, 1] = 0 then
`6 i ← i + 1

`7

`8

X1 =
←−
C J i ← 2 KX2

X2 =
←−
C J n← [−∞,+∞] KX3

X3 = X4

X4 =
←−
C J i < n KX5 ∩

←−
C J i ≤ n KX8

X5 = X6 ∩ X7

X6 =
←−
C J i ← i + 1 KX7

X7 = X4

X8 = F8

“stay in” states Y def
= { (`, ρ) | ` 6= `8 ∨ ρ ∈ F8 } for some F8 ⊆ E ,

←−
C J · K is the Galois adjoint of CJ · K .

course 03 Program Semantics Antoine Miné p. 42 / 127

Trace semantics

Trace semantics

course 03 Program Semantics Antoine Miné p. 43 / 127

Trace semantics Traces and trace operations

Traces and trace operations

course 03 Program Semantics Antoine Miné p. 44 / 127

Trace semantics Traces and trace operations

Sequences, traces

Trace: sequence of elements from Σ

ε: empty trace (unique)

σ: trace of length 1 (assimilated to a state)

σ0, . . . , σn−1: trace of length n

σ0, . . . , σn, . . .: infinite trace (length ω)

Trace sets:

Σn: the set of traces of length n

Σ≤n
def
= ∪i≤n Σi : the set of traces of length at most n

Σ∗
def
= ∪i∈N Σi : the set of finite traces

Σω: the set of infinite traces

Σ∞
def
= Σ∗ ∪ Σω: the set of all traces

course 03 Program Semantics Antoine Miné p. 45 / 127

Trace semantics Traces and trace operations

Trace operations

Operations on traces:

length: |t| ∈ N ∪ {ω} of a trace t ∈ Σ∞

concatenation ·
(σ0, . . . , σn) · (σ′0, . . .)

def
= σ0, . . . , σn, σ

′
0, . . .

(append to a finite trace)

t · t ′ def
= t if t ∈ Σω (append to an infinite trace does nothing)

ε · t def
= t · ε def

= t (ε is neutral)

junction _

(σ0, . . . , σn)_(σ′0,σ
′
1 . . .)

def
= σ0, . . . , σn,σ

′
1, . . . when σn = σ′0

undefined if σn 6= σ′0
ε_t and t_ε are undefined

t_t ′
def
= t, if t ∈ Σω

course 03 Program Semantics Antoine Miné p. 46 / 127

Trace semantics Traces and trace operations

Trace operations (cont.)

Extension to sets of traces:

A · B def
= { a · b | a ∈ A, b ∈ B }

A_B
def
= { a_b | a ∈ A, b ∈ B, a_b defined }

A0 = {ε} (neutral element for ·)

An+1 def
= A · An,

Aω
def
= A · A · · · ·

A∗
def
= ∪n<ω An,

A∞
def
= ∪n≤ω An

A_0 = Σ (neutral element for _)

A_n+1 def
= A_A_n,

A_ω def
= A_A_ · · ·

A_∗
def
= ∪n<ω A_n,

A_∞
def
= ∪n≤ω A_n

Note: An 6= { an | a ∈ A }, A_n 6= { a_n | a ∈ A } when |A| > 1

course 03 Program Semantics Antoine Miné p. 47 / 127

Trace semantics Traces and trace operations

Distributivity of junction

_ distributes over finite and infinite ∪:

A_(∪i∈I Bi) = ∪i∈I (A_Bi) and

(∪i∈I Ai)
_B = ∪i∈I (Ai

_B)

where I can be finite or infinite.

_ distributes finite ∩ but not infinite ∩
example:

{aω}_(∩n∈N { am | n ≥ m }) = {aω}_∅ = ∅ but

∩n∈N ({aω}_{ am | n ≥ m }) = ∩n∈N {aω} = {aω}

but, if A ⊆ Σ∗, then A_(∩i∈I Bi) = ∪i∈I (A_Bi)
even for infinite I

Note: concatenation · distributes infinite ∩ and ∪.

course 03 Program Semantics Antoine Miné p. 48 / 127

Trace semantics Traces and trace operations

Traces of a transition system

Execution traces:

Non-empty sequences of states linked by the transition relation τ .

can be finite (in P(Σ∗)) or infinite (in P(Σω))

can be anchored at initial states, or final states, or none

Atomic traces:

I: initial states ' set of traces of length 1

F : final states ' set of traces of length 1

τ : transition relation ' set of traces of length 2
({σ, σ′ |σ → σ′ })

(as Σ ' Σ1 and Σ× Σ ' Σ2)

course 03 Program Semantics Antoine Miné p. 49 / 127

Trace semantics Finite trace semantics

Finite trace semantics

course 03 Program Semantics Antoine Miné p. 50 / 127

Trace semantics Finite trace semantics

Prefix trace semantics

Tp(I): partial, finite execution traces starting in I.

Tp(I)
def
= {σ0, . . . , σn | n ≥ 0, σ0 ∈ I,∀i :σi → σi+1 }
=

⋃
n≥0 I_(τ_n)

(traces of length n, for any n, starting in I and following τ)

Tp(I) can be expressed in fixpoint form:

Tp(I) = lfpFp where Fp(T)
def
= I ∪ T_τ

(Fp appends a transition to each trace, and adds back I)

(proof on next slide)

course 03 Program Semantics Antoine Miné p. 51 / 127

Trace semantics Finite trace semantics

Prefix trace semantics: proof

proof of: Tp(I) = lfpFp where Fp(T) = I ∪ T_τ

Similar to the proof of R(I) = lfpFR where FR(S)
def
= I ∪ postτ (S).

Fp is continuous in a CPO (P(Σ∗),⊆):
Fp(∪i∈I Ti) = I ∪ (∪i∈I Ti)

_τ = I ∪ (∪i∈I Ti
_τ) = ∪i∈I (I ∪ Ti

_τ),
hence (Kleene), lfpFp = ∪n≥0 F

i
p(∅)

We prove by recurrence on n that ∀n:F n
p (∅) = ∪i<n I_τ_i :

F 0
p (∅) = ∅,

F n+1
p (∅) = I ∪ F n

p (∅)_τ = I ∪ (∪i<n I_τ_i)_τ = I ∪
∪i<n (I_τ_i)_τ = I_τ_0 ∪ ∪i<n (I_τ_i+1) = ∪i<n+1 I_τ_i .

Thus, lfpFp = ∪n∈N F n
p (∅) = ∪n∈N ∪i<n I_τ_i = ∪i∈N I_τ_i .

Note: we also have Tp(I) = lfpI Gp where Gp(T) = T ∪ T_τ .

course 03 Program Semantics Antoine Miné p. 52 / 127

Trace semantics Finite trace semantics

Prefix trace semantics: graphical illustration

cba

I def
= {a}

τ
def
= {(a, b), (b, b), (b, c)}

Iterates: Tp(I) = lfpFp where Fp(T)
def
= I ∪ T_τ .

F 0
p (∅) = ∅

F 1
p (∅) = I = {a}

F 2
p (∅) = {a, ab}

F 3
p (∅) = {a, ab, abb, abc}

F n
p (∅) = { a, abi , ab jc | i ∈ [1, n − 1], j ∈ [1, n − 2] }
Tp(I) = ∪n≥0 F

n
p (∅) = { a, abi , abic | i ≥ 1 }

course 03 Program Semantics Antoine Miné p. 53 / 127

Trace semantics Finite trace semantics

Prefix trace semantics: expressive power

The prefix trace semantics is the collection of finite observations
of program executions.

=⇒ Semantics of testing.

Limitations:

no information on infinite executions,
(we will add infinite traces later)

can bound maximal execution time: Tp(I) ⊆ Σ≤n

but cannot bound minimal execution time.
(we will consider maximal traces later)

course 03 Program Semantics Antoine Miné p. 54 / 127

Trace semantics Finite trace semantics

Abstracting traces into states

Idea: view state semantics as abstractions of traces semantics.

