Non-linear and Floating-Point Abstractions

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

year 2014-2015

course 06 15 October 2014

Floating-point computations problematics

Two independent problems:

Analyze floating-point programs

```
goal: catch run-time errors taking rounding into account (overflow, division by 0, ...)

Due to rounding, floating-point programs are highly non-linear
```

⇒ more general goal: analyze non-linear expressions

Implement an analyzer using floating-point numbers

```
goal: trade precision for efficiency exact rational arithmetics can be costly coefficients can grow large (polyhedra) \implies replace \mathbb Q with \mathbb F
```

Combination: build a float analyzer for float programs.

Challenge: how to stay sound?

Outline

Floating-point numbers

- Concrete semantics
- Floating-point intervals sound intervals for floats, implemented in floats

Linearization

- General framework for non-linear expressions more precise interval analyses
- Application to floating-point expressions sound octagons for floats, implemented in floats sound polyhedra for floats, implemented in rationals

Floating-point polyhedra

- Constraint-only polyhedral algorithms
- Sound floating-point approximate algorithms sound polyhedra for floats, implemented in floats
- Bibliography

Floating-point semantics

Floating-point numbers

Real computers do not know about $\mathbb Q$ and $\mathbb R.$

They use limited-precision floating-point numbers \mathbb{F} .

IEEE 754-1985 standard is the most widespread format.

(supported by most processors and programming languages)

IEEE Binary representation: a number is a triple $\langle s, e, f \rangle$

- a 1-bit sign s,
- a e-bit exponent e, with a bias (e represents e bias),
- a p-bit fraction $f = .b_1 ... b_p$, $(f \text{ represents } \sum_i 2^{-i} b_i)$.

IEEE format examples given by the choice of e, bias, p:

32-bit single precision *float*:
$$\begin{cases} e = 8, \\ bias = 127, \\ p = 23. \end{cases}$$

Other widespread formats: 64-bit double, 80-bit double extended, 128-bit quad.

Floating-point representation

Semantics $\langle s, e, f \rangle$ represents either:

- a normalized number: $(-1)^s \times 2^{e-\text{bias}} \times 1.f$ (if $1 \le e \le 2^e 2$);
- a denormalized number: $(-1)^s \times 2^{1-\text{bias}} \times 0.f$ (if $e = 0, f \neq 0$);
- +0 or -0 (if e = 0, f = 0);
- $+\infty$ or $-\infty$ (if $e = 2^e 1$, f = 0);
- an error code *NaN* (if $e = 2^e 1$, $f \neq 0$).

Visual representation (positive part)

$$mf \stackrel{\text{def}}{=} 2^{1-\text{bias}-p}$$
 smallest positive $Mf \stackrel{\text{def}}{=} (2-2^{-p}) \times 2^{2^e-\text{bias}-2}$ largest non- ∞

Floating-point computations

The set of floating-point numbers is not closed under +, -, \times , /:

- every result is rounded to a representable float,
- an overflow or division by 0 generates $+\infty$ or $-\infty$ (overflow);
- small numbers are truncated to +0 or -0 (underflow);
- some operations are invalid $(0/0, (+\infty) + (-\infty), \text{ etc.})$ and return *NaN*.

Simplified semantics:

- overflows and NaNs halt the program with an error Ω ,
- rounding and underflow are not errors,
- we do not distinguish between +0 and -0. (in C, +0 == -0; however, $1/+0 = +\infty$ while $1/-0 = -\infty$)
- \implies variable values live in a finite subset \mathbb{F} of \mathbb{R} , expression values live in $\mathbb{F} \cup \{\Omega\}$.

Floating-point computations (cont.)

Floating-point expressions $\exp^{\mathbb{F}}$

The syntax of expression is now:

$$\begin{array}{lll} \exp^{\mathbb{F}} & ::= & [c,c'] & \text{constant interval } c,c' \in \mathbb{F} \\ & | & \mathbb{V} & \text{variable } \mathbb{V} \in \mathbb{V} \\ & | & \ominus \exp^{\mathbb{F}} & \text{negation} \\ & | & \exp^{\mathbb{F}} \odot \exp^{\mathbb{F}} & \text{operator } \odot \in \{\, \oplus, \ominus, \otimes, \oslash \, \} \end{array}$$

(we use circled operators: \oplus, \ldots to distinguish them from operators in \mathbb{R} : $+, \ldots$)

Concrete semantics of expressions

Semantics of rounding: R_r : $\mathbb{R} \to \mathbb{F} \cup \{\Omega\}$.

rounding modes r: towards $+\infty$, $-\infty$, 0, or to-nearest n.

