Non-linear and Floating-Point Abstractions

MPRI 2—6: Abstract Interpretation,
application to verification and static analysis

Antoine Miné

year 2014-2015

course 06
15 October 2014

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p.1/42

Floating-point computations problematics

Two independent problems:

@ Analyze floating-point programs

goal: catch run-time errors taking rounding into account

(overflow, division by 0, ...)

Due to rounding, floating-point programs are highly non-linear
= more general goal: analyze non-linear expressions

o Implement an analyzer using floating-point numbers
goal: trade precision for efficiency

exact rational arithmetics can be costly
coefficients can grow large (polyhedra)
— replace Q with F

Combination: build a float analyzer for float programs.

Challenge: how to stay sound?

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p.2/42

Outline

o Floating-point numbers
o Concrete semantics

e Floating-point intervals
sound intervals for floats, implemented in floats

o Linearization

o General framework for non-linear expressions
more precise interval analyses

e Application to floating-point expressions
sound octagons for floats, implemented in floats
sound polyhedra for floats, implemented in rationals

o Floating-point polyhedra
e Constraint-only polyhedral algorithms
e Sound floating-point approximate algorithms

sound polyhedra for floats, implemented in floats

@ Bibliography

course 06 Non-linear and Floating-Point Abstractions Antoine Miné

p.3/42

Floating-point semantics

course 06 Non-linear and Floating-Point Abstractions _ p.4 /42

Floating-point semantics

Floating-point numbers

Real computers do not know about Q and R.
They use limited-precision floating-point numbers F.

IEEE 754-1985 standard is the most widespread format.

(supported by most processors and programming languages)

IEEE Binary representation: a number is a triple (s, e, f)

@ a l-bit sign s,
@ a e-bit exponent e, with a bias (e represents e — bias),
e a p-bit fraction f = .by...bp, (f represents Y . 27'b;).

IEEE format examples given by the choice of e, bias, p:

e =8,
32-bit single precision float: bias = 127,
p=23.

Other widespread formats: 64-bit double, 80-bit double extended, 128-bit quad.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p.5/ 42

Floating-point semantics

Floating-point representation

Semantics (s, e,) represents either:
@ a normalized number: (—1)5 x 267b1s x 1. (if 1 < e < 2°—2);
@ a denormalized number: (—1)° x 217b2s x 0.f (ife =0, f # 0);
@ {0or -0 (fe=0,f=0);
@ tooor—oo (fe=20—1,f=0);
@ an error code NaN (if e=2°—1, f #0).

Visual representation (positive part)

+0 mf Mf +o0
e s — feeens | °
denormalized normalized

def 51— pias— .
mf = 2l-bias—p smallest positive

MfF def (2—-27P) x 2% —bias—2 largest non-oco

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 6/ 42

Floating-point semantics

Floating-point computations

The set of floating-point numbers is not closed under 4, —, x, /:
@ every result is rounded to a representable float,
@ an overflow or division by 0 generates +00 or —oo (overflow);
@ small numbers are truncated to +0 or —0 (underflow);
@ some operations are invalid (0/0, (4+00) + (—o0), etc.)

and return Nal\V.

Simplified semantics:

o overflows and NaNs halt the program with an error Q,
@ rounding and underflow are not errors,
@ we do not distinguish between +0 and —0.

(in C, 40 == —0; however, 1/ 4+ 0 = 400 while 1/ — 0 = —o0)

— variable values live in a finite subset F of R,
expression values live in FU { Q }.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p.7/42

Floating-point semantics

Floating-point computations (cont.)

Floating-point expressions exp"

The syntax of expression is now:

exph = [c, '] constant interval ¢,c’ € F
| v variable V € V
| & exph negation
| expF @ exp™ operator ® € {3,0,®,0}
(we use circled operators: @, ... to distinguish them from operators in R: +,...)

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 8/ 42

Floating-point semantics

Concrete semantics of expressions

Semantics of rounding:

R:R—FU{Q}.

rounding modes r: towards +o00, —oo, 0, or to-nearest n.