We have a Galois embedding between finite traces and states:

(P(Σ∗),⊆) −−−→−→←−−−−
αp

γp
(P(Σ),⊆)

αp(T)
def
= {σ ∈ Σ | ∃σ0, . . . , σn ∈ T :σ = σn }

(last state in traces in T)

γp(S)
def
= {σ0, . . . , σn ∈ Σ∗ |σn ∈ S }

(traces ending in a state in S)

(proof on next slide)

course 03 Program Semantics Antoine Miné p. 55 / 127

Trace semantics Finite trace semantics

Abstracting traces into states (proof)

proof of: (αp, γp) forms a Galois embedding.

Instead of the definition α(c) ⊆ a ⇐⇒ c ⊆ γ(a), we use the alternate
characterization of Galois connections: α and γ are monotonic, γ ◦ α is
extensive, and α ◦ γ is reductive.
Embedding means that, additionally, α ◦ γ = id .

αp, γp are ∪−morphisms, hence monotonic

(γp ◦ αp)(T)
= {σ0, . . . , σn |σn ∈ αp(T) }
= {σ0, . . . , σn | ∃σ′0, . . . , σ′m ∈ T :σn = σ′m }
⊇ T

(αp ◦ γp)(S)
= {σ | ∃σ0, . . . , σn ∈ γp(S):σ = σn }
= {σ | ∃σ0, . . . , σn:σn ∈ S , σ = σn }
= S

course 03 Program Semantics Antoine Miné p. 56 / 127

Trace semantics Finite trace semantics

Abstracting prefix traces into reachability

Recall that:

Tp(I) = lfpFp where Fp(T)
def
= I ∪ T_τ ,

R(I) = lfpFR where FR(S)
def
= I ∪ postτ (S),

(P(Σ∗),⊆) −−−→−→←−−−−
αp

γp
(P(Σ),⊆).

We have: αp ◦ Fp = FR ◦ αp;

by fixpoint transfer, we get: αp(Tp(I)) = R(I).

(proof on next slide)

course 03 Program Semantics Antoine Miné p. 57 / 127

Trace semantics Finite trace semantics

Abstracting prefix traces into reachability (proof)

proof: of αp ◦ Fp = FR ◦ αp

(αp ◦ Fp)(T)
= αp(I ∪ T_τ)
= {σ | ∃σ0, . . . , σn ∈ I ∪ T_τ :σ = σn }
= I ∪ {σ | ∃σ0, . . . , σn ∈ T_τ :σ = σn }
= I ∪ {σ | ∃σ0, . . . , σn ∈ T :σn → σ }
= I ∪ postτ ({σ | ∃σ0, . . . , σn ∈ T :σ = σn })
= I ∪ postτ (αp(T))
= (FR ◦ αp)(T)

course 03 Program Semantics Antoine Miné p. 58 / 127

Trace semantics Finite trace semantics

Abstracting traces into states (example)

program

j ← 0;
i ← 0;
while i < 100 do
i ← i + 1;
j ← j + [0, 1]

done

prefix trace semantics:
i and j are increasing and 0 ≤ j ≤ i ≤ 100

forward reachable state semantics:
0 ≤ j ≤ i ≤ 100

=⇒ the abstraction forgets the ordering of states.

course 03 Program Semantics Antoine Miné p. 59 / 127

Trace semantics Finite trace semantics

Prefix closure

Prefix partial order: � on Σ∞

x � y
def⇐⇒ ∃u ∈ Σ∞: x · u = y

(Σ∞,�) is a CPO, while (Σ∗,�) is not complete.

Prefix closure: ρp : P(Σ∞)→ P(Σ∞)

ρp(T)
def
= { u | ∃t ∈ T : u � t, u 6= ε }

ρp is an upper closure operator on P(Σ∞ \ {ε}).
(monotonic, extensive T ⊆ ρp(T), idempotent ρp ◦ ρp = ρp)

The prefix trace semantics is closed by prefix:

ρp(Tp(I)) = Tp(I).

(note that ε /∈ Tp(I), which is why we disallowed ε in ρp)

course 03 Program Semantics Antoine Miné p. 60 / 127

Trace semantics Finite trace semantics

Ordering abstraction

Another Galois embedding between finite traces and states:

(P(Σ∗),⊆) −−−→−→←−−−−
αo

γo
(P(Σ),⊆)

αo(T)
def
= {σ | ∃σ0, . . . , σn ∈ T , i ≤ n:σ = σi }

(set of all states appearing in some trace in T)

γo(S)
def
= {σ0, . . . , σn | n ≥ 0, ∀i ≤ n:σi ∈ S }

(traces composed of elements from S)

proof sketch:

αo and γo are monotonic, and αo ◦ γo = id .
(γo ◦ αo)(T) = {σ0, . . . , σn | ∀i ≤ n:∃σ′0, . . . , σ′m ∈ T , j ≤ m:σi = σ′j }
⊇ T .

course 03 Program Semantics Antoine Miné p. 61 / 127

Trace semantics Finite trace semantics

Ordering abstraction

We have: αo(Tp(I)) = R(I).

proof:

We have αo = αp ◦ ρp (i.e.: a state is in a trace if it is the last state of one of its
prefix).
Recall the prefix trace abstraction into states: R(I) = αp(Tp(I)) and the fact that
the prefix trace semantics is closed by prefix: ρp(Tp(I)) = Tp(I).
We get αo(Tp(I)) = αp(ρp(Tp(I))) = αp(Tp(I)) = R(I).

alternate proof: generalized fixpoint transfer

Recall that Tp(I) = lfpFp where Fp(T)
def
= I ∪ T_τ and R(I) = lfpFR where

FR(S)
def
= I ∪ postτ (S), but αo ◦ Fp = FR ◦ αo does not hold in general, so, fixpoint

transfer theorems do not apply directly.

However, αo ◦ Fp = FR ◦ αo holds for sets of traces closed by prefix. By induction,

the Kleene iterates anp and anR involved in the computation of lfpFp and lfpFR satisfy

∀n:αo(anp) = anR, and so αo(lfpFp) = lfpFR.

course 03 Program Semantics Antoine Miné p. 62 / 127

Trace semantics Finite trace semantics

Suffix trace semantics

Similar results on the suffix trace semantics:

Ts(F)
def
= {σ0, . . . , σn | n ≥ 0, σn ∈ F ,∀i :σi → σi+1 }

(traces following τ and ending in a state in F)

Ts(F) =
⋃

n≥0 τ
_n_F

Ts(F) = lfpFs where Fs(T)
def
= F ∪ τ_T

(Fs prepends a transition to each trace, and adds back F)

αs(Ts(F)) = C(F)
where αs(T)

def
= {σ | ∃σ0, . . . , σn ∈ T :σ = σ0 }

ρs(Ts(F)) = Ts(F)
where ρs(T)

def
= { u | ∃t ∈ Σ∞: t · u ∈ T , u 6= ε }

(closed by suffix)

αo(Ts(F)) = C(F)

course 03 Program Semantics Antoine Miné p. 63 / 127

Trace semantics Finite trace semantics

Suffix trace semantics: graphical illustration

cba

F def
= {c}

τ
def
= {(a, b), (b, b), (b, c)}

Iterates: Ts(F) = lfpFs where Fs(T)
def
= F ∪ τ_T .