Example definitions:

$$R_{+\infty}(x) \stackrel{\text{def}}{=} \begin{cases} \min\{ y \in \mathbb{F} \mid y \ge x \} & \text{if } x \le Mf \\ \Omega & \text{if } x > Mf \end{cases}$$

$$R_{-\infty}(x) \stackrel{\text{def}}{=} \begin{cases} \max\{ y \in \mathbb{F} \mid y \le x \} & \text{if } x \ge -Mf \\ \Omega & \text{if } x < -Mf \end{cases}$$

Notes:

- $\forall x, r: R_r(x) \in [R_{-\infty}(x), R_{+\infty}(x)]$ (actually: $\forall x, r: R_r(x) \in \{R_{-\infty}(x), R_{+\infty}(x)\}$)
- $\forall r: R_r$ is monotonic

Concrete semantics of expressions (cont.)

```
\mathbb{E}\llbracket e \rrbracket : (\mathbb{V} \to \mathbb{F}) \to \mathcal{P}(\mathbb{F} \cup \{\Omega\}) (expression semantics)
Each operator is evaluated in \mathbb{R} and then rounded using R_r.
          \mathsf{E}[\![\mathsf{V}]\!]\rho \qquad \stackrel{\mathrm{def}}{=} \{\rho(\mathsf{V})\}
          \mathbb{E}[[c,c']] \rho \stackrel{\text{def}}{=} \{x \in \mathbb{F} \mid c < x < c'\}
          \mathsf{E} \llbracket \ominus \mathsf{e} \rrbracket \rho \qquad \stackrel{\mathrm{def}}{=} \left\{ -\mathsf{x} \mid \mathsf{x} \in \mathsf{E} \llbracket \mathsf{e} \rrbracket \rho \cap \mathsf{F} \right\} \cup \left\{ \Omega \mid \mathsf{if} \ \Omega \in \mathsf{E} \llbracket \mathsf{e} \rrbracket \rho \right\}
          \mathbb{E}[\![e_1 \odot_r e_2]\!] \rho \stackrel{\text{def}}{=}
                      \{R_r(x_1 \cdot x_2) \mid x_1 \in \mathbb{E}[e_1] \mid \rho \cap \mathbb{F}, x_2 \in \mathbb{E}[e_2] \mid \rho \cap \mathbb{F}\} \cup
                     \{\Omega \mid \text{ if } \Omega \in \mathbb{E}[\![e_1]\!] \rho \cup \mathbb{E}[\![e_2]\!] \rho \}
                     \{\Omega \mid \text{ if } 0 \in \mathbb{E}[\![e_2]\!] \rho \text{ and } \odot = \emptyset \}
\mathbb{C}[\![c]\!]: \mathcal{P}(\mathbb{V} \to \mathbb{F}) \to \mathcal{P}((\mathbb{V} \to \mathbb{F}) \cup \{\Omega\}) (command semantics)
          \mathsf{C} \mathbb{I} \, \mathsf{V} := \mathsf{e} \, \mathbb{I} \, \mathsf{V} \stackrel{\mathrm{def}}{=} \, \{ \, \rho [ \, \mathsf{V} \mapsto \mathsf{v} \, ] \, | \, \rho \in \mathcal{X}, \, \, \mathsf{v} \in \mathsf{E} [ \![ \, \mathsf{e} \, ] \!] \, \rho \cap \mathbb{F} \, \}
                                                             \cup \{\Omega \mid \text{if } \Omega \in \mathbb{E}[\![e]\!] \mathcal{X}\}
          C[e \bowtie 0] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho | \rho \in \mathcal{X}, \exists v \in E[e] \rho \cap F: v \bowtie 0 \}
                                                             \cup \{\Omega \mid \text{if } \Omega \in \mathbb{E}[\![e]\!] \mathcal{X}\}
```

Floating-point interval domain

```
Representation: \mathcal{B}^{\sharp} \stackrel{\text{def}}{=} \{ [a, b] \mid a \in \mathbb{F}, b \in \mathbb{F}, a \leq b \} \cup \{ \perp_b^{\sharp} \}
Expression semantics: \mathsf{E}^{\sharp} \llbracket \exp^{\mathbb{F}} \rrbracket : (\mathbb{V} \to \mathcal{B}^{\sharp}) \to \mathcal{B}^{\sharp}
```

Computed by induction using:

$$\begin{array}{cccc} [a,b] \oplus_b^{\sharp} [a',b'] & \stackrel{\mathrm{def}}{=} & [R_{-\infty}(a+a'),R_{+\infty}(b+b')] \\ [a,b] \oplus_b^{\sharp} [a',b'] & \stackrel{\mathrm{def}}{=} & [R_{-\infty}(a-b'),R_{+\infty}(b-a')] \\ [a,b] \otimes_b^{\sharp} [a',b'] & \stackrel{\mathrm{def}}{=} & [R_{-\infty}(\min(aa',ab',ba',bb'),R_{+\infty}(\max(aa',ab',ba',bb'))] \end{array}$$

- We suppose r is unknown and assume a worst case rounding.
- Soundness stems from the monotonicity of $R_{-\infty}$ and $R_{+\infty}$.
- Abstract operators also use float arithmetics (efficiency).

Error management

If some bound in $E^{\sharp} \llbracket \exp^{\mathbb{F}} \rrbracket$ evaluates to Ω , we

- report the error to the user, and
- continue the evaluation with [-Mf, Mf] (errors are not propagated).

Floating-point analysis example

filter with reinitialisation Z:=0; while 1=1 do if [0,1]=1 then Z:=[-10,10] fi; Z:=(0.3 ⊗ Z) ⊕ [-10,10] done

In \mathbb{R} , we would have $|\mathrm{Z}| < 10/0.7$. Using floats, $|\mathrm{Z}|$ is bounded by $B = R_{+\infty}(10/0.7)$.

Interval analysis:

A widening with thresholds finds that $|Z| \le \min \{ x \in T | x \ge B \}$.

The absence of overflow is proved if T has a value larger than B.