Example definitions:

R

min{y e Fly > x}

if x < MFf

Q if x > Mf
det max{y e Fly <x} ifx>—-Mf
Rooc(x) = { Q if x < —Mf

Notes:

® Vx, r: R (x) € [Rooo(X), Rioo(X)]
(actually: Vx, r: Rr(x) € { R—co(x), Rioo(x) })
@ Vr: R, is monotonic

course 06 Non-linear and Floating-Point Abstractions

Antoine Miné p.9/ 42

Floating-point semantics

Concrete semantics of expressions (cont.)

E[e] : (V—F) - P(FU{Q}) (expression semantics)

Each operator is evaluated in R and then rounded using R:.
def
E[vle = {p(v)}
Elle,c1lp % {xeFlc<x<c'}
E[ce]p L _x|x€E[e]pnF}U{Q|ifQecE[e]p}
def
Ele1 ©Or e]p =
{R:(x1-x)|x1 €E[er1] pNF, x2x € E[ex] pNF} U
{Q] f Qe E[e]pUE[e]p}
{Q| f0€E[ex]pand © =0}

Clec] : P(V—=F)—=P(V—F)u{Q}) (command semantics)

CIvi=e]V ¥ {p[visv]|peX, veE[e]pnF}
U{Q|ifQeE[e] X}

Cle=0]Xx X {plpex, veE[e]pnF:v =0}
U{Q|ifQeE[e] X}

course 06 Non-linear and Floating-Point Abstractions Antoine Miné

p. 10 / 42

Floating-point semantics

Floating-point interval domain

Representation: 1° = {[a,b]|acF, beF, a<b} U {Li}
Expression semantics: E*[exp] : (V — Bf) — B¢

Computed by induction using:

[, bl &f [0, 6] = [Roco(a+d), Rico(b+ b)]

[a.b] S, [2, 6] = [Roce(a—b), Riae(b—)]

[a, b] ®§, [, 0] = [R_oo(min(ad,ab, b, bb'),

Ryo(max(ad’, ab’, ba', bb')]

@ We suppose r is unknown and assume a worst case rounding.
@ Soundness stems from the monotonicity of R_o, and Ry.
@ Abstract operators also use float arithmetics (efficiency).

Error management

If some bound in Ef[exp" | evaluates to Q, we
@ report the error to the user, and
@ continue the evaluation with [— Mf Mf] (errors are not propagated).

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 11 / 42

Floating-point semantics

Floating-point analysis example

filter with reinitialisation

Z:=0;

while 1=1 do
if [0,1]=1 then Z:=[-10,10] fi;
Z:=(0.3 ® Z) & [-10,10]

done

In R, we would have |Z| < 10/0.7.
Using floats, |Z| is bounded by B = R;,(10/0.7).

Interval analysis:
A widening with thresholds finds that |Z] < min {x € T |x > B}.

The absence of overflow is proved if T has a value larger than B.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 12 / 42

Floating-point semantics

Issues with relational domains

Relational domains exploit many properties: associativity,
distributivity,. . . ; they are true in Q and R, but not true in F!

Replacing (Q, +, —, x, /) with (F,®,...,®,®) in the algorithms

is not sound.

Example: (DBM closure)
X=-Y<IAN(Y -Z<d)= (X-Z<c+d)
(XeY<)A(YoZ<d)# (X8Z<cad)
(10?2 ©1.000000019 - 10%%) & (1.000000019 - 10% & —10%?) = 0 # 10?3

Solution: [Mine04]

keep representing and manipulating rational expressions

@ abstract float expressions from programs into rational ones
o feed them to a rational abstract domain

o (optional) implement the rational domain using floats

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 13 / 42

Linearization

Linearization

Abstraction framework

Most relational domains can only deal with linear expressions.
How can we abstract non-linear assignments such as X :=Y x Z7