F 0
s (∅) = ∅

F 1
s (∅) = F = {c}

F 2
s (∅) = {c , bc}

F 3
s (∅) = {c , bc, bbc, abc}

F n
s (∅) = { c, bic , ab jc | i ∈ [1, n − 1], j ∈ [1, n − 2] }
Ts(F) = ∪n≥0 F

n
s (∅) = { c , bic, abic | i ≥ 1 }

course 03 Program Semantics Antoine Miné p. 64 / 127

Trace semantics Finite trace semantics

Finite partial trace semantics

T : all finite partial finite execution traces.
(not necessarily starting in I or ending in F)

T def
= {σ0, . . . , σn | n ≥ 0,∀i :σi → σi+1 }
=

⋃
n≥0 Σ_τ_n

=
⋃

n≥0 τ
_n_Σ

T = Tp(Σ), hence T = lfpFp∗ where Fp∗(T)
def
= Σ ∪ T_τ

(prefix partial traces from any initial state)

T = Ts(Σ), hence T = lfpFs∗ where Fs∗(T)
def
= Σ ∪ τ_T

(suffix partial traces to any final state)

F n
p∗(∅) = F n

s∗(∅) =
⋃

i<n Σ_τ_i =
⋃

i<n τ
_i_Σ = T ∩ Σ<n

Tp(I) = T ∩ (I · Σ∗) (restricted initial states)

Ts(F) = T ∩ (Σ∗ · F) (restricted final states)

course 03 Program Semantics Antoine Miné p. 65 / 127

Trace semantics Finite trace semantics

Partial trace semantics: graphical illustration

cba

τ
def
= {(a, b), (b, b), (b, c)}

Iterates: T (Σ) = lfpFp∗ where Fp∗(T)
def
= Σ ∪ T_τ .

F 0
p∗(∅) = ∅

F 1
p∗(∅) = Σ = {a, b, c}

F 2
p∗(∅) = {a, b, c , ab, bb, bc}

F 3
p∗(∅) = {a, b, c , ab, bb, bc, abb, abc, bbb, bbc}

F n
p∗(∅) = { abi , ab jc , bic , bk | i ∈ [0, n − 1], j ∈ [1, n − 2], k ∈ [1, n] }

T = ∪n≥0 F
n
p∗(∅) = { abi , ab jc , bic , b j | i ≥ 0, j > 1 }

(using Fs∗(T)
def
= Σ ∪ τ_T , we get the exact same iterates)

course 03 Program Semantics Antoine Miné p. 66 / 127

Trace semantics Finite trace semantics

Abstracting partial traces to prefix traces

Idea: anchor partial traces at initial states I.

We have a Galois connection:

(P(Σ∗),⊆) −−−→←−−−
αI

γI
(P(Σ∗),⊆)

αI(T)
def
= T ∩ (I · Σ∗) (keep only traces starting in I)

γI(T)
def
= T ∪ ((Σ \ I) · Σ∗) (add all traces not starting in I)

We then have: Tp(I) = αI(T).

(similarly Ts(F) = αF (T) where αF (T)
def
= T ∩ (Σ∗ · F))

(proof on next slide)

course 03 Program Semantics Antoine Miné p. 67 / 127

Trace semantics Finite trace semantics

Abstracting partial traces to prefix traces (proof)

proof

αI and γI are monotonic.
(αI ◦ γI)(T) = (T ∪ (Σ \ I) · Σ∗) ∩ I · Σ∗) = T ∩ I · Σ∗ ⊆ T .
(γI ◦ αI)(T) = (T ∩ I · Σ∗) ∪ (Σ \ I) · Σ∗ = T ∪ (Σ \ I) · Σ∗ ⊇ T .
So, we have a Galois connection.

A direct proof of Tp(I) = αI(T) is straightforward, by definition of Tp,
αI , and T .

We can also retrieve the result by fixpoint transfer.

T = lfpFp∗ where Fp∗(T)
def
= Σ ∪ T_τ .

Tp = lfpFp where Fp(T)
def
= I ∪ T_τ .

We have: (αI ◦ Fp∗)(T) = (Σ ∪ T_τ) ∩ (I · Σ∗) =

I ∪ ((T_τ) ∩ (I · Σ∗) = I ∪ ((T ∩ (I · Σ∗))_τ) = (Fp ◦ αI)(T).

course 03 Program Semantics Antoine Miné p. 68 / 127

Trace semantics Maximal trace semantics

Maximal trace semantics

course 03 Program Semantics Antoine Miné p. 69 / 127

Trace semantics Maximal trace semantics

Maximal traces

Maximal traces: M∞ ∈ P(Σ∞)

sequences of states linked by the transition relation τ ,

start in any state (I = Σ),

either finite and stop in a blocking state (F = B),

or infinite.

(maximal traces cannot be “extended”
by adding a new transition in τ at their end)

M∞
def
= {σ0, . . . , σn ∈ Σ∗ |σn ∈ B, ∀i < n:σi → σi+1 } ∪
{σ0, . . . , σn, . . . ∈ Σω | ∀i < ω:σi → σi+1 }

(can be anchored at I and F as: M∞ ∩ (I · Σ∞) ∩ ((Σ∗ · F) ∪ Σω))

course 03 Program Semantics Antoine Miné p. 70 / 127

Trace semantics Maximal trace semantics

Partitioned fixpoint formulation of maximal traces

Goal: we look for a fixpoint characterization of M∞.

We consider separately finite and infinite maximal traces.

Finite traces:

From the suffix partial trace semantics, recall:

M∞ ∩ Σ∗ = Ts(B) = lfpFs

where Fs(T)
def
= B ∪ τ_T in (P(Σ∗),⊆).

Infinite traces:

Additionally, we will prove: M∞ ∩ Σω = gfpGs

where Gs(T)
def
= τ_T in (P(Σω),⊆).

(proof on next slide)

course 03 Program Semantics Antoine Miné p. 71 / 127

Trace semantics Maximal trace semantics

Partitioned fixpoint formulation of maximal traces (proof)

proof: of M∞ ∩ Σω = gfpGs where Gs(T)
def
= τ_T in (P(Σω),⊆).

Gs is continuous in (P(Σω),⊇): Gs(∩i∈I Ti) = ∩i∈I Gs(Ti).

By Kleene’s theorem in the dual: gfpGs = ∩n∈N Gn
s (Σω).

We prove by recurrence on n that ∀n:Gn
s (Σω) = τ_n_Σω :

G0
s (Σω) = Σω = τ_0_Σω ,

Gn+1
s (Σω) = τ_Gn

s (Σω) = τ_(τ_n_Σω) = τ_n+1_Σω .

gfpGs = ∩n∈N τ_n_Σω

= {σ0, . . . ∈ Σω | ∀n ≥ 0:σ0, . . . , σn−1 ∈ τ_n }
= {σ0, . . . ∈ Σω | ∀n ≥ 0: ∀i < n:σi → σi+1 }
= M∞ ∩ Σω

course 03 Program Semantics Antoine Miné p. 72 / 127

Trace semantics Maximal trace semantics

Infinite trace semantics: graphical illustration

cba

B def
= {c}

τ
def
= {(a, b), (b, b), (b, c)}

Iterates: M∞ ∩ Σω = gfpGs where Gs(T)
def
= τ_T .

G 0
s (Σω) = Σω

G 1
s (Σω) = abΣω ∪ bbΣω ∪ bcΣω

G 2
s (Σω) = abbΣω ∪ bbbΣω ∪ abcΣω ∪ bbcΣω

G 3
s (Σω) = abbbΣω ∪ bbbbΣω ∪ abbcΣω ∪ bbbcΣω

Gn
s (Σω) = { abnt, bn+1t, abn−1ct, bnct | t ∈ Σω }
M∞ ∩ Σω = ∩n≥0 G

n
s (Σω) = {abω, bω}

course 03 Program Semantics Antoine Miné p. 73 / 127

Trace semantics Maximal trace semantics

Least fixpoint formulation of maximal traces

Idea: To get a fixpoint formulation for whole M∞,
merge finite and infinite maximal trace fixpoint forms.

Fixpoint fusion

M∞ ∩ Σ∗ is best defined on (Σ∗,⊆,∪,∩, ∅,Σ∗).
M∞ ∩ Σω is best defined on (Σω,⊇,∩,∪,Σω, ∅).

We mix them into a new complete lattice (Σ∞,v,t,u,⊥,>):

AvB
def⇐⇒ (A ∩ Σ∗)⊆ (B ∩ Σ∗) ∧ (A ∩ Σω)⊇ (B ∩ Σω)

AtB def
= ((A ∩ Σ∗)∪ (B ∩ Σ∗)) ∪ ((A ∩ Σω)∩ (B ∩ Σω))

AuB def
= ((A ∩ Σ∗)∩ (B ∩ Σ∗)) ∪ ((A ∩ Σω)∪ (B ∩ Σω))

⊥ def
= Σω

> def
= Σ∗

In this lattice, M∞ = lfp Fs where Fs(T)
def
= B ∪ τ_T .

