
Non-linear and Floating-Point Abstractions
MPRI 2–6: Abstract Interpretation,

application to verification and static analysis

Antoine Miné

year 2014–2015

course 06
15 October 2014

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 1 / 42

Floating-point computations problematics

Two independent problems:

Analyze floating-point programs

goal: catch run-time errors taking rounding into account
(overflow, division by 0, . . .)

Due to rounding, floating-point programs are highly non-linear
=⇒ more general goal: analyze non-linear expressions

Implement an analyzer using floating-point numbers

goal: trade precision for efficiency

exact rational arithmetics can be costly
coefficients can grow large (polyhedra)

=⇒ replace Q with F

Combination: build a float analyzer for float programs.

Challenge: how to stay sound?

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 2 / 42

Outline

Floating-point numbers
Concrete semantics

Floating-point intervals
sound intervals for floats, implemented in floats

Linearization
General framework for non-linear expressions

more precise interval analyses

Application to floating-point expressions
sound octagons for floats, implemented in floats
sound polyhedra for floats, implemented in rationals

Floating-point polyhedra
Constraint-only polyhedral algorithms

Sound floating-point approximate algorithms
sound polyhedra for floats, implemented in floats

Bibliography

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 3 / 42

Floating-point semantics

Floating-point semantics

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 4 / 42

Floating-point semantics

Floating-point numbers

Real computers do not know about Q and R.
They use limited-precision floating-point numbers F.

IEEE 754-1985 standard is the most widespread format.
(supported by most processors and programming languages)

IEEE Binary representation: a number is a triple 〈s, e, f 〉
a 1-bit sign s,

a e-bit exponent e, with a bias (e represents e − bias),

a p-bit fraction f = .b1 . . . bp, (f represents
∑

i 2−ibi).

IEEE format examples given by the choice of e, bias, p:

32-bit single precision float:


e = 8,
bias = 127,
p = 23.

Other widespread formats: 64-bit double, 80-bit double extended, 128-bit quad.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 5 / 42

Floating-point semantics

Floating-point representation

Semantics 〈s, e, f 〉 represents either:
a normalized number: (−1)s × 2e−bias × 1.f (if 1 ≤ e ≤ 2e − 2);

a denormalized number: (−1)s × 21−bias × 0.f (if e = 0, f 6= 0);

+0 or −0 (if e = 0, f = 0);

+∞ or −∞ (if e = 2e − 1, f = 0);

an error code NaN (if e = 2e − 1, f 6= 0).

Visual representation (positive part)

+0 +∞mf Mf

normalizeddenormalized

mf
def
= 21−bias−p smallest positive

Mf
def
= (2− 2−p)× 22e−bias−2 largest non-∞

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 6 / 42

Floating-point semantics

Floating-point computations

The set of floating-point numbers is not closed under +, −, ×, /:

every result is rounded to a representable float,

an overflow or division by 0 generates +∞ or −∞ (overflow);

small numbers are truncated to +0 or −0 (underflow);

some operations are invalid (0/0, (+∞) + (−∞), etc.)
and return NaN.

Simplified semantics:

overflows and NaNs halt the program with an error Ω,

rounding and underflow are not errors,

we do not distinguish between +0 and −0.
(in C, +0 == −0; however, 1/+ 0 = +∞ while 1/− 0 = −∞)

=⇒ variable values live in a finite subset F of R,
expression values live in F ∪ {Ω }.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 7 / 42

Floating-point semantics

Floating-point computations (cont.)

Floating-point expressions expF

The syntax of expression is now:

expF ::= [c, c ′] constant interval c , c ′ ∈ F
| V variable V ∈ V
| 	 expF negation
| expF � expF operator � ∈ {⊕,	,⊗,�}

(we use circled operators: ⊕, . . . to distinguish them from operators in R: +, . . .)

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 8 / 42

Floating-point semantics

Concrete semantics of expressions

Semantics of rounding: Rr : R→ F ∪ {Ω }.

rounding modes r : towards +∞, −∞, 0, or to-nearest n.

Example definitions:

R+∞(x)
def
=

{
min{ y ∈ F | y ≥ x } if x ≤ Mf
Ω if x > Mf

R−∞(x)
def
=

{
max { y ∈ F | y ≤ x } if x ≥ −Mf
Ω if x < −Mf

Notes:

∀x , r :Rr (x) ∈ [R−∞(x),R+∞(x)]
(actually: ∀x , r :Rr (x) ∈ {R−∞(x),R+∞(x) })

∀r :Rr is monotonic

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 9 / 42

Floating-point semantics

Concrete semantics of expressions (cont.)