Idea: replace Y x Z with a sound linear approximation.
(float expressions are also highly non-linear, when expressed in Q)

Framework:
We define an approximation preorder < on expressions:
REe<e <5 VpeRE[ea]pCE[le]p

Soundness properties if v(X*) = e < € then:
o C[V:=e]~y(X") CH(CHV:=¢]ar)
o Clexa0]y(X*) C y(C*[€ 0] XF)
o Y(X%) N (CLV:= e]1(RH) € 4(CH[V = &/] ¥(x%, RY))

— we can now use €’ in the abstract instead of e.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné

p. 15 / 42

Linearization

Linearization

In practice, we put expressions into affine interval form:
expy : [30, bo] + Zk[ak, bk] X Vi
Advantages:

o affine expressions are easy to manipulate,

@ interval coefficients allow non-determinism in expressions,
hence, the opportunity for abstraction,

@ intervals can easily model rounding errors

o easy to design algorithms for C*[V :=¢;] and C*[e, < 0]
in most domains

course 06 Non-linear and Floating-Point Abstractions Antoine Miné

p. 16 / 42

Linearization

Linearization (cont.)

Operations on affine interval forms

e adding H and subtracting H two forms,
e multiplying X and dividing 1 a form by an interval.

Noting ix the interval [ak, bx] and using interval operations
X (g fa b+ (e, d] = [a+ ¢ b+ d]):
® (io+ e in x Vi) B (i + X4 it x Vi) (lo+5it) + S, (kb)) x Vi
@ i (ip+ Xy ik x Vi) Y (ixbio) + 3, (X i) x Vi
° ...
Projection 7, : D! — exp,
We suppose we are given an abstract interval projection operator

Tk such that:
wk(Xﬁ) = [a, b] such that [a,b] 2 { p(Vx)|p € fy(/\,’ﬁ) }.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 17 / 42

Linearization

Linearization (cont.)

Intervalization ¢ : (exp, x D) — exp,

Flattens the expression into a single interval:

o+ Sklik x Vi), %) E o +5 5, (i x| (%)),

Linearization £ : (exp x D) — exp,

Defined by induction on the syntax of expressions:

o(v, x%) €L, % v,

«([a, b], X%) " [a, b,

Uer+e, K1) L ey, XY @ b(e, XF),

Uer—e, X1) ' gy, 1) B (e, A1),

Uer/en, XE) L (e, XF) 1 u(£(en, XF), XH),
either ((£(e1, X%), X%) K (e, XF),

or 1(€(e2, XF), X) 0 £(eg, XH).

Z(elxez,/"(ﬂ) def can be {

course 06 Non-linear and Floating-Point Abstractions Antoine Miné

p. 18 / 42

Linearization

Linearization application

Property soundness of the linearization:

For any abstract domain Dt any XteDland e € exp, we have:
AP | e < (e, XF)
Remarks:
o X% is used in my by ¢; hence < holds only wrt. y(X%),
@ / results in a loss of precision,

@ / is not monotonic for <.
(e.g., £(V/V,V = [1,+00]) = [0,1] x VA 1)

Application to the octagon domain

Y:=[0,+o0];
T:=[-1,1];
X:=TxY

e T x Y is linearized as [—1,1] x Y,
@ we can prove that [X| <.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 19 / 42

Linearization

Linearization application (cont.)

Application to the interval domain

CHIV := /(e, X*)] X* is always more precise than CH[V := e] &*
£ simplifies symbolically variables occurring several times.
Example: X:=2xV—V, where V € [a, b]:

@ using vanilla intervals:

Ef[2 x V— V] (X%) =2 x} [a,b] — [a,b] = [2a— b,2b — 4],

@ after linearization £(2 x V — V, X¥) =V, so
EF[£(2 x V-V, X))] Xt = [a, b]

strictly more precise than [2a — b,2b — a] when a # b.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 20 / 42

Floating-point linearization

Floating-point linearization

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 21 / 42

Floating-point linearization

Floating-point linearization

Rounding an affine interval form (for 32-bit single precision floats)

@ if the result is normalized: we have a relative error £ with
magnitude 2723;
e([a0, bo] + X [ak, bi] x Vi) &'
max(|aol, [bo|) x [-27%,272] +
> (max(|agl, [bi|) x [-2723,2723] x Vi)

@ if the result is denormalized, we have an absolute error
def _ _
w < [72 149’ 2 149].