(proof on next slides)

course 03 Program Semantics Antoine Miné p. 74 / 127

Trace semantics Maximal trace semantics

Fixpoint fusion theorem

Theorem: fixpoint fusion

If X1 = lfpF1 in (P(D1),v1) and X2 = lfpF2 in (P(D2),v2)

and D1 ∩ D2 = ∅,
then X1 ∪ X2 = lfpF in (P(D1 ∪ D2),v) where:

F (X)
def
= F1(X ∩ D1) ∪ F2(X ∩ D2),

A v B
def⇐⇒ (A ∩ D1) v1 (B ∩ D1)∧ (A ∩ D2) v2 (B ∩ D2).

proof:

We have:
F (X1 ∪X2) = F1((X1 ∪X2)∩D1)∪ F2((X1 ∪X2)∩D2) = F1(X1)∪ F2(X2) = X1 ∪X2,
hence X1 ∪ X2 is a fixpoint of F .

Let Y be a fixpoint. Then Y = F (Y) = F1(Y ∩ D1) ∪ F2(Y ∩ D2), hence,
Y ∩D1 = F1(Y ∩D1) and Y ∩D1 is a fixpoint of F1. Thus, X1 v1 Y ∩D1. Likewise,
X2 v2 Y ∩D2. We deduce that X = X1 ∪ X2 v (Y ∩D1) ∪ (Y ∩D2) = Y , and so, X
is F ’s least fixpoint.

note: we also have gfpF = gfpF1 ∪ gfpF2.

course 03 Program Semantics Antoine Miné p. 75 / 127

Trace semantics Maximal trace semantics

Least fixpoint formulation of maximal traces (proof)

proof: of M∞ = lfp Fs where Fs(T)
def
= B ∪ τ_T .

We have:

M∞ ∩ Σ∗ = lfpFs in (P(Σ∗),⊆),

M∞ ∩ Σω = lfpGs in (P(Σω),⊇) where Gs(T)
def
= τ_T ,

in P(Σ∞), we have
Fs(A) = (Fs(A) ∩ Σ∗) ∪ (Fs(A) ∩ Σω) = Fs(A ∩ Σ∗) ∪ Gs(A ∩ Σω).

So, by fixpoint fusion in (P(Σ∞),v), we have:

M∞ = (M∞ ∩ Σ∗) ∪ (M∞ ∩ Σω) = lfpFs .

course 03 Program Semantics Antoine Miné p. 76 / 127

Trace semantics Maximal trace semantics

Greatest fixpoint formulation of finite maximal traces

Actually, a fixpoint formulation in (Σ∞,⊆) also exists.

Alternate fixpoint for finite maximal traces:

We saw that M∞ ∩ Σ∗ = lfpFs
where Fs(T)

def
= B ∪ τ_T in (P(Σ∗),⊆).

Additionally, we have M∞ ∩ Σ∗ = gfpFs in (P(Σ∗),⊆).

(Fs has a unique fixpoint in (P(Σ∗),⊆).)

(proof on next slide)

course 03 Program Semantics Antoine Miné p. 77 / 127

Trace semantics Maximal trace semantics

Greatest fixpoint formulation of finite maximal traces

proof: of M∞ ∩ Σ∗ = gfpFs where Fs(T)
def
= B ∪ τ_T .

Fs is continuous in the dual (P(Σ∗),⊇): Fs(∩i∈I Ai) = ∩i∈I Fs(Ai).
By Kleene’s theorem in the dual (P(Σ∗),⊇), we get: gfpFs = ∩n∈N F n

s (Σ∗).

We prove by recurrence on n that ∀n:F n
s (Σ∗) = (∪i<n τ

_ i_B) ∪ (τ_n_Σ∗): i.e.,
F n
s (Σ∗) are the maximal finite traces of length at most n− 1, and the partial traces of

length exactly n followed by any sequence of states:

F 0
s (Σ∗) = Σ∗ = τ_0_Σ∗

Fs(F n
s (Σ∗)) = B ∪ (τ_F n

s (Σ∗))
= B ∪ τ_((∪i<n τ

_ i_B) ∪ (τ_n_Σ∗))
= B ∪ (∪i<n τ

τ i_B) ∪ (τ_τ_n_Σ∗)
= B ∪ (∪1<i<n+1 τ

_ i_B) ∪ (τ_n+1_Σ∗)
= (∪i<n+1 τ

_ i_B) ∪ (τ_n+1_Σ∗)

We get:

∩n∈N F n
s (Σ∗) = ∩n∈N (∪i<n τ

_ i_B) ∪ (τ_n_Σ∗) = ∪n∈N τ_n_B =M∞ ∩ Σ∗.

course 03 Program Semantics Antoine Miné p. 78 / 127

Trace semantics Maximal trace semantics

Greatest fixpoint of finite traces: graphical illustration

cba

B def
= {c}

τ
def
= {(a, b), (b, b), (b, c)}

Iterates: M∞ ∩ Σ∗ = gfpFs where Fs(T)
def
= B ∪ τ_T .

F 0
s (Σ∗) = Σ∗

F 1
s (Σ∗) = {c} ∪ abΣ∗ ∪ bbΣ∗ ∪ bcΣ∗

F 2
s (Σ∗) = {bc, c} ∪ abbΣ∗ ∪ bbbΣ∗ ∪ abcΣ∗ ∪ bbcΣ∗

F 3
s (Σ∗) = {abc, bbc, bc, c}∪ abbbΣ∗ ∪ bbbbΣ∗ ∪ abbcΣ∗ ∪ bbbcΣ∗

F n
s (Σ∗) = { abic , b jc | i ∈ [1, n − 2], j ∈ [0, n − 1] } ∪

{ abnt, bn+1t, abn−1ct, bnct | t ∈ Σ∗ }

M∞ ∩ Σ∗ = ∩n≥0 F
n
s (Σ∗) == { abic , b jc | i ≥ 1, j ≥ 0 }

course 03 Program Semantics Antoine Miné p. 79 / 127

Trace semantics Maximal trace semantics

Greatest fixpoint formulation of maximal traces

From:

M∞ ∩ Σ∗ = gfpFs in (P(Σ∗),⊆) where Fs(T)
def
= B ∪ τ_T

M∞ ∩ Σω = gfpGs in (P(Σω),⊆) where Gs(T)
def
= τ_T

we deduce: M∞ = gfpFs in (P(Σ∞),⊆).

proof: similar to M∞ = lfpFs in (P(Σ∞),v), by fixpoint fusion.

course 03 Program Semantics Antoine Miné p. 80 / 127

Trace semantics Partial trace semantics

Partial trace semantics

course 03 Program Semantics Antoine Miné p. 81 / 127

Trace semantics Partial trace semantics

Finite and infinite partial trace semantics

Idea: complete partial traces T with infinite traces.

T∞: all finite and infinite sequences of states
linked by the transition relation τ :

T∞
def
= {σ0, . . . , σn ∈ Σ∗ | ∀i < n:σi → σi+1 } ∪
{σ0, . . . , σn, . . . ∈ Σω | ∀i < ω:σi → σi+1 }

(partial finite traces do not necessarily end in a blocking state)

Fixpoint form similar to M∞:

T∞ = lfpFs∗ in (P(Σ∞),v) where Fs∗(T)
def
= Σ ∪ τ_T ,

T∞ = gfpFs∗ in (P(Σ∞),⊆).

proof: similar to the proofs of M∞ = gfpFs and M∞ = lfpFs .

course 03 Program Semantics Antoine Miné p. 82 / 127

Trace semantics Partial trace semantics

Finite trace abstraction

Finite partial traces T are an abstraction of all partial traces T∞.