Issues with relational domains

Relational domains exploit many properties: associativity, distributivity,...; they are true in $\mathbb Q$ and $\mathbb R$, but not true in $\mathbb F!$

Replacing $(\mathbb{Q},+,-,\times,/)$ with $(\mathbb{F},\oplus,\ldots,\otimes,\oslash)$ in the algorithms is **not sound**.

Example: (DBM closure)
$$(X - Y \le c) \land (Y - Z \le d) \Longrightarrow (X - Z \le c + d)$$

$$(X \ominus Y \le c) \land (Y \ominus Z \le d) \not\Longrightarrow (X \ominus Z \le c \oplus d)$$

$$(10^{22} \ominus 1.000000019 \cdot 10^{38}) \oplus (1.000000019 \cdot 10^{38} \ominus -10^{22}) = 0 \ne 10^{23}$$

Solution: [Mine04]

keep representing and manipulating rational expressions

- abstract float expressions from programs into rational ones
- feed them to a rational abstract domain
- (optional) implement the rational domain using floats

Linearization

Abstraction framework

Most relational domains can only deal with linear expressions. How can we abstract non-linear assignments such as $X := Y \times Z$?

<u>Idea:</u> replace $Y \times Z$ with a sound linear approximation.

(float expressions are also highly non-linear, when expressed in \mathbb{Q})

Framework:

We define an approximation preorder \leq on expressions:

$$R \models e_1 \leq e_2 \iff \forall \rho \in R : \mathsf{E} \llbracket e_1 \rrbracket \rho \subseteq \mathsf{E} \llbracket e_2 \rrbracket \rho.$$

Soundness properties if $\gamma(\mathcal{X}^{\sharp}) \models e \leq e'$ then:

- $C \llbracket V := e \rrbracket \gamma(\mathcal{X}^{\sharp}) \subseteq \gamma(C^{\sharp} \llbracket V := e' \rrbracket \mathcal{X}^{\sharp})$
- $C[e \bowtie 0] \gamma(\mathcal{X}^{\sharp}) \subseteq \gamma(C^{\sharp}[e' \bowtie 0] \mathcal{X}^{\sharp})$
- $\bullet \ \gamma(\mathcal{X}^{\sharp}) \cap (\overleftarrow{C} \llbracket V := e \rrbracket \gamma(\mathcal{R}^{\sharp})) \subseteq \gamma(\overleftarrow{C}^{\sharp} \llbracket V := e' \rrbracket^{\sharp} (\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}))$

 \implies we can now use e' in the abstract instead of e.

Linearization

In practice, we put expressions into affine interval form:

$$\exp_{\ell}:[a_0,b_0]+\sum_k[a_k,b_k]\times V_k$$

Advantages:

- affine expressions are easy to manipulate,
- interval coefficients allow non-determinism in expressions, hence, the opportunity for abstraction,
- intervals can easily model rounding errors
- easy to design algorithms for $C^{\sharp} \llbracket V := e_{\ell} \rrbracket$ and $C^{\sharp} \llbracket e_{\ell} \bowtie 0 \rrbracket$ in most domains

Linearization (cont.)

Operations on affine interval forms

- adding
 ⊞ and subtracting
 ⊟ two forms,
- multiplying

 \overline{\text{\tinte\tint{\text{\tinite\text{\texiext{\texiex{\text{\texi}\tiliex{\text{\text{\text{\texi}\text{\text{\texi}\tint{\text{\texi}}}\text{\text{\text{\texitilex{\tiinte\tant{\tex

Noting i_k the interval $[a_k, b_k]$ and using interval operations $+^{\sharp}_{b}, -^{\sharp}_{b}, \times^{\sharp}_{b}, /^{\sharp}_{b}$ (e.g., $[a, b] +^{\sharp}_{b} [c, d] = [a + c, b + d]$):

•
$$(i_0 + \sum_k i_k \times V_k) \boxplus (i'_0 + \sum_k i'_k \times V_k) \stackrel{\text{def}}{=} (i_0 + \frac{\sharp}{b} i'_0) + \sum_k (i_k + \frac{\sharp}{b} i'_k) \times V_k$$

•
$$i \boxtimes (i_0 + \sum_k i_k \times V_k) \stackrel{\text{def}}{=} (i \times {}_{b}^{\sharp} i_0) + \sum_k (i \times {}_{b}^{\sharp} i_k) \times V_k$$

• ...

Projection $\pi_k: \mathcal{D}^{\sharp} \to \exp_{\ell}$

We suppose we are given an abstract interval projection operator π_k such that:

$$\pi_k(\mathcal{X}^{\sharp}) = [a, b] \text{ such that } [a, b] \supseteq \{ \rho(V_k) | \rho \in \gamma(\mathcal{X}^{\sharp}) \}.$$

Linearization (cont.)