EJ e K : (V→ F)→ P(F ∪ {Ω}) (expression semantics)

Each operator is evaluated in R and then rounded using Rr .

EJ V K ρ def
= { ρ(V) }

EJ [c, c ′] K ρ def
= { x ∈ F | c ≤ x ≤ c ′ }

EJ	 e K ρ def
= {−x | x ∈ EJ e K ρ ∩ F } ∪ {Ω | if Ω ∈ EJ e K ρ }

EJ e1 �r e2 K ρ
def
=

{Rr (x1 · x2) | x1 ∈ EJ e1 K ρ ∩ F, x2 ∈ EJ e2 K ρ ∩ F } ∪
{Ω | if Ω ∈ EJ e1 K ρ ∪ EJ e2 K ρ }
{Ω | if 0 ∈ EJ e2 K ρ and � = �}

CJ c K : P(V→ F)→ P((V→ F) ∪ {Ω}) (command semantics)

CJ V := e KV
def
= { ρ[V 7→ v] | ρ ∈ X , v ∈ EJ e K ρ ∩ F }
∪ {Ω | if Ω ∈ EJ e KX }

CJ e ./ 0 KX def
= { ρ | ρ ∈ X , ∃v ∈ EJ e K ρ ∩ F: v ./ 0 }
∪ {Ω | if Ω ∈ EJ e KX }

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 10 / 42

Floating-point semantics

Floating-point interval domain

Representation: B] def
= { [a, b] | a ∈ F, b ∈ F, a ≤ b } ∪ {⊥]b }

Expression semantics: E]J expF K : (V→ B])→ B]

Computed by induction using:

[a, b]⊕]b [a′, b′]
def
= [R−∞(a + a′),R+∞(b + b′)]

[a, b]]b [a′, b′]
def
= [R−∞(a− b′),R+∞(b − a′)]

[a, b]⊗]b [a′, b′]
def
= [R−∞(min(aa′, ab′, ba′, bb′),

R+∞(max(aa′, ab′, ba′, bb′)]

We suppose r is unknown and assume a worst case rounding.

Soundness stems from the monotonicity of R−∞ and R+∞.

Abstract operators also use float arithmetics (efficiency).

Error management

If some bound in E]J expF K evaluates to Ω, we

report the error to the user, and

continue the evaluation with [−Mf ,Mf] (errors are not propagated).

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 11 / 42

Floating-point semantics

Floating-point analysis example

filter with reinitialisation

Z:=0;

while 1=1 do

if [0,1]=1 then Z:=[-10,10] fi;

Z:=(0.3 ⊗ Z) ⊕ [-10,10]

done

In R, we would have |Z| < 10/0.7.

Using floats, |Z| is bounded by B = R+∞(10/0.7).

Interval analysis:

A widening with thresholds finds that |Z| ≤ min { x ∈ T | x ≥ B }.
The absence of overflow is proved if T has a value larger than B.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 12 / 42

Floating-point semantics

Issues with relational domains

Relational domains exploit many properties: associativity,
distributivity,. . . ; they are true in Q and R, but not true in F!

Replacing (Q,+,−,×, /) with (F,⊕, . . . ,⊗,�) in the algorithms
is not sound.

Example: (DBM closure)

(X − Y ≤ c) ∧ (Y − Z ≤ d) =⇒ (X − Z ≤ c + d)

(X 	 Y ≤ c) ∧ (Y 	 Z ≤ d) 6=⇒ (X 	 Z ≤ c ⊕ d)

(1022 	 1.000000019 · 1038) ⊕ (1.000000019 · 1038 	−1022) = 0 6= 1023

Solution: [Mine04]

keep representing and manipulating rational expressions

abstract float expressions from programs into rational ones

feed them to a rational abstract domain

(optional) implement the rational domain using floats

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 13 / 42

Linearization

Linearization

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 14 / 42

Linearization

Abstraction framework

Most relational domains can only deal with linear expressions.
How can we abstract non-linear assignments such as X := Y× Z?

Idea: replace Y× Z with a sound linear approximation.

(float expressions are also highly non-linear, when expressed in Q)

Framework:

We define an approximation preorder � on expressions:

R |= e1� e2
def⇐⇒ ∀ρ ∈ R: EJ e1 K ρ⊆ EJ e2 K ρ.