We have a Galois embedding:

(P(Σ∞),v) −−−→−→←−−−−
α∗

γ∗
(P(Σ∗),⊆)

v is the fused ordering on Σ∗ ∪ Σω:

A v B
def⇐⇒ (A ∩ Σ∗) ⊆ (B ∩ Σ∗) ∧ (A ∩ Σω) ⊇ (B ∩ Σω)

α∗(T)
def
= T ∩ Σ∗

(remove infinite traces)

γ∗(T)
def
= T

(embedding)

T = α∗(T∞)

(proof on next slide)

course 03 Program Semantics Antoine Miné p. 83 / 127

Trace semantics Partial trace semantics

Finite trace abstraction (proof)

proof:

We have Galois embedding because:

α∗ and γ∗ are monotonic,

given T ⊆ Σ∗, we have (α∗ ◦ γ∗)(T) = T ∩ Σ∗ = T ,

(γ∗ ◦ α∗)(T) = T ∩ Σ∗ w T , as we only remove infinite traces.

Recall that T∞ = lfpFs∗ in (P(Σ∞),v) and T = lfpFs∗ in (P(Σ∗),⊆), where

Fs∗(T)
def
= Σ ∪ T_τ .

As α∗ ◦ Fs∗ = Fs∗ ◦ α∗ and α∗(∅) = ∅, we can apply the fixpoint transfer theorem to

get α∗(T∞) = T .

course 03 Program Semantics Antoine Miné p. 84 / 127

Trace semantics Partial trace semantics

Finite trace abstraction (proof)

alternate proof:

It is also possible to use the characterizations T∞ = gfpFs∗ in (P(Σ∞),⊆) and
T = gfpFs∗ in (P(Σ∗),⊆), and use a fixpoint transfer theorem for greatest fixpoints.
Similarly to the fixpoint transfer for least fixpoints, this theorem uses the constructive
version of Tarski’s theorem, but in the dual: T∞ is the limit of transfinite iterations
a0 = Σ∞, an+1 = Fs∗(an), and an = ∩{ am |m < n } for transfinite ordinals, while T
is the limit of a similar iteration from a′0 = Σ∗. We conclude by noting that
a′0 = α∗(a0), α∗ ◦ Fs∗ = Fs∗ ◦ α∗, and α∗ is co-continuous:
α∗(∩i∈I Ti) = ∩i∈I α∗(Ti).

Note that, while the adjoint of α∗ for v was γ∗(T)
def
= T , the adjoint for ⊆ is

γ′∗(T)
def
= T ∪ Σω .

course 03 Program Semantics Antoine Miné p. 85 / 127

Trace semantics Partial trace semantics

Prefix abstraction

Idea: complete maximal traces by adding (non-empty) prefixes.

We have a Galois connection:

(P(Σ∞ \ {ε}),⊆) −−−−→←−−−−
α�

γ�
(P(Σ∞ \ {ε}),⊆)

α�(T)
def
= { t ∈ Σ∞ \ {ε} | ∃u ∈ T : t � u }

(set of all non-empty prefixes of traces in T)

γ�(T)
def
= { t ∈ Σ∞ \ {ε} | ∀u ∈ Σ∞ \ {ε}: u � t =⇒ u ∈ T }

(traces with non-empty prefixes in T)

proof:

α� and γ� are monotonic.

(α� ◦ γ�)(T) = { t ∈ T | ρp(t) ⊆ T } ⊆ T (prefix-closed trace sets).

(γ� ◦ α�)(T) = ρp(T) ⊇ T .

course 03 Program Semantics Antoine Miné p. 86 / 127

Trace semantics Partial trace semantics

Abstraction from maximal traces to partial traces

Finite and infinite partial traces T∞ are an abstraction
of maximal traces M∞: T∞ = α�(M∞).

proof:

Firstly, T∞ and α�(M∞) coincide on infinite traces. Indeed, T∞ ∩ Σω =M∞ ∩ Σω

and α� does not add infinite traces, so: T∞ ∩ Σω = α�(M∞) ∩ Σω .

We now prove that they also coincide on finite traces. Assume
σ0, . . . , σn ∈ α�(M∞), then ∀i < n:σi → σi+1, so, σ0, . . . , σn ∈ T∞.
Assume σ0, . . . , σn ∈ T∞, then it can be completed into a maximal trace, either finite
or infinite, and so, σ0, . . . , σn ∈ α�(M∞).

Note: no fixpoint transfer applies here.

course 03 Program Semantics Antoine Miné p. 87 / 127

Trace semantics Partial trace semantics

Finite prefix abstraction

We can abstract directly from maximal traces M∞
to finite partial traces T .

Consider the following Galois connection:

(P(Σ∞ \ {ε}),⊆) −−−−→←−−−−
α∗�

γ∗�
(P(Σ∗ \ {ε}),⊆)

α∗�(T)
def
= { t ∈ Σ∗ \ {ε} | ∃u ∈ T : t � u }

(set of all non-empty prefixes of traces T)

γ∗�(T)
def
= { t ∈ Σ∞ \ {ε} | ∀u ∈ Σ∗ \ {ε}: u � t =⇒ u ∈ T }

(traces with non-empty prefixes in T)

We have T = α∗�(M∞).

(proof on next slide)

course 03 Program Semantics Antoine Miné p. 88 / 127

Trace semantics Partial trace semantics

Finite prefix abstraction (proof)

proof:

α∗� and γ∗� are monotonic.

(α∗� ◦ γ∗�)(T) = { t ∈ T | ρp(t) ⊆ T } ⊆ T (prefix-closed trace sets).

(γ∗� ◦ α∗�)(T) = ρp(T) ∪ { t ∈ Σω | ∀u ∈ Σ∗: u � t =⇒ u ∈ ρp(T) } ⊇ T .

As α∗� = α∗ ◦ α�,

we have: α∗�(M∞) = α∗(α�(M∞)) = α∗(T∞) = T .

Remarks:

γ∗� ◦ α∗� 6= id

it closes trace sets by limits of finite traces.

γ∗� 6= γ� ◦ γ∗

this is because γ∗(T)
def
= T is the adjoint of α∗ in (P(Σ∞),v), while we need

to compose α� with the adjoint of α∗ in (P(Σ∞),⊆), which is

γ′∗(T)
def
= T ∪ Σω .

course 03 Program Semantics Antoine Miné p. 89 / 127

Trace semantics Partial trace semantics

(Partial) hierarchy of semantics

R(I) C(F) (states)

Tp(I)

αo

OO

Ts(F)

αo

OO

(anchored traces)

T

αI

cc

αF

;;

(partial finite traces)

T∞

α∗

OO

(partial traces)

M∞

α�

OO

(maximal traces)

course 03 Program Semantics Antoine Miné p. 90 / 127

Relational semantics

Relational semantics

course 03 Program Semantics Antoine Miné p. 91 / 127

Relational semantics Big-step semantics

Big-step semantics

course 03 Program Semantics Antoine Miné p. 92 / 127

Relational semantics Big-step semantics

Finite big-step semantics

Pairs of states linked by a sequence of transitions in τ .

BS def
= { (σ0, σn) ∈ Σ× Σ | n ≥ 0, ∃σ1, . . . , σn−1: ∀i < n:σi → σi+1 }

(symmetric and transitive closure of τ)

Fixpoint form:

BS = lfpFB
where FB(R)

def
= id ∪ { (σ, σ′′) | ∃σ′: (σ, σ′) ∈ R, σ′ → σ′′ }.

course 03 Program Semantics Antoine Miné p. 93 / 127

Relational semantics Big-step semantics

Relational abstraction

Relational abstraction: allows skipping intermediate steps.