Flattens the expression into a single interval:

$$\iota(i_0 + \sum_k (i_k \times V_k), \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} i_0 +_b^{\sharp} \sum_{b,k}^{\sharp} (i_k \times_b^{\sharp} \pi_k(\mathcal{X}^{\sharp})).$$

$$\underline{\textbf{Linearization}} \qquad \ell: (\texttt{exp} \times \mathcal{D}^{\sharp}) \rightarrow \texttt{exp}_{\ell}$$

Defined by induction on the syntax of expressions:

- $\ell(V, X^{\sharp}) \stackrel{\text{def}}{=} [1, 1] \times V$,
- $\ell([a,b],\mathcal{X}^{\sharp}) \stackrel{\mathrm{def}}{=} [a,b],$
- $\ell(e_1+e_2, \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \ell(e_1, \mathcal{X}^{\sharp}) \boxplus \ell(e_2, \mathcal{X}^{\sharp}),$
- $\ell(e_1-e_2,\mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \ell(e_1,\mathcal{X}^{\sharp}) \boxminus \ell(e_2,\mathcal{X}^{\sharp}),$
- $\ell(e_1/e_2, \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \ell(e_1, \mathcal{X}^{\sharp}) \boxtimes \iota(\ell(e_2, \mathcal{X}^{\sharp}), \mathcal{X}^{\sharp}),$
- $\bullet \ \ell(e_1 \times e_2, \mathcal{X}^{\sharp}) \stackrel{\mathrm{def}}{=} \ \mathsf{can} \ \mathsf{be} \ \left\{ \begin{array}{ll} \mathsf{either} & \ \iota(\ell(e_1, \mathcal{X}^{\sharp}), \mathcal{X}^{\sharp}) \boxtimes \ell(e_2, \mathcal{X}^{\sharp}), \\ \mathsf{or} & \ \iota(\ell(e_2, \mathcal{X}^{\sharp}), \mathcal{X}^{\sharp}) \boxtimes \ell(e_1, \mathcal{X}^{\sharp}). \end{array} \right.$

Linearization application

Property soundness of the linearization:

For any abstract domain \mathcal{D}^{\sharp} , any $\mathcal{X}^{\sharp} \in \mathcal{D}^{\sharp}$ and $e \in \exp$, we have: $\gamma(\mathcal{X}^{\sharp}) \models e \prec \ell(e, \mathcal{X}^{\sharp})$

Remarks:

- \mathcal{X}^{\sharp} is used in π_k by ι ; hence \leq holds only wrt. $\gamma(\mathcal{X}^{\sharp})$,
- \bullet ℓ results in a loss of precision,
- ℓ is not monotonic for \leq . (e.g., $\ell(V/V, V \mapsto [1, +\infty]) = [0, 1] \times V \not\prec 1$)

Application to the octagon domain

$$Y := [0, +\infty];$$

 $T := [-1, 1];$
 $X := T \times Y$

- T \times Y is linearized as $[-1,1] \times Y$,
- we can prove that $|X| \leq Y$.

Linearization application (cont.)

Application to the interval domain

 $C^{\sharp} \llbracket V := \ell(e, \mathcal{X}^{\sharp}) \rrbracket \mathcal{X}^{\sharp}$ is always more precise than $C^{\sharp} \llbracket V := e \rrbracket \mathcal{X}^{\sharp}$ ℓ simplifies symbolically variables occurring several times.

Example: $X := 2 \times V - V$, where $V \in [a, b]$:

using vanilla intervals:

$$\mathsf{E}^{\sharp} \llbracket \, 2 \times \mathsf{V} - \mathsf{V} \, \rrbracket \, (\mathcal{X}^{\sharp}) = 2 \times_b^{\sharp} \, [\mathsf{a}, \mathsf{b}] -_b^{\sharp} \, [\mathsf{a}, \mathsf{b}] = [2\mathsf{a} - \mathsf{b}, 2\mathsf{b} - \mathsf{a}],$$

• after linearization $\ell(2 \times V - V, \mathcal{X}^{\sharp}) = V$, so $\mathbb{E}^{\sharp} \llbracket \ell(2 \times V - V, \mathcal{X}^{\sharp}) \rrbracket \mathcal{X}^{\sharp} = [a, b]$ strictly more precise than [2a - b, 2b - a] when $a \neq b$.

Floating-point linearization

Floating-point linearization

Rounding an affine interval form (for 32-bit single precision floats)

• if the result is normalized: we have a relative error ε with magnitude 2^{-23} :

$$\begin{array}{l} \varepsilon([\mathsf{a}_0,b_0] + \sum_k [\mathsf{a}_k,b_k] \times \mathsf{V}_k) \overset{\text{def}}{=} \\ \max(|\mathsf{a}_0|,|b_0|) \times [-2^{-23},2^{-23}] + \\ \sum_k (\max(|\mathsf{a}_k|,|b_k|) \times [-2^{-23},2^{-23}] \times \mathsf{V}_k) \end{array}$$

• if the result is denormalized, we have an absolute error $\omega \stackrel{\text{def}}{=} [-2^{-149}, 2^{-149}].$

⇒ we sum these two sources of rounding errors.

$$\begin{array}{ccc} \underline{\text{Linearization:}} & \ell^{\mathbb{F}} : \left(\exp^{\mathbb{F}} \times \mathcal{D}^{\sharp} \right) \rightarrow \exp_{\ell} \\ & \ell^{\mathbb{F}} (e_{1} \oplus e_{2}, \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \\ & \ell^{\mathbb{F}} (e_{1}, \mathcal{X}^{\sharp}) \boxplus \ell^{\mathbb{F}} (e_{2}, \mathcal{X}^{\sharp}) \boxplus \varepsilon (\ell^{\mathbb{F}} (e_{1}, \mathcal{X}^{\sharp})) \boxplus \varepsilon (\ell^{\mathbb{F}} (e_{2}, \mathcal{X}^{\sharp})) \boxplus \omega \\ & \ell^{\mathbb{F}} (e_{1} \otimes e_{2}, \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \\ & \iota (\ell^{\mathbb{F}} (e_{1}, \mathcal{X}^{\sharp}), \mathcal{X}^{\sharp}) \boxtimes (\ell^{\mathbb{F}} (e_{2}, \mathcal{X}^{\sharp}) \boxplus \varepsilon (\ell^{\mathbb{F}} (e_{2}, \mathcal{X}^{\sharp}))) \boxplus \omega \\ & \text{etc.} \end{array}$$