Soundness properties if γ(X]) |= e � e ′ then:

CJ V := e K γ(X]) ⊆ γ(C]J V := e ′ KX])
CJ e ./ 0 K γ(X]) ⊆ γ(C]J e ′ ./ 0 KX])
γ(X]) ∩ (

←−
C J V := e K γ(R])) ⊆ γ(

←−
C]J V := e ′ K](X],R]))

=⇒ we can now use e ′ in the abstract instead of e.
course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 15 / 42

Linearization

Linearization

In practice, we put expressions into affine interval form:

exp` : [a0, b0] +
∑

k [ak , bk]× Vk

Advantages:

affine expressions are easy to manipulate,

interval coefficients allow non-determinism in expressions,
hence, the opportunity for abstraction,

intervals can easily model rounding errors

easy to design algorithms for C]J V :=e` K and C]J e` ./ 0 K
in most domains

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 16 / 42

Linearization

Linearization (cont.)

Operations on affine interval forms

adding � and subtracting � two forms,

multiplying � and dividing � a form by an interval.

Noting ik the interval [ak , bk] and using interval operations

+]
b, −]b, ×]b, /]b (e.g., [a, b] +]

b [c, d] = [a + c, b + d]):

(i0 +
∑

k ik × Vk) � (i ′0 +
∑

k i
′
k × Vk)

def
= (i0+]

b i
′
0) +

∑
k (ik+]

b i
′
k)× Vk

i � (i0 +
∑

k ik × Vk)
def
= (i×]

b i0) +
∑

k (i×]
b ik)× Vk

. . .

Projection πk : D] → exp`

We suppose we are given an abstract interval projection operator
πk such that:

πk(X]) = [a, b] such that [a, b] ⊇ { ρ(Vk) | ρ ∈ γ(X]) }.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 17 / 42

Linearization

Linearization (cont.)

Intervalization ι : (exp` ×D])→ exp`

Flattens the expression into a single interval:
ι(i0 +

∑
k (ik × Vk), X])

def
= i0 +]

b

∑]
b, k (ik ×]

b πk (X])).

Linearization ` : (exp×D])→ exp`

Defined by induction on the syntax of expressions:

`(V,X])
def
= [1, 1]× V,

`([a, b],X])
def
= [a, b],

`(e1+e2,X])
def
= `(e1,X]) � `(e2,X]),

`(e1−e2,X])
def
= `(e1,X]) � `(e2,X]),

`(e1/e2,X])
def
= `(e1,X]) � ι(`(e2,X]),X]),

`(e1×e2,X])
def
= can be

{
either ι(`(e1,X]),X]) � `(e2,X]),
or ι(`(e2,X]),X]) � `(e1,X]).

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 18 / 42

Linearization

Linearization application

Property soundness of the linearization:

For any abstract domain D], any X] ∈ D] and e ∈ exp, we have:
γ(X]) |= e � `(e,X])

Remarks:

X] is used in πk by ι; hence � holds only wrt. γ(X]),

` results in a loss of precision,

` is not monotonic for �.
(e.g., `(V/V, V 7→ [1,+∞]) = [0, 1]× V 6� 1)

Application to the octagon domain

Y:=[0,+∞];

T:=[-1,1];

X:=T×Y

T× Y is linearized as [−1, 1]× Y,

we can prove that |X| ≤ Y.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 19 / 42

Linearization

Linearization application (cont.)

Application to the interval domain

C]J V := `(e,X]) KX] is always more precise than C]J V := e KX]

` simplifies symbolically variables occurring several times.

Example: X := 2× V− V, where V ∈ [a, b]:

using vanilla intervals:

E]J 2× V− V K (X]) = 2×]
b [a, b]−]

b [a, b] = [2a− b, 2b − a],

after linearization `(2× V− V,X]) = V, so
E]J `(2× V− V,X]) KX] = [a, b]

strictly more precise than [2a− b, 2b − a] when a 6= b.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 20 / 42

Floating-point linearization

Floating-point linearization

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 21 / 42

Floating-point linearization

Floating-point linearization

Rounding an affine interval form (for 32-bit single precision floats)

if the result is normalized: we have a relative error ε with
magnitude 2−23:

ε([a0, b0] +
∑

k [ak , bk]× Vk)
def
=

max(|a0|, |b0|)× [−2−23, 2−23] +∑
k (max(|ak |, |bk |)× [−2−23, 2−23]× Vk)

if the result is denormalized, we have an absolute error
ω

def
= [−2−149, 2−149].