We have a Galois embedding:

(P(Σ∗),⊆) −−−−→−→←−−−−−
αio

γio
(P(Σ× Σ),⊆)

αio(T)
def
= { (σ, σ′) | ∃σ0, . . . , σn ∈ T :σ = σ0, σ

′ = σn }
(first and last state of a trace in T)

γio(R)
def
= {σ0, . . . , σn ∈ Σ∗ | ∃(σ, σ′) ∈ R:σ = σ0, σ

′ = σn }
(traces respecting the first and last states from R)

proof sketch:

γio and αio are monotonic.
(γio ◦ αio)(T) = {σ0, . . . , σn | ∃σ′0, . . . , σ′m ∈ T :σ0 = σ′0, σn = σ′m }.
(αio ◦ γio)(R) = R.

course 03 Program Semantics Antoine Miné p. 94 / 127

Relational semantics Big-step semantics

Finite big-step semantics as an abstraction

The finite big-step semantics is an abstraction
of the finite trace semantics: BS = αio(T).

proof sketch: by fixpoint transfer.

We have T = lfpFp∗ where Fp∗(T)
def
= Σ ∪ T_τ .

Moreover, FB(R)
def
= id ∪ { (σ, σ′′) | ∃σ′: (σ, σ′) ∈ R, σ′ → σ′′ }.

Then, αio ◦ Fp∗ = FB ◦ αio because αio (Σ) = id and
αio (T_τ) = { (σ, σ′′) | ∃σ′: (σ, σ′) ∈ αio (T) ∧ σ′ → σ′′ }.
By fixpoint transfer: αio (T) = lfpFB .

We have a similar result using Fs∗(T)
def
= Σ ∪ τ_T and

F ′B(R)
def
= id ∪ { (σ, σ′′) | ∃σ′: (σ′, σ′′) ∈ R ∧ σ → σ′ }.

course 03 Program Semantics Antoine Miné p. 95 / 127

Relational semantics Big-step semantics

Finite big-step semantics (example)

program

i ← [0,+∞];
while i > 0 do
i ← i − [0, 1];

done

Finite big-step semantics BS: { (ρ, ρ′) | 0 ≤ ρ′(i) ≤ ρ(i) }.

course 03 Program Semantics Antoine Miné p. 96 / 127

Relational semantics Denotational semantics

Denotational semantics

course 03 Program Semantics Antoine Miné p. 97 / 127

Relational semantics Denotational semantics

Denotational semantics (relation form)

In the denotational semantics, we forget all the intermediate steps
and only keep the input / output relation:

(σ, σ′) ∈ Σ× B: finite execution starting in σ, stopping in σ′,

(σ,♠): non-terminating execution starting in σ.

Construction by abstraction: of the maximal trace semantics M∞.

(P(Σ∞),⊆) −−−→−→←−−−−
αd

γd
(P(Σ× (Σ ∪ {♠})),⊆)

αd(T)
def
= αio(T ∩ Σ∗) ∪ { (σ,♠) | ∃t ∈ Σω:σ · t ∈ T }

γd(R)
def
= γio(R ∩ (Σ× Σ)) ∪ {σ · t | (σ,♠) ∈ R, t ∈ Σω }

(extension of (αio , γio) to infinite traces)

The denotational semantics is DS def
= αd(M∞).

course 03 Program Semantics Antoine Miné p. 98 / 127

Relational semantics Denotational semantics

Denotational fixpoint semantics

Idea: as M∞, separate terminating and non-terminating behaviors,
and use a fixpoint fusion theorem.

We have: DS = lfpFd

in (P(Σ× (Σ ∪ {♠})),v∗,t∗,u∗,⊥∗,>∗), where

⊥∗ def
= { (σ,♠) |σ ∈ Σ }

>∗ def
= { (σ, σ′) |σ, σ′ ∈ Σ }

A v∗ B ⇐⇒ ((A∩>∗) ⊆ (B ∩>∗))∧ ((A∩⊥∗) ⊇ (B ∩⊥∗))

A t∗ B def
= ((A ∩ >∗) ∪ (B ∩ >∗)) ∪ ((A ∩ ⊥∗) ∩ (B ∩ ⊥∗))

A u∗ B def
= ((A ∩ >∗) ∩ (B ∩ >∗)) ∪ ((A ∩ ⊥∗) ∪ (B ∩ ⊥∗))

Fd(R)
def
= { (σ, σ) |σ ∈ B } ∪
{ (σ, σ′′) | ∃σ′:σ → σ′ ∧ (σ′, σ′′) ∈ R }

course 03 Program Semantics Antoine Miné p. 99 / 127

Relational semantics Denotational semantics

Denotational fixpoint semantics (proof)

proof:

We cannot use directly a fixpoint transfer on M∞ = lfpFs in (P(Σ∞),v) because
our Galois connection (αd , γd) uses the ⊆ order, not v.
Instead, we use fixpoint transfer separately on finite and infinite executions, and then
apply fixpoint fusion.

Recall that M∞ ∩ Σ∗ = lfpFs in (P(Σ∗),⊆) where Fs(T)
def
= B ∪ τ_T

and M∞ ∩ Σω = gfpGs in (P(Σω),⊆) where Gs(T)
def
= ∪ τ_T .

For finite execution, we have αd ◦ Fs = Fd ◦ αd in P(Σ∗)→ P(Σ× Σ).

We can apply directly fixpoint transfer and get that: DS ∩ (Σ× Σ) = lfpFd .

course 03 Program Semantics Antoine Miné p. 100 / 127

Relational semantics Denotational semantics

Denotational fixpoint semantics (proof cont.)

proof sketch: for infinite executions

We have αd ◦ Gs = Gd ◦ αd in P(Σω)→ P(Σ× {♠}), where

Gd (R)
def
= { (σ, σ′′) | ∃σ′:σ → σ′ ∧ (σ′, σ′′) ∈ R }.

The fixpoint theorem for gfp we used in the alternate proof of T = α∗(T∞) does not
apply here because αd is not co-continuous: αd (∩i∈I Si) = ∩∈I αd (Si) does not hold;
consider for example: I = N and Si = { anbω | n > i }: ∩i∈N Si = ∅, but
∀i :αd (Si) = {(a,♠)}.
We use instead a fixpoint transfer based on Tarksi’s theorem.
We have gfpGs = ∪ {X |X ⊆ Gs(X) }.
Thus, αd (gfpGs) = αd (∪ {X |X ⊆ Gs(X) }) = ∪ {αd (X) |X ⊆ Gs(X) } as αd is a
complete ∪ morphism. The proof is finished by noting that the commutation
αd ◦ Gs = Gd ◦ αd and the Galois embedding (αd , γd) imply that
{αd (X) |X ⊆ Gs(X) } = {αd (X) |αd (X) ⊆ Gd (αd (X)) } = {Y |Y ⊆ Gd (Y) }.

(the complete proof can be found in [Cous02])

course 03 Program Semantics Antoine Miné p. 101 / 127

Relational semantics Denotational semantics

Denotational semantics (example)

program

i ← [0,+∞];
while i > 0 do
i ← i − [0, 1];

done

Denotational semantics DS:

{ (ρ, ρ′) | ρ(i) ≥ 0 ∧ ρ′(i) = 0 } ∪ { (ρ,♠) | ρ(i) ≥ 0 }.

(quite different from the big-step semantics)

course 03 Program Semantics Antoine Miné p. 102 / 127

Relational semantics Denotational semantics

Denotational semantics (functional form)

Note: denotational semantics are often presented as functions,
not relations

This is possible using the following Galois isomorphism:

(P(Σ× (Σ ∪ {♠})),v∗) −−−−→−→←←−−−−−
αdf

γdf
(Σ→ P(Σ ∪ {♠}), v̇∗)

αdf (R)
def
= λσ.{σ′ | (σ, σ′) ∈ R }

γdf (f)
def
= { (σ, σ′) |σ′ ∈ f (σ) }

f v̇∗ f def⇐⇒ ∀σ: (f (σ) ∩ Σ ⊆ g(σ) ∩ Σ) ∧
(♠ ∈ g(σ) =⇒ ♠ ∈ f (σ))

We get that: αdf (DS) = lfpF ′d where

F ′d(f)
def
= (αdf ◦ Fd ◦ γdf)(f) = (λσ.{σ |σ ∈ B }) ∪̇ (f ◦ postτ).