Soundness of the floating-point linearization

Soundness of the linearization

```
\forall e: \forall \mathcal{X}^{\sharp} \in \mathcal{D}^{\sharp}: \forall \rho \in \gamma(\mathcal{X}^{\sharp}):, if \Omega \notin \mathsf{E}[\![e]\!] \rho, then \mathsf{E}[\![e]\!] \rho \subseteq \mathsf{E}[\![\ell^{\mathbb{F}}(e, \mathcal{X}^{\sharp})]\!] \rho
```

Application: $C^{\sharp} \llbracket V := e \rrbracket \mathcal{X}^{\sharp}$

- check that $\Omega \notin \mathsf{E}[\![e]\!] \rho$ for $\rho \in \gamma(\mathcal{X}^\sharp)$ with interval arithmetic
- compute $C^{\sharp} \llbracket V := e \rrbracket \mathcal{X}^{\sharp}$ as $C^{\sharp} \llbracket V := \ell^{\mathbb{F}} (e, \mathcal{X}^{\sharp}) \rrbracket \mathcal{X}^{\sharp}$
- (use $C^{\sharp}[V := [-Mf, Mf]] \mathcal{X}^{\sharp}$ if $\Omega \in E[e] \rho$)

Example applications

Improving the interval domain using symbolic simplification.

Example:

```
\begin{split} Z &:= X \ominus (0.25 \otimes X) \quad \text{is linearized into} \\ Z &:= ([0.749 \cdots, 0.750 \cdots] \times X) + 2.35 \cdots 10^{-38} \times [-1,1]. \\ \text{If } X \in [-1,1], \text{ we find } |Z| \leq 0.750 \cdots \\ \text{(instead of } |Z| < 1.25 \cdots). \end{split}
```

• Allows using relational domains (octagons, etc.)

<u>Example:</u> floating-point version of the rate limiter (single precision)

The bound of the output |Y| is the smallest threshold larger than 144.00005 (instead of 144).

Floating-point implementation

<u>Goal:</u> implement abstract domains using floating-point numbers

- more efficient (especially to analyse floating-point programs),
- rounding errors in the algorithms may cause unsoundness!

Simple solution:

round upper-bounds toward $+\infty$, lower bounds toward $-\infty$

Works for:

- intervals $(\oplus_b^{\sharp}, \ominus_b^{\sharp}, \otimes_b^{\sharp}, \ldots)$
- linearization into exp_ℓ (based on interval computations)
- octagons (replace a + b with $R_{+\infty}(a + b)$)
- not polyhedra

Constraint-only polyhedra

Reminders on the double description method

Two representations for polyhedra:

- Constraint representation $\langle \mathbf{M}, \vec{C} \rangle$ $\gamma(\langle \mathbf{M}, \vec{C} \rangle) \stackrel{\text{def}}{=} \{ \vec{V} \mid \mathbf{M} \times \vec{V} \geq \vec{C} \}$ where $\mathbf{M} \in \mathbb{I}^{m \times n}$ and $\vec{C} \in \mathbb{I}^m$
- \bullet Generator representation [P,R]

$$\begin{split} \gamma([\mathbf{P},\mathbf{R}]) &\stackrel{\mathrm{def}}{=} \; \left\{ \; \left(\sum_{j=1}^p \alpha_j \vec{P}_j \right) + \left(\sum_{j=1}^r \beta_j \vec{R}_j \right) \; | \; \forall j,\alpha_j,\beta_j \geq 0 \colon \sum_{j=1}^p \alpha_j = 1 \right\} \\ \text{where } \vec{P}_1,\ldots,\vec{P}_p \in \mathbb{I}^{n\times p} \text{ are points and } \vec{R}_1,\ldots,\vec{R}_r \in \mathbb{I}^{n\times r} \text{ are rays.} \end{split}$$

Benefits:

- operators are easy given the right representation
- only one complex algorithm:
 Chernikova's conversion algorithm

Constraint-only polyhedron domain

It is possible to use only the constraint representation:

- avoids the cost of Chernikova's algorithm,
- avoids exponential generator systems (hypercubes).

The core operations are: projection and redundancy removal.