=⇒ we sum these two sources of rounding errors.

Linearization: `F : (expF ×D])→ exp`

`F(e1 ⊕ e2,X])
def
=

`F(e1,X]) � `F(e2,X]) � ε(`F(e1,X])) � ε(`F(e2,X])) � ω

`F(e1 ⊗ e2,X])
def
=

ι(`F(e1,X]),X]) � (`F(e2,X]) � ε(`F(e2,X]))) � ω
etc.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 22 / 42

Floating-point linearization

Soundness of the floating-point linearization

Soundness of the linearization

∀e: ∀X] ∈ D]: ∀ρ ∈ γ(X]): ,
if Ω /∈ EJ e K ρ, then EJ e K ρ ⊆ EJ `F(e,X]) K ρ

Application: C]J V :=e KX]

check that Ω /∈ EJ e K ρ for ρ ∈ γ(X]) with interval arithmetic

compute C]J V :=e KX] as C]J V :=`F(e,X]) KX]

(use C]J V :=[−Mf ,Mf] KX] if Ω ∈ EJ e K ρ)

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 23 / 42

Floating-point linearization

Example applications

Improving the interval domain using symbolic simplification.

Example:

Z := X	 (0.25⊗ X) is linearized into
Z := ([0.749 · · · , 0.750 · · ·]× X) + 2.35 · · · 10−38 × [−1, 1].

If X ∈ [−1, 1], we find |Z| ≤ 0.750 · · ·
(instead of |Z| ≤ 1.25 · · ·).

Allows using relational domains (octagons, etc.)

Example: floating-point version of the rate limiter
(single precision)

The bound of the output |Y| is the smallest threshold larger
than 144.00005 (instead of 144).

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 24 / 42

Floating-point linearization

Floating-point implementation

Goal: implement abstract domains using floating-point numbers

more efficient (especially to analyse floating-point programs),

rounding errors in the algorithms may cause unsoundness!

Simple solution:
round upper-bounds toward +∞, lower bounds toward −∞

Works for:

intervals (⊕]
b,	

]
b,⊗

]
b, . . .)

linearization into exp` (based on interval computations)

octagons (replace a + b with R+∞(a + b))

not polyhedra

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 25 / 42

Constraint-only polyhedra

Constraint-only polyhedra

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 26 / 42

Constraint-only polyhedra

Reminders on the double description method

Two representations for polyhedra:

Constraint representation 〈M, ~C 〉
γ(〈M, ~C〉) def

= { ~V | M× ~V ≥ ~C}

where M ∈ Im×n and ~C ∈ Im

Generator representation [P,R]

γ([P,R])
def
=
{ (∑p

j=1 αj
~Pj

)
+
(∑r

j=1 βj
~Rj

)
| ∀j , αj , βj ≥ 0:

∑p
j=1 αj = 1

}
where ~P1, . . . , ~Pp ∈ In×p are points and ~R1, . . . , ~Rr ∈ In×r are rays.

Benefits:

operators are easy given the right representation

only one complex algorithm:
Chernikova’s conversion algorithm

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 27 / 42

Constraint-only polyhedra

Constraint-only polyhedron domain

It is possible to use only the constraint representation:

avoids the cost of Chernikova’s algorithm,

avoids exponential generator systems (hypercubes).

The core operations are: projection and redundancy removal.

Projection: using Fourier-Motzkin elimination

Fourier(X], Vk) eliminates Vk from all the constraints in X]:
Fourier(X], Vk)

def
=

{ (
∑

i αiVi ≥ β) ∈ X] |αk = 0 } ∪
{ (−α−k)c+ + α+

k c
− |

c+ = (
∑

i α
+
i Vi ≥ β

+) ∈ X], α+
k > 0,

c− = (
∑

i α
−
i Vi ≥ β−) ∈ X], α−k < 0 }

we then have:

γ(Fourier(X], Vk)) = { ~x [Vk 7→ v] | v ∈ I, ~x ∈ γ(X]) }.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 28 / 42

Constraint-only polyhedra

Constraint-only polyhedron domain (cont.)

Fourier causes a quadratic growth in constraint number.
Most such constraints are redundant.

Redundancy removal: using linear programming [Schr86]

Let simplex(Y], ~v)
def
= min { ~v · ~y | ~y ∈ γ(Y]) }

If c = (~α · ~V ≥ β) ∈ X] and β ≤ simplex(X] \ {c}, ~α),
then c can be safely removed from X].
(iterate over all constraints)

Note: running simplex many times can be become costly

use fast syntactic checks first,

check against the bounding-box first.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 29 / 42

Constraint-only polyhedra

Constraint-only polyhedron domain (cont.)