(proof by fixpoint transfer, as F ′d ◦ αdf = Fd ◦ αdf)

course 03 Program Semantics Antoine Miné p. 103 / 127

Relational semantics Denotational semantics

Another part of the hierarchy of semantics

BS (big-step semantics)

(partial finite traces) T

αio

;;

(partial traces) T∞

α∗

OO

DS (denotational semantics)

(maximal traces) M∞

α�

OO

αd

<<

See [Cou82] for more semantics in this diagram.

course 03 Program Semantics Antoine Miné p. 104 / 127

State properties

State properties

course 03 Program Semantics Antoine Miné p. 105 / 127

State properties

State properties

State property: P ∈ P(Σ).

Verification problem: R(I) ⊆ P.

(all the states reachable from I are in P)

Examples:

absence of blocking: P
def
= Σ \ B,

the variables remain in a safe range,

dangerous program locations cannot be reached.

course 03 Program Semantics Antoine Miné p. 106 / 127

State properties

Invariance proof method

Invariance proof method: find an inductive invariant I ⊆ Σ

I ⊆ I
(contains initial states)

∀σ ∈ I :σ → σ′ =⇒ σ′ ∈ I
(invariant by program transition)

that implies the desired property: I ⊆ P.

Link with the state semantics R(I):

Given FR(S)
def
= I ∪ postτ (S), we have FR(I) ⊆ I

=⇒ I is a post-fixpoint of FR.

Recall that R(I) = lfpFR
=⇒ R(I) is the tightest inductive invariant.

course 03 Program Semantics Antoine Miné p. 107 / 127

State properties

Hoare logic proof method

Idea:

annotate program points with local sate invariants in P(Σ)

use logic rules to prove their correctness

{P[e/X]}X ← e {P}
{P} stat1 {R} {R} stat2 {Q}

{P} stat1; stat2 {Q}

{P ∧ b} stat {Q} P ∧ ¬b ⇒ Q

{P} if b then stat {Q}
{P ∧ b} stat {P}

{P}while b do stat {P ∧ ¬b}

{P} stat {Q} P′ ⇒ P Q ⇒ Q′

{P′} stat {Q′}

Link with the state semantics R(I):

Equivalent to an invariant proof, partitioned by program location.
Any post-fixpoint of αL ◦ FR ◦ γL gives valid Hoare triples.
αL(R(I)) = lfp(αL ◦ FR ◦ γL) gives the tightest Hoare triples.

course 03 Program Semantics Antoine Miné p. 108 / 127

State properties

Weakest liberal precondition proof methods

Idea: Start with a postcondition F ∈ P(Σ)
and compute preconditions backwards P ⇒ wlp(stat,Q)

wlp(X ← e,Q)
def
= Q[e/X]

wlp((stat1; stat2),Q)
def
= wlp(stat1,wlp(stat2,Q))

wlp(if b then stat,Q)
def
= (b ⇒ wlp(stat,Q)) ∧ (¬b ⇒ Q)

wlp(while b do stat,Q)
def
=

I ∧ ((I ∧ b)⇒ wlp(stat, I)) ∧ ((I ∧ ¬b)⇒ Q)
(where the loop invariant I is generally provided by the user)

(P ⇒ wlp(stat,Q) is equivalent to {P} stat {Q})

Link with the state semantics S(Y):

(recall S(Y) = gfp FS where FS(S)
def
= Y ∩ p̃reτ (S))

Equivalent to sufficient preconditions, partitioned by location:
any pre-fixpoint of αL ◦ FS ◦ γL gives valid liberal preconditions;
αL(S(F)) = gfp(αL ◦ FR ◦ γL) gives the weakest liberal
preconditions while inferring loop invariants!

course 03 Program Semantics Antoine Miné p. 109 / 127

Trace properties

Trace properties

course 03 Program Semantics Antoine Miné p. 110 / 127

Trace properties

Trace properties

Trace property: P ∈ P(Σ∞)

Verification problem: M∞ ∩ (I · Σ∞) ⊆ P

(or, equivalently, as M∞ ⊆ P′ where P′
def
= P ∪ ((Σ \ I) · Σ∞))

Examples:

termination:P
def
= Σ∗,

non-termination: P
def
= Σω,

any state property S ⊆ Σ: P
def
= S∞,

maximal execution time: P
def
= Σ≤k ,

minimal execution time: P
def
= Σ≥k ,

ordering, e.g.: P
def
= (Σ \ {b})∗ · a · Σ∗ · b · Σ∞.

(a and b occur, and a occurs before b)

course 03 Program Semantics Antoine Miné p. 111 / 127

Trace properties

Safety properties

Idea: a safety property P models that “nothing bad ever occurs”

P is provable by exhaustive testing;
(observe the prefix trace semantics: Tp(I) ⊆ P)

P is disprovable by finding a single finite execution not in P.

Examples:

any state property: P
def
= S∞ for S ⊆ Σ,

ordering: P
def
= Σ∞ \ ((Σ \ {a})∗ · b · Σ∞),

(no b can appear without an a before,
but we can have only a, or neither a nor b)
(not a state property)

but termination P
def
= Σ∗ is not a safety property.

(disproving requires exhibiting an infinite execution)

course 03 Program Semantics Antoine Miné p. 112 / 127

Trace properties

Definition of safety properties

Reminder: finite prefix abstraction (simplified to allow ε)

(P(Σ∞),⊆) −−−−→←−−−−
α∗�

γ∗�
(P(Σ∗),⊆)

α∗�(T)
def
= { t ∈ Σ∗ | ∃u ∈ T : t � u }

γ∗�(T)
def
= { t ∈ Σ∞ | ∀u ∈ Σ∗: u � t =⇒ u ∈ T }

The associated upper closure ρ∗�
def
= γ� ◦ α� is:

ρ∗� = lim ◦ρp where:

ρp(T)
def
= { u ∈ Σ∞ | ∃t ∈ T : u � t },

lim(T)
def
= T ∪ { t ∈ Σω | ∀u ∈ Σ∗: u � t =⇒ u ∈ T }.

Definition: P ∈ P(Σ∞) is a safety property if P = ρ∗�(P).

course 03 Program Semantics Antoine Miné p. 113 / 127

Trace properties

Definition of safety properties (examples)

Definition: P ⊆ P(Σ∞) is a safety property if P = ρ∗�(P).

Examples and counter-examples:

state property P
def
= S∞ for S ⊆ Σ:

ρp(S∞) = lim(S∞) = S∞ =⇒ safety;

termination P
def
= Σ∗:

ρp(Σ∗) = Σ∗, but lim(Σ∗) = Σ∞ 6= Σ∗ =⇒ not safety;

even number of steps P
def
= (Σ2)∞:

ρp((Σ2)∞) = Σ∞ 6= (Σ2)∞ =⇒ not safety.

course 03 Program Semantics Antoine Miné p. 114 / 127

Trace properties

Proving safety properties

Invariance proof method: find an inductive invariant I

set of finite traces I ⊆ Σ∗

I ⊆ I
(contains traces reduced to an initial state)

∀σ0, . . . , σn ∈ I :σn → σn+1 =⇒ σ0, . . . , σn, σn+1 ∈ I
(invariant by program transition)

and implies the desired property: I ⊆ P.

Link with the finite prefix trace semantics Tp(I):

An inductive invariant is a post-fixpoint of Fp: Fp(I) ⊆ I

where Fp(T)
def
= I ∪ T_τ .

Tp(I) = lfpFp is the tightest inductive invariant.

course 03 Program Semantics Antoine Miné p. 115 / 127

Trace properties

Correctness of the invariant method for safety

Soundness:

if P is a safety property and an inductive invariant I exists
then: M∞ ∩ (I · Σ∞) ⊆ P

proof:

Using the Galois connection between M∞ and T , we get:
M∞ ∩ (I · Σ∞) ⊆ ρ∗�(M∞ ∩ (I · Σ∞)) = γ∗�(α∗�(M∞ ∩ (I · Σ∞))) =
γ∗�(α∗�(M∞) ∩ (I · Σ∗)) = γ∗�(T ∩ (I · Σ∗)) = γ∗�(Tp(I)).
Using the link between invariants and the finite prefix trace semantics, we have:
Tp(I) ⊆ I ⊆ P.