Projection: using Fourier-Motzkin elimination

Fourier(\mathcal{X}^{\sharp} , V_k) eliminates V_k from all the constraints in \mathcal{X}^{\sharp} :

$$\begin{aligned} & \textit{Fourier}(\mathcal{X}^{\sharp}, \mathbf{V}_{k}) \overset{\text{def}}{=} \\ & \left\{ \left(\sum_{i} \alpha_{i} \mathbf{V}_{i} \geq \beta \right) \in \mathcal{X}^{\sharp} \, | \, \alpha_{k} = 0 \right\} \cup \\ & \left\{ \left(-\alpha_{k}^{-} \right) c^{+} + \alpha_{k}^{+} c^{-} \, | \right. \\ & c^{+} = \left(\sum_{i} \alpha_{i}^{+} \mathbf{V}_{i} \geq \beta^{+} \right) \in \mathcal{X}^{\sharp}, \, \, \alpha_{k}^{+} > 0, \\ & c^{-} = \left(\sum_{i} \alpha_{i}^{-} \mathbf{V}_{i} \geq \beta^{-} \right) \in \mathcal{X}^{\sharp}, \, \, \alpha_{k}^{-} < 0 \right\} \end{aligned}$$

we then have:

$$\gamma(Fourier(\mathcal{X}^{\sharp}, V_k)) = \{ \vec{x}[V_k \mapsto v] \mid v \in \mathbb{I}, \ \vec{x} \in \gamma(\mathcal{X}^{\sharp}) \}.$$

Constraint-only polyhedron domain (cont.)

Fourier causes a quadratic growth in constraint number. Most such constraints are redundant.

Redundancy removal: using linear programming [Schr86]

```
Let simplex(\mathcal{Y}^{\sharp}, \vec{v}) \stackrel{\text{def}}{=} \min \{ \vec{v} \cdot \vec{y} | \vec{y} \in \gamma(\mathcal{Y}^{\sharp}) \}

If c = (\vec{\alpha} \cdot \vec{V} \geq \beta) \in \mathcal{X}^{\sharp} and \beta \leq simplex(\mathcal{X}^{\sharp} \setminus \{c\}, \vec{\alpha}), then c can be safely removed from \mathcal{X}^{\sharp}. (iterate over all constraints)
```

Note: running simplex many times can be become costly

- use fast syntactic checks first,
- check against the bounding-box first.

Constraint-only polyhedron domain (cont.)

Constraint-only abstract operators:

$$\mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{\iff} \forall (\vec{\alpha} \cdot \vec{\mathbf{V}} \geq \beta) \in \mathcal{Y}^{\sharp} : simplex(\mathcal{X}^{\sharp}, \vec{\alpha}) \geq \beta$$

$$\mathcal{X}^{\sharp} =^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{\iff} \mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \text{ and } \mathcal{Y}^{\sharp} \subseteq^{\sharp} \mathcal{X}^{\sharp}$$

$$\mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{\triangleq} \mathcal{X}^{\sharp} \cup \mathcal{Y}^{\sharp} \quad \text{(join constraint sets)}$$

$$C^{\sharp} \llbracket \mathbf{V}_{j} :=] - \infty, + \infty \llbracket \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} Fourier(\mathcal{X}^{\sharp}, \mathbf{V}_{j})$$

$$C^{\sharp} \llbracket \sum_{i} \alpha_{i} \mathbf{V}_{i} + \beta \geq 0 \rrbracket \mathcal{X}^{\sharp} \text{ as before}$$

$$C^{\sharp} \llbracket \mathbf{V}_{j} := \sum_{i} \alpha_{i} \mathbf{V}_{i} + \beta \rrbracket \mathcal{X}^{\sharp} \text{ as before}$$

Constraint-only polyhedron domain (cont.)

Constraint-only convex hull:

• Express a point $\vec{V} \in \mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp}$ as a convex combination: $\vec{V} = \sigma \vec{X} + \sigma' \vec{Y}$ for $\vec{X} \in \mathcal{X}^{\sharp}$, $\vec{Y} \in \mathcal{Y}^{\sharp}$, $\sigma + \sigma' = 1$, $\sigma, \sigma' > 0$

• as $\sigma \vec{X} + \sigma' \vec{Y}$ is quadratic we consider instead: $\vec{V} = \vec{X} + \vec{Y}$ with $\vec{X}/\sigma \in \mathcal{X}^{\sharp}$, $\vec{Y}/\sigma' \in \mathcal{Y}^{\sharp}$ i.e., $\vec{X} \in \sigma \mathcal{X}^{\sharp}$, $\vec{Y} \in \sigma' \mathcal{Y}^{\sharp}$ (adds closure points on unbounded polyhedra)

Formally:

$$\begin{split} \mathcal{X}^{\sharp} & \cup^{\sharp} \mathcal{Y}^{\sharp} \overset{\text{def}}{=} \\ \textit{Fourier}(\; \left\{ \; \left(\sum_{j} \alpha_{j} X_{j} - \beta \sigma \geq 0 \right) \mid \left(\sum_{j} \alpha_{j} V_{j} \geq \beta \right) \in \mathcal{X}^{\sharp} \; \right\} \quad \cup \\ & \left\{ \; \left(\sum_{j} \alpha_{j} Y_{j} - \beta \sigma' \geq 0 \right) \mid \left(\sum_{j} \alpha_{j} V_{j} \geq \beta \right) \in \mathcal{Y}^{\sharp} \; \right\} \quad \cup \\ & \left\{ \; V_{j} = X_{j} + Y_{j} \mid V_{j} \in \mathbb{V} \; \right\} \cup \left\{ \; \sigma \geq 0, \; \sigma' \geq 0, \; \sigma + \sigma' = 1 \; \right\}, \\ & \left\{ \; X_{j}, Y_{j} \mid V_{j} \in \mathbb{V} \; \right\} \; \cup \; \left\{ \; \sigma, \sigma' \; \right\} \; \right) \\ \textit{[Repocher} \end{split}$$