Constraint-only abstract operators:

X] ⊆] Y] def⇐⇒ ∀(~α · ~V ≥ β) ∈ Y]: simplex(X], ~α) ≥ β

X] =] Y] def⇐⇒ X] ⊆] Y] and Y] ⊆] X]

X] ∩] Y] def
= X] ∪ Y] (join constraint sets)

C]J Vj :=]−∞,+∞[KX] def
= Fourier(X], Vj)

C]J
∑

i αiVi + β ≥ 0 KX] as before

C]J Vj :=
∑

i αiVi + β KX] as before

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 30 / 42

Constraint-only polyhedra

Constraint-only polyhedron domain (cont.)

Constraint-only convex hull:

Express a point ~V ∈ X] ∪] Y] as a convex combination:

~V = σ~X + σ′~Y for ~X ∈ X], ~Y ∈ Y], σ + σ′ = 1, σ, σ′ ≥ 0

as σ~X + σ′~Y is quadratic

we consider instead: ~V = ~X + ~Y with ~X/σ ∈ X], ~Y/σ′ ∈ Y]
i.e., ~X ∈ σX], ~Y ∈ σ′Y]
(adds closure points on unbounded polyhedra)

Formally:

X] ∪] Y] def
=

Fourier({ (
∑

j αjXj − βσ ≥ 0) | (
∑

j αjVj ≥ β) ∈ X] } ∪
{ (
∑

j αjYj − βσ′ ≥ 0) | (
∑

j αjVj ≥ β) ∈ Y] } ∪
{ Vj = Xj + Yj | Vj ∈ V } ∪ { σ ≥ 0, σ′ ≥ 0, σ + σ′ = 1 },
{ Xj , Yj | Vj ∈ V } ∪ { σ, σ′ })

[Beno96]
course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 31 / 42

Floating-point polyhedra

Floating-point polyhedra

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 32 / 42

Floating-point polyhedra

Sound floating-point polyhedra

Algorithms to adapt: [Chen08]

Design sound approximate floating-point algorithms
simplex f and Fourier f .

linear programming:

simplex f (X], ~α) ≤ simplex(X], ~α)

simplex(X], ~α)
def
= min {

∑
k αkρ(Vk) | ρ ∈ γ(X]) }

Fourier-Motzkin elimination:

Fourier f (X], Vk)⇐= Fourier(X], Vk)

Fourier(X], Vk)
def
=

{ (
∑

i αiVi ≥ β) ∈ X] |αk = 0 } ∪
{ (−α−k)c+ + α+

k c
− | c+ = (

∑
i α

+
i Vi ≥ β

+) ∈ X], α+
k > 0,

c− = (
∑

i α
−
i Vi ≥ β−) ∈ X], α−k < 0}

}

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 33 / 42

Floating-point polyhedra

Sound floating-point linear programming

Guaranteed linear programming: [Neum04]

Goal: under-approximate µ = min { ~c · ~x |M× ~x ≤ ~b }
knowing that ~x ∈ [~xl , ~xh] (bounding-box for γ(X])).

compute any approximation µ̃ of the dual problem:
µ̃ ' µ = max { ~b · ~y | tM× ~y = ~c , ~y ≤ ~0 }
and the corresponding vector ~y

(e.g. using an off-the-shelf solver; µ̃ may over-approximate or

under-approximate µ)

compute with intervals safe bounds [~rl , ~rh] for M× ~y − ~c :

[~rl , ~rh] = (tM⊗]b ~y)]b ~c
and then:
ν = inf((~b ⊗]b ~y)]b ([~rl , ~rh]⊗]b [~xl , ~xh]))

then: ν ≤ µ.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 34 / 42

Floating-point polyhedra

Sound floating-point Fourier-Motzkin elimination

Given:

c+ = (
∑

i α
+
i Vi ≥ β+) with α+

k > 0

c− = (
∑

i α
−
i Vi ≥ β−) with α−k < 0

a bounding-box of γ(X]): [~xl , ~xh]

We wish to compute
∑

i 6=k αiVi ≥ β in F

implied by (−α−k)c+ + α+
k c
− in γ(X]).

normalize c+ and c− using interval arithmetics:{
Vk +

∑
i 6=k (α+

i �
]
b α

+
k)Vi ≥ β+ �]b α

+
k

−Vk +
∑

i 6=k (α−i �
]
b (−α−k))Vi ≥ β− �]b (−α−k)

(interval affine forms)

add them using interval arithmetics:∑
i 6=k [ai , bi]Vi ≥ [a0, b0]

where [ai , bi] = (α+
i �

]
b α

+
k)]

b (α−i �
]
b α
−
k),

[a0, b0] = (β+ �]
b α

+
k)]

b (β− �]
b α
−
k).