— we sum these two sources of rounding errors.

Linearization: ¢F : (exp™ x D) — exp,
&F (e EBeg,Xﬁ) def
Z'F(eh)(‘i) B EF(GQ,X’j) J22] 5(€[F(e1,X’i)) 22| e(Z[F(eg,X’i)) B w
EEF(el ®e2,Xn) def
L(€F (1, X), X)) B (FF (e, &%) B £(fF (&2, X)) B w
etc.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné

p. 22/ 42

Floating-point linearization

Soundness of the floating-point linearization

Soundness of the linearization

Ve:VAF € D vp € 4(XF):,
if Q¢ E[e]p, then E[e] p CE[/T(e, X*)]p

Application: C![V:=e] A*

o check that Q ¢ E[e] p for p € 4(X*) with interval arithmetic
o compute CH[V :=e] X% as CF[V :=(F (e, XF)] A%

@ (use CH[V :=[-Mf Mf]] X% if Q c E[e]p)

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 23 / 42

Floating-point linearization

Example applications

@ Improving the interval domain using symbolic simplification.
Example:
Z:=X65(0.25®X) s linearized into
Z:=([0.749--- ,0.750---] x X) +2.35---10738 x [-1,1].
If X € [-1,1], we find |Z| < 0.750 - - -
(instead of |Z| < 1.25--).

@ Allows using relational domains (octagons, etc.)

Example: floating-point version of the rate limiter

(single precision)

The bound of the output |Y| is the smallest threshold larger
than 144.00005 (instead of 144).

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 24 / 42

Floating-point linearization

Floating-point implementation

Goal: implement abstract domains using floating-point numbers
e more efficient (especially to analyse floating-point programs),

@ rounding errors in the algorithms may cause unsoundness!

Simple solution:
round upper-bounds toward o0, lower bounds toward —oo

Works for:
i o of
@ intervals (@}.0!. ®!....)
@ linearization into €Xpy (based on interval computations)
@ octagons (replace a + b with Ryoo(a+ b))

@ not polyhedra

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 25 / 42

Constraint-only polyhedra

Constraint-only polyhedra

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 26 / 42

Constraint-only polyhedra

Reminders on the double description method

Two representations for polyhedra:

e Constraint representation (M, C)
(M, C)) € {V|MxV >C}
where M € 1™ and C € I™

def

@ Generator representation [P, R]
AP, R) < { (S0 aify) + (S5a BiR) | Vsag, 8 > 0: 50 oy = 1

where P1, ..., Pp € 1"P are points and Rl, ..., Ry € 1”7 are rays.

Benefits:
@ operators are easy given the right representation

@ only one complex algorithm:
Chernikova's conversion algorithm

course 06 Non-linear and Floating-Point Abstractions Antoine Miné

p. 27 / 42

Constraint-only polyhedra

Constraint-only polyhedron domain

It is possible to use only the constraint representation:
@ avoids the cost of Chernikova's algorithm,

@ avoids exponential generator systems (hypercubes).

The core operations are: projection and redundancy removal.

Projection: using Fourier-Motzkin elimination

Fourier(X*,Vy) eliminates V, from all the constraints in X%

Fourier(X*, V) ef

{(Zia;V;Zﬁ)Exﬁ‘ak:O}U
{(7a;)c++a;‘c_ |
ct =(Tiafvi>ph) et af >0,
c=CjeVvi>BT)ext o <0}
we then have:

y(Fourier(X%,Vy)) = {X[Vx — v]| v €1, X € y(XH)}.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné

p. 28 / 42

Constraint-only polyhedra

Constraint-only polyhedron domain (cont.)