Floating-point polyhedra

Sound floating-point polyhedra

Algorithms to adapt: [Chen08]

Design sound approximate floating-point algorithms $simplex_f$ and $Fourier_f$.

linear programming:

$$\begin{array}{c} \textit{simplex}_f \big(\mathcal{X}^{\sharp}, \vec{\alpha} \big) \leq \textit{simplex} \big(\mathcal{X}^{\sharp}, \vec{\alpha} \big) \\ \textit{simplex} (\mathcal{X}^{\sharp}, \vec{\alpha}) \stackrel{\text{def}}{=} \min \big\{ \sum_k \alpha_k \rho(\mathbb{V}_k) \, | \, \rho \in \gamma(\mathcal{X}^{\sharp}) \, \big\} \end{array}$$

Fourier-Motzkin elimination:

Fourier_f(
$$\mathcal{X}^{\sharp}$$
, V_k) \iff Fourier(\mathcal{X}^{\sharp} , V_k)

Fourier(\mathcal{X}^{\sharp} , V_k) $\stackrel{\text{def}}{=}$

{ $(\sum_i \alpha_i V_i \ge \beta) \in \mathcal{X}^{\sharp} \mid \alpha_k = 0$ } \cup
{ $(-\alpha_k^-)c^+ + \alpha_k^+c^- \mid c^+ = (\sum_i \alpha_i^+ V_i \ge \beta^+) \in \mathcal{X}^{\sharp}, \ \alpha_k^+ > 0, \ c^- = (\sum_i \alpha_i^- V_i > \beta^-) \in \mathcal{X}^{\sharp}, \ \alpha_k^- < 0$ }

Sound floating-point linear programming

Guaranteed linear programming: [Neum04]

Goal: under-approximate $\mu = \min \{ \vec{c} \cdot \vec{x} \mid \mathbf{M} \times \vec{x} \leq \vec{b} \}$ knowing that $\vec{x} \in [\vec{x}_l, \vec{x}_h]$ (bounding-box for $\gamma(\mathcal{X}^{\sharp})$).

ullet compute any approximation $ilde{\mu}$ of the dual problem:

$$\frac{\tilde{\boldsymbol{\mu}}}{\boldsymbol{\mu}} \simeq \boldsymbol{\mu} = \max \; \{ \; \vec{\boldsymbol{b}} \cdot \vec{\boldsymbol{y}} \, | \, {}^{t} \mathbf{M} \times \vec{\boldsymbol{y}} = \vec{\boldsymbol{c}}, \; \vec{\boldsymbol{y}} \leq \vec{\boldsymbol{0}} \; \}$$
 and the corresponding vector $\vec{\boldsymbol{y}}$

(e.g. using an off-the-shelf solver; $\tilde{\mu}$ may over-approximate or under-approximate μ)

• compute with intervals safe bounds $[\vec{r_l}, \vec{r_h}]$ for $\mathbf{M} \times \vec{y} - \vec{c}$:

$$[\vec{r_l}, \vec{r_h}] = ({}^t \mathbf{M} \otimes_b^{\sharp} \vec{y}) \ominus_b^{\sharp} \vec{c}$$

and then:

$$\mathbf{v} = \inf((\vec{b} \otimes_h^{\sharp} \vec{y}) \ominus_h^{\sharp} ([\vec{r_l}, \vec{r_h}] \otimes_h^{\sharp} [\vec{x_l}, \vec{x_h}]))$$

then: $\nu \leq \mu$.

Sound floating-point Fourier-Motzkin elimination

Given:

- $c^+ = (\sum_i \alpha_i^+ V_i \ge \beta^+)$ with $\alpha_k^+ > 0$
- $c^- = (\sum_i \alpha_i^- V_i \ge \beta^-)$ with $\alpha_k^- < 0$
- a bounding-box of $\gamma(\mathcal{X}^{\sharp})$: $[\vec{x_l}, \vec{x_h}]$

We wish to compute $\sum_{i\neq k} \alpha_i V_i \geq \beta$ in \mathbb{F} implied by $(-\alpha_k^-)c^+ + \alpha_k^+c^-$ in $\gamma(\mathcal{X}^{\sharp})$.

• normalize c^+ and c^- using interval arithmetics:

$$\begin{cases} \mathbf{V}_{k} + \sum_{i \neq k} (\alpha_{i}^{+} \otimes_{b}^{\sharp} \alpha_{k}^{+}) \mathbf{V}_{i} \geq \beta^{+} \otimes_{b}^{\sharp} \alpha_{k}^{+} \\ -\mathbf{V}_{k} + \sum_{i \neq k} (\alpha_{i}^{-} \otimes_{b}^{\sharp} (-\alpha_{k}^{-})) \mathbf{V}_{i} \geq \beta^{-} \otimes_{b}^{\sharp} (-\alpha_{k}^{-}) \end{cases}$$
 (interval affine forms)

(interval affine forms)

add them using interval arithmetics:

$$\sum_{i\neq k}\left[a_{i},b_{i}\right]\mathbb{V}_{i}\geq\left[a_{0},b_{0}\right]$$
 where $\left[a_{i},b_{i}\right]=\left(\alpha_{i}^{+}\oslash_{b}^{\sharp}\alpha_{k}^{+}\right)\ominus_{b}^{\sharp}\left(\alpha_{i}^{-}\oslash_{b}^{\sharp}\alpha_{k}^{-}\right),$ $\left[a_{0},b_{0}\right]=\left(\beta^{+}\oslash_{b}^{\sharp}\alpha_{k}^{+}\right)\ominus_{b}^{\sharp}\left(\beta^{-}\oslash_{b}^{\sharp}\alpha_{k}^{-}\right).$

Sound floating-point Fourier-Motzkin elimination (cont.)