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 35 / 42

Floating-point polyhedra

Sound floating-point Fourier-Motzkin elimination (cont.)

linearize the interval linear form into
∑

i 6=k αiVi ≥ β
where{
αi ∈ [ai , bi]

β = sup ([a0, b0]⊕]b
⊕]

b, i 6=k(|αi]b [ai , bi]|)⊗]b |[~xl , ~xh]|)

Soundness:

For all choices of αi ∈ [ai , bi],∑
i 6=k αiVk ≥ β holds in Fourier(X], Vk).

(e.g. αi = (ai ⊕ bi)� 2)

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 36 / 42

Floating-point polyhedra

Consequences of rounding

Precision loss:

Projection:

γ(Fourierf (X], Vk)) ⊇ { ρ[Vk 7→ v] | v ∈ Q, ρ ∈ γ(X]) }
= CJ Vk := [−∞,+∞] K γ(X])

Order:

X] ⊆] Y] =⇒ γ(X]) ⊆ γ(Y]) (6⇐)

Join:

γ(X] ∪] Y]) ⊇ ConvexHullf (γ(X]) ∪ γ(Y])) (6=)

Efficiency loss:

cannot remove all redundant constraints

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 37 / 42

Floating-point polyhedra

Floating-point polyhedra widening

Widening O:

X] O Y] def
= { c ∈ X] | Y] ⊆] { c } }

(drop { c ∈ Y] | ∃c ′ ∈ X]:X] =] (X] \ c ′) ∪ { c } }
as X] and Y] may have redundant constraints)

Stability improvement:

robust strategies to choose αi ∈ [ai , bi] during Fourier-Motzkin:

choose simple αi (e.g., integer nearest (ai ⊕ bi)/2)

reuse the same (or a multiple of) αi used for other variables

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 38 / 42

Floating-point polyhedra

Abstraction summary

Floating-point polyhedra analyzer for floating-point programs

expression abstraction environment abstraction

float expression expF

↓ linearization P(V→ F)

affine form exp` in Q ↓ abstract domain

↓ float implementation polyhedra in Q

affine form exp` in F −→ ↓ float implementation

polyhedra in F

↓ widening

polyhedra in F

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 39 / 42

Bibliography

Bibliography

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 40 / 42

Bibliography

Bibliography

[Beno96] F. Benoy & A. King. Inferring argument size relationships

with CLP(R). In In Proc. of LOPSTR’96, LNCS 1207, 204–223.

Springer, 1996.

[Chen08] L. Chen, A. Miné & P. Cousot. A sound floating-point

polyhedra abstract domain. In Proc. APLAS’08, LNCS 5356, 3–18,

Springer, 2008.

[Cous78] P. Cousot & N. Halbwachs. Automatic discovery of linear

restraints among variables of a program. In Proc. POPL’78, 84–96,

ACM, 1978.

[Jean09] B. Jeannet & A. Miné. Apron: A library of numerical abstract

domains for static analysis. In Proc. CAV’09, LNCS 5643, 661–667,

Springer, 2009, http://apron.cri.ensmp.fr/library.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 41 / 42

http://apron.cri.ensmp.fr/library

Bibliography

Bibliography (cont.)

[Mine01b] A. Miné. The octagon abstract domain. In Proc. AST’01,

310–319, IEEE, 2001.

[Mine04] A. Miné. Relational abstract domains for the detection of

floating-point run-time errors. In Proc. ESOP’04, LNCS 2986, 3–17,

Springer, 2004.

[Neum04] A. Neumaier & O. Shcherbina. Safe bounds in linear and

mixed-integer linear programming. In Math. Program., 99(2):283–296,

2004.

[Schr86] A. Schrijver. Theory of linear and integer programming. In

John Wiley & Sons, Inc., 1986.

course 06 Non-linear and Floating-Point Abstractions Antoine Miné p. 42 / 42

	Floating-point semantics
	Linearization
	Floating-point linearization
	Constraint-only polyhedra
	Floating-point polyhedra
	Bibliography