Fourier causes a quadratic growth in constraint number.
Most such constraints are redundant.

Redundancy removal: using linear programming [Schr86]

Let simplex(V!, V) = min {V-y|y € v()%)}

If c=(a-V>pB)e X% and B < simplex(X*\ {c},Q),
then ¢ can be safely removed from X
(iterate over all constraints)

Note: running simplex many times can be become costly
@ use fast syntactic checks first,

@ check against the bounding-box first.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p.29 /42

Constraint-only polyhedra

Constraint-only polyhedron domain (cont.)

Constraint-only abstract operators:

def

XECEYE £S5 Y(a-V > B) € Vi simplex(XF,) > B
def

Xt =t yt & xt Ct oyt and Y CE ot

X’i ﬂﬁ y’i def

X*¥UY* (join constraint sets)
CH[V; :=] — oo, +oo[| X* & Fourier(X*,V;)
CH[>; Vi + B > 0] X* as before

CHIVj := 3", Vi + B] X* as before

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 30 / 42

Constraint-only polyhedra

Constraint-only polyhedron domain (cont.)

Constraint-only convex hull:

@ Express a point V € X* U) as a convex combination:
V=oX+oYforXe X!, Ye)l o+0' =1,0,0/ >0
@ as oX + o'Y is quadratic

we consider instead: V = X + Y with)f/a c Xt ?/a’ e Yt
e, XeoXt Ye o't

(adds closure points on unbounded polyhedra)

Formally:

Xt Ut oyt &f

Fourier({ (32 a;jX; — Bo > 0) | (X;a;V; > f) € X*} U
{ (0¥ = Bo" = 0) [(3 05v; 2 B) €V} U
{Vi=X+Y;|VjeV}U{o>0,0">0,0+0" =1},
{%,Y eV} u{oo})

[Beno96]

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 31/ 42

Floating-point polyhedra

Floating-point polyhedra

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 32/ 42

Floating-point polyhedra

Sound floating-point polyhedra

Algorithms to adapt: [Chen08]

Design sound approximate floating-point algorithms
simplex¢ and Fouriery.

@ linear programming:

simplex (X%, @) < simplex(X*, @)

. _y def .
simplex(X*%, &) = min {3, caxp(Vk) | p € v(X%)}

@ Fourier-Motzkin elimination:
Fourier¢(X*,V)) <= Fourier(X*,Vy)

Fourier(X*,Vy) def

(S aV; >) € Xt [ag =0} U
{(—a)cT+afc| ¢t =0V, >pT) et of >0, }
c=(Zio Vi p7) € XE o <0}

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 33 / 42

Floating-point polyhedra

Sound floating-point linear programming

Guaranteed linear programming: [NeumO04]

Goal: under-approximate y = min {&-X|M x X < b}
knowing that X € [%}, %] (bounding-box for (X*)).
@ compute any apprgximation ji of the dual _Problem:
fp~p=max{b-y|'Mxy=¢ y<0}
and the corresponding vector y
(e.g. using an off-the-shelf solver; i may over-approximate or

under-approximate 1)

@ compute with intervals safe bounds [}, 7] for M x y — -
(7 7] = (‘M &}, y) &}, €
and then:
v = inf((b®}, 7) & (7, 7] &} [%1 5])
then: v < p.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 34 / 42

Floating-point polyhedra

Sound floating-point Fourier-Motzkin elimination

Given:
o cm = (X of Vi > BT) with af >0
o c =(>;a;Vi>p7)witha, <0
@ a bounding-box of y(X*): [%}, X4]
We wish to compute Z,;ﬁk aiV; > B inF
implied by (—a)ct +ajfc™ in y(&%).