As P is a safety property, P = γ∗�(P), so, γ∗�(Tp(I)) ⊆ γ∗�(P) = P, and so,

M∞ ∩ (I · Σ∞) ⊆ P.

Completeness: an inductive invariant always exists

proof: Tp(I) provides an inductive invariant.

course 03 Program Semantics Antoine Miné p. 116 / 127

Trace properties

Disproving safety properties

Proof method:

A safety property P can be disproved by constructing a finite prefix
of execution that does not satisfy the property:

M∞ ∩ (I · Σ∞) 6⊆ P =⇒ ∃t ∈ Tp(I): t /∈ P

proof:

By contradiction, assume that no such trace exists, i.e., Tp(I) ⊆ P.

We proved in the previous slide that this implies M∞ ∩ (I · Σ∞) ⊆ P.

Examples:

disproving a state property P
def
= S∞:

⇒ find a partial execution containing a state in Σ \ S ;

disproving an order property P
def
= Σ∞ \ ((Σ \ {a})∗ · b · Σ∞)

⇒ find a partial execution where b appears and not a.

course 03 Program Semantics Antoine Miné p. 117 / 127

Trace properties

Liveness properties

Idea: liveness property P ∈ P(Σ∞)

Liveness properties model that“something good eventually occurs”

P cannot be proved by testing
(if nothing good happens in a prefix execution,

it can still happen in the rest of the execution)

disproving P requires exhibiting an infinite execution not in P

Examples:

termination: P
def
= Σ∗,

inevitability: P
def
= Σ∗ · a · Σ∞,

(a eventually occurs in all executions)

state properties are not liveness properties.

course 03 Program Semantics Antoine Miné p. 118 / 127

Trace properties

Definition of liveness properties

Definition: P ∈ P(Σ∞) is a liveness property if ρ∗�(P) = Σ∞.

Examples and counter-examples:

termination P
def
= Σ∗:

ρp(Σ∗) = Σ∗ and lim(Σ∗) = Σ∞ =⇒ liveness;

inevitability: P
def
= Σ∗ · a · Σ∞

ρp(P) = P ∪ Σ∗ and lim(P ∪ Σ∗) = Σ∞ =⇒ liveness;

state property P
def
= S∞ for S ⊆ Σ:

ρp(S∞) = lim(S∞) = S∞ 6= Σ∞ if S 6= Σ =⇒ not liveness;

maximal execution time P
def
= Σ≤k :

ρp(Σ≤k) = lim(Σ≤k) = Σ≤k 6= Σ∞ =⇒ not liveness;

the only property which is both safety and liveness is Σ∞.

course 03 Program Semantics Antoine Miné p. 119 / 127

Trace properties

Proving liveness properties

Variance proof method: (informal definition)

Find a decreasing quantity until something good happens.

Example: termination proof

find f : Σ→ S where (S,v) is well-ordered;

(f is called a “ranking function”)

σ ∈ B =⇒ f = min S;

σ → σ′ =⇒ f (σ′) @ f (σ).

(f counts the number of steps remaining before termination)

course 03 Program Semantics Antoine Miné p. 120 / 127

Trace properties

Disproving liveness properties

Property:

If P is a liveness property, then ∀t ∈ Σ∗: ∃u ∈ P: t � u.

proof:

By definition of liveness, ρ∗�(P) = Σ∞, so t ∈ ρ∗�(P) = lim(αp(P)).
As t ∈ Σ∗ and lim only adds infinite traces, t ∈ αp(P).

By definition of αp , ∃u ∈ P: t � u.

Consequence:

liveness cannot be disproved by testing.

course 03 Program Semantics Antoine Miné p. 121 / 127

Trace properties

Trace topology

Topology on X , defined by

a family C ⊆ P(X) of closed sets

c , c ′ ∈ C =⇒ c ∪ c ′ ∈ C (closed by finite unions)

C ⊆ C =⇒ ∩{ c | c ∈ C } ∈ C (closed by intersections)

open sets O are derived from closed sets:

O def
= {X \ c | c ∈ C }

(closed by unions and finite intersections)

(we can alternatively define a topology by O, and derive C from O)

Definition: we define a topology on traces by setting:

X
def
= Σ∞

C def
= {P ∈ P(Σ∞) |P is a safety property }

course 03 Program Semantics Antoine Miné p. 122 / 127

Trace properties

Closure and density

Topological closure: ρ : P(X)→ P(X)

ρ(x)
def
= ∩ { c ∈ C | x ⊆ c };

(ρ is an upper closure operator in (P(X),⊆))

(ρ(x) = x ⇐⇒ x ∈ C)

on our trace topology, ρ = ρ∗�.

Dense sets:

x ⊆ X is dense if ρ(x) = X ;

on our trace topology, dense sets are liveness properties.

course 03 Program Semantics Antoine Miné p. 123 / 127

Trace properties

Decomposition theorem

Theorem: decomposition on a topological space

Any set x ⊆ X is the intersection of a closed set and a dense set.

proof:

We have x = ρ(x) ∩ (x ∪ (X \ ρ(x))). Indeed:
ρ(x)∩ (x ∪ (X \ ρ(x))) = (ρ(x)∩ x)∪ (ρ(x)∩ (X \ ρ(x))) = ρ(x)∩ x = x as x ⊆ ρ(x).

ρ(x) is closed

x ∪ (X \ ρ(x)) is dense because: ρ(x ∪ (X \ ρ(x))) ⊇ ρ(x) ∪ ρ(X \ ρ(x))
⊇ ρ(x) ∪ (X \ ρ(x))
= X

Consequence: on trace properties

Every trace property is the conjunction of
a safety property and a liveness property.
(proving a trace property can be decomposed into
a soundness proof and a liveness proof)

course 03 Program Semantics Antoine Miné p. 124 / 127

Trace properties

Beyond trace properties

Some verification problems cannot be expressed as M∞ ⊆ P

Examples:

Program equivalence
Do two programs (Σ, τ1) and (Σ, τ2) have the exact same executions?

i.e., M∞[τ1] =M∞[τ2]

Non-interference
Does changing the initial value of X change its final value?

∀σ0, . . . , σn ∈M∞: ∀σ′0:σ0 ≡ σ′0 =⇒
∃σ′0, . . . , σ′m ∈M∞:σ′m ≡ σm
where (`, ρ) ≡ (`′, ρ′) ⇐⇒ ` = `′ ∧ ∀V 6= X : ρ(V) = ρ′(V)

New verification problem: M∞ ∈ H where H ∈ P(P(Σ∞))

generalizes trace properties: M∞ ⊆ P reduces to M∞ ∈ P(P);

program equivalence is M∞[τ1] ∈ {M∞[τ2]}; etc.

Reading assignment: hyperproperties.

course 03 Program Semantics Antoine Miné p. 125 / 127

Bibliography

Bibliography

course 03 Program Semantics Antoine Miné p. 126 / 127

Bibliography

Bibliography

[Bour93] F. Bourdoncle. Abstract debugging of higher-order imperative

languages. In PLDI, 46-55, ACM Press, 1993.

[Cous02] P. Cousot. Constructive design of a hierarchy of semantics of a

transition system by abstract interpretation. In Theoretical Comp. Sc.,

277(1–2):47–103.

[Plot81] G. Plotkin. The origins of structural operational semantics. In

J. of Logic and Algebraic Prog., 60:60-61, 1981.

course 03 Program Semantics Antoine Miné p. 127 / 127

	Flavors of program semantics
	Transition systems
	State semantics
	States and state operators
	Reachability state semantics
	Co-reachability state semantics
	Pre-condition state semantics

	Trace semantics
	Traces and trace operations
	Finite trace semantics
	Maximal trace semantics
	Partial trace semantics

	Relational semantics
	Big-step semantics
	Denotational semantics

	State properties
	Trace properties
	Bibliography