• linearize the interval linear form into $\sum_{i \neq k} \alpha_i V_i \geq \beta$ where

$$\begin{cases} \alpha_i \in [a_i, b_i] \\ \beta = \sup ([a_0, b_0] \oplus_b^{\sharp} \bigoplus_{b, i \neq k}^{\sharp} (|\alpha_i \ominus_b^{\sharp} [a_i, b_i]|) \otimes_b^{\sharp} |[\vec{x}_l, \vec{x}_h]|) \end{cases}$$

Soundness:

For all choices of
$$\alpha_i \in [a_i, b_i]$$
, $\sum_{i \neq k} \alpha_i V_k \geq \beta$ holds in $Fourier(\mathcal{X}^{\sharp}, V_k)$. (e.g. $\alpha_i = (a_i \oplus b_i) \otimes 2$)

Consequences of rounding

Precision loss:

• Projection:

$$\gamma(Fourier_f(\mathcal{X}^{\sharp}, V_k)) \supseteq \{ \rho[V_k \mapsto v] \mid v \in \mathbb{Q}, \ \rho \in \gamma(\mathcal{X}^{\sharp}) \} \\
= C[V_k := [-\infty, +\infty]] \gamma(\mathcal{X}^{\sharp})$$

Order:

$$\mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \Longrightarrow \gamma(\mathcal{X}^{\sharp}) \subseteq \gamma(\mathcal{Y}^{\sharp}) \quad (\not\Leftarrow)$$

Join:

$$\gamma(\mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp}) \supseteq ConvexHull_f(\gamma(\mathcal{X}^{\sharp}) \cup \gamma(\mathcal{Y}^{\sharp})) \quad (\neq)$$

Efficiency loss:

cannot remove all redundant constraints

Floating-point polyhedra widening

Widening ∇:

$$\mathcal{X}^{\sharp} \triangledown \mathcal{Y}^{\sharp} \stackrel{\mathrm{def}}{=} \left\{ c \in \mathcal{X}^{\sharp} \middle| \mathcal{Y}^{\sharp} \subseteq^{\sharp} \left\{ c \right\} \right\}$$

$$\left(\operatorname{drop} \left\{ c \in \mathcal{Y}^{\sharp} \middle| \exists c' \in \mathcal{X}^{\sharp} \colon \mathcal{X}^{\sharp} =^{\sharp} (\mathcal{X}^{\sharp} \setminus c') \cup \left\{ c \right\} \right\}$$
as \mathcal{X}^{\sharp} and \mathcal{Y}^{\sharp} may have redundant constraints)

Stability improvement:

robust strategies to choose $\alpha_i \in [a_i, b_i]$ during Fourier-Motzkin:

- choose simple α_i (e.g., integer nearest $(a_i \oplus b_i)/2$)
- reuse the same (or a multiple of) α_i used for other variables

Abstraction summary

Floating-point polyhedra analyzer for floating-point programs

environment abstraction expression abstraction float expression exp^F $\mathcal{P}(\mathbb{V} \to \mathbb{F})$ ↓ linearization affine form \exp_{ℓ} in \mathbb{Q} ↓ abstract domain ↓ float implementation polyhedra in Q affine form \exp_{ℓ} in \mathbb{F} ↓ float implementation polyhedra in F ↓ widening polyhedra in F

Bibliography

Bibliography

- [Beno96] **F. Benoy & A. King**. Inferring argument size relationships with CLP(R). In In Proc. of LOPSTR'96, LNCS 1207, 204–223. Springer, 1996.
- [Chen08] L. Chen, A. Miné & P. Cousot. A sound floating-point polyhedra abstract domain. In Proc. APLAS'08, LNCS 5356, 3–18, Springer, 2008.
- [Cous78] **P. Cousot & N. Halbwachs**. Automatic discovery of linear restraints among variables of a program. In Proc. POPL'78, 84–96, ACM, 1978.
- [Jean09] **B. Jeannet & A. Miné**. Apron: A library of numerical abstract domains for static analysis. In Proc. CAV'09, LNCS 5643, 661-667, Springer, 2009, http://apron.cri.ensmp.fr/library.

Bibliography (cont.)

[Mine01b] **A. Miné**. *The octagon abstract domain*. In Proc. AST'01, 310–319, IEEE, 2001.

[Mine04] **A. Miné**. Relational abstract domains for the detection of floating-point run-time errors. In Proc. ESOP'04, LNCS 2986, 3–17, Springer, 2004.

[Neum04] **A. Neumaier & O. Shcherbina**. Safe bounds in linear and mixed-integer linear programming. In Math. Program., 99(2):283–296, 2004.

[Schr86] **A. Schrijver**. Theory of linear and integer programming. In John Wiley & Sons, Inc., 1986.