@ normalize ¢ and ¢~ using interval arithmetics:
Vi + 20k (o 2 af)V; > BT 0} of
Vi + 2 (o O (—a)Vi = B~ 2 (—o)
(interval affine forms)
@ add them using interval arithmetics:
> ik (30, bilVi = [ao, bo]
where [a;, bj] = (o @% o)) @ﬁ (o @ﬁ a),
[0, bo] = (8% @ af) ©F (8~ @ o).

course 06 Non-linear and Floating-Point Abstractions Antoine Miné

p. 35/ 42

Floating-point polyhedra

Sound floating-point Fourier-Motzkin elimination (cont.)

@ linearize the interval linear form into Zl-#k aiV; >
where

{ a; € [a,-, b,']

8 = sup ([ao, bo] &, @} (o ©F [ai, bill) &}, |1, %4]])

Soundness:

For all choices of «; € [aj, bi],
> izk @iVk > 3 holds in Fourier(X*, V).

(e.g. ap = (a,— (&) b,‘) () 2)

course 06 Non-linear and Floating-Point Abstractions Antoine Miné

p. 36 / 42

Floating-point polyhedra

Consequences of rounding

Precision loss:
@ Projection:
v(Fouriers(X*,Vy)) 2 {p[Vk— v]|veEQ, pc~y(x?)}
= C[Vy := [~00, +00]] y(X*)
@ Order:
AP CEYE— (%) C9(0F) (#)
e Join:
(X% U V) O ConvexHulle(v(X%) Uy (DF)) (#)

Efficiency loss:

@ cannot remove all redundant constraints

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 37 / 42

Floating-point polyhedra

Floating-point polyhedra widening

Widening V:

XEv Yt {ceXxt|Yict{c}}

(drop {c € V¥ |3c’ € Xt X = (xXE\c)U{c}}

as Xf and V¥ may have redundant constraints)

Stability improvement:

robust strategies to choose «; € [aj, b;] during Fourier-Motzkin:
@ choose simple o; (e.g., integer nearest (a; © b;)/2)

@ reuse the same (or a multiple of) «; used for other variables

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 38 / 42

Floating-point polyhedra

Abstraction summary

Floating-point polyhedra analyzer for floating-point programs

expression abstraction environment abstraction

float expression exp"

1 linearization PV —F)
affine form exp, in Q J abstract domain
J float implementation polyhedra in Q
affine form exp, in F — J float implementation

polyhedra in F
J widening
polyhedra in F

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 39 /42

Bibliography

Bibliography

Bibliography

[Beno96| F. Benoy & A. King. Inferring argument size relationships
with CLP(R). In In Proc. of LOPSTR'96, LNCS 1207, 204-223.
Springer, 1996.

[Chen08] L. Chen, A. Miné & P. Cousot. A sound floating-point

polyhedra abstract domain. In Proc. APLAS'08, LNCS 5356, 3-18,
Springer, 2008.

[Cous78] P. Cousot & N. Halbwachs. Automatic discovery of linear
restraints among variables of a program. In Proc. POPL'78, 84-96,
ACM, 1978.

[Jean09] B. Jeannet & A. Miné. Apron: A library of numerical abstract
domains for static analysis. In Proc. CAV’'09, LNCS 5643, 661-667,
Springer, 2009, http://apron.cri.ensmp.fr/library.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 41 / 42

http://apron.cri.ensmp.fr/library

Bibliography

Bibliography (cont.)

[Mine01b] A. Miné. The octagon abstract domain. In Proc. AST'01,
310-319, IEEE, 2001.

[Mine04] A. Miné. Relational abstract domains for the detection of
floating-point run-time errors. In Proc. ESOP’04, LNCS 2986, 3-17,
Springer, 2004.

[Neum04] A. Neumaier & O. Shcherbina. Safe bounds in linear and
mixed-integer linear programming. In Math. Program., 99(2):283-296,
2004.

[Schr86] A. Schrijver. Theory of linear and integer programming. In
John Wiley & Sons, Inc., 1986.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 42 / 42

	Floating-point semantics
	Linearization
	Floating-point linearization
	Constraint-only polyhedra
	Floating-point polyhedra
	Bibliography

