Static Analysis of Concurrent Programs

MPRI 2-6: Abstract Interpretation,
application to verification and static analysis

Antoine Miné

year 2014-2015

course 11
12 November 2013

course 11 Static Analysis of Concurrent Programs Antoine Miné p.1/81

Introduction

Concurrent programming

Idea:
Decompose a program into a set of (loosely) interacting processes.

Why concurrent programs?

@ exploit parallelism in current computers
(multi-processors, multi-cores, hyper-threading)

“Free lunch is over”
change in Moore's law (x2 transistors every 2 years)

@ exploit several computers
(distributed computing)

e ease of programming
(GUI, network code, reactive programs)

course 11 Static Analysis of Concurrent Programs Antoine Miné p.2/81

Introduction

Models of concurrent programs

Many models:
@ process calculi: CSP, m—calculus, join calculus
@ message passing
@ shared memory (threads)
@ transactional memory
o

combination of several models

Example implementations:

@ C, C++ with a thread library (POSIX threads, Win32)
C, C++ with a message library (MPI, OpenmP)

Java (native threading API)

]

]

@ Erlang (based on w—calculus)

o JoCaml (OCaml + join calculus)
"]

processor-level (interrupts, test-and-set instructions)

course 11 Static Analysis of Concurrent Programs Antoine Miné p.3/81

Introduction

Scope

In this course: static thread model
@ implicit communication through shared memory
@ explicit communication through synchronisation primitives
o fixed number of threads (no dynamic creation of threads)

@ numeric programs (real-valued variables)

Goal: static analysis
@ infer numeric program invariants
@ discover possible run-time errors (e.g., division by 0)

@ parametrized by a choice of numeric abstract domains

course 11 Static Analysis of Concurrent Programs Antoine Miné p.4/81

Introduction

Outline

@ State-based analyses
e sequential programs (reminders)

@ concurrent programs

@ Toward thread-modular analyses

e detour through proof methods
(Floyd—Hoare, Owicki—Gries, Jones)

e rely-guarantee in abstract interpretation form

@ Interference-based abstract analyses
e denotational-style analysis
o weakly consistent memory models

e synchronisation

course 11 Static Analysis of Concurrent Programs Antoine Miné p.5/81

Introduction

Simple structured numeric language

o finite set of (toplevel) threads: prog; to prog,
o finite set of numeric program variables V € V
o finite set of statement locations ¢/ € £

o finite set of potential error locations w € Q

parprog = ‘prog;’|| ... || ‘prog,’ (parallel composition)

gprogé = = eXpK (assignment)
| ‘if exp < 0 then ‘prog’ fif (conditional)
| ‘while ZeXp >0 do gprogé done’ (loop)
| ‘prog; ‘prog’ (sequence)

exp m= V|[a,c]| —exp|expo,exp

¢, €E RU{+00,—c0}, o€ {+,—,%,/}, xe{=,<,...}

course 11 Static Analysis of Concurrent Programs Antoine Miné p.6 /81

State-based analyses

State-based analyses Sequential program semantics (reminders)

Sequential program semantics (reminders)

course 11 Static Analysis of Concurrent Programs Antoine Miné p.8/81

State-based analyses Sequential program semantics (reminders)

Transition systems

Transition system: (X, 7,7)

@ X : set of program states

@ 7 C ¥ x ¥: transition relation
we note (o,0’) € Tas o —, o’

@ 7 C X: set of initial states

Traces: sequences of states 0g,...,0n,...
@ X *: finite traces
@ X“: infinite countable traces
o ¥ & ¥* Y finite or infinite countable traces
°

u=t: uis a prefix of t

We view program semantics and properties as sets of traces.

course 11 Static Analysis of Concurrent Programs Antoine Miné

p.9/81

State-based analyses Sequential program semantics (reminders)

Traces of a transition system

Maximal trace semantics: M, € P(X>)

@ set of total executions og,...,0n,...
e starting in an initial state og € Z and either
o ending in a blocking state in B & {0 |Vo':0 £, o’}
e or infinite

Mo dZef{Uo,...,cr,,|0'o EINo, E BAYIi<no;—; 041} U

{00y...,0n ... |00 ETAYI<w:o; —; 041}

)

@ able to express many properties of programs, e.g.:

o state safety: M, C 5% (executions stay in S)

o ordering: Mo, C 5° - 55° (52 can only occur after Sp)

e termination: M, C ¥* (executions are finite)

o inevitability: Mo CX*- 5.2 (executions pass through S)
course 11 Static Analysis of Concurrent Programs Antoine Miné p. 10 / 81

State-based analyses Sequential program semantics (reminders)

Traces of a transition system

Finite prefix trace semantics: 7, € P(X*)

@ set of finite prefixes of executions:
T S {00,...,0n|N>0,00 €L, Vi<no;—;0oi41}
@ 7, is an abstraction of the maximal trace semantics

Tp = au<(Myo) where c<(X) < {teT*|Tue Xt <u}

@ 7, can prove state safety properties: 7, C S*

(executions stay in S)

Tp can prove ordering properties: 7, C 5 - S5
(if S1 and Sy occur, S; occurs after Sp)

@ 7, cannot prove termination nor inevitability properties

e fixpoint characterisation: 7, = Ifp F, where
Fo(X)=ZU{o00,...,0n41|00,...,0n € X NOp =7 Ont1}

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 11 /81

State-based analyses Sequential program semantics (reminders)

State abstraction

Reachable state semantics: R € P(X)

@ set of states reachable in any execution:
R f {c|3n>0,00,...,0n00 €EL, Vi< nio;—r0cix1 No=o0n}
@ R is an abstraction of the finite trace semantics: R = a,(7p)

where a,(X) = {o|300,...,00 € X0 =0,}

@ R can prove state safety properties: R C S

(executions stay in S)

‘R cannot prove ordering, termination, inevitability properties

o fixpoint characterisation: R = Ifp Fg where
FR(X)=ZU{o|3o' € X:0' =, 0}

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 12 /81

State-based analyses Sequential program semantics (reminders)

States of a sequential program

Simple sequential numeric programs: parprog ::= "’ prog’".

Program states: ¥ = (L x E)UQ

@ a control state in £, and

. . . def
@ either a memory state: an environment in £ = V — R

@ or an error state in

Initial states:

start at the first control point ¢ with variables set to 0:
7= {(V, \.0)}

Note that P(X) ~ (£ — P(&)) x P(Q):

@ a state property in P(€) at each program point in £
@ and a set of errors in P(Q)

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 13 /81

State-based analyses Sequential program semantics (reminders)

Expression semantics with errors

Expression semantics: E[exp] : £ = (P(R) x P(Q))

E[V]p = ({p(m)},0)

Ellc,ol]lp = ({xeR|la<x<a},0)

E[—e]p < et (V, 0)=E[e]pin
({-vl eV} 0)

Eleto, e&]p = let (V4, O1) =E[er]pin

let (Vo, O2) = E[e2] p in
({viown|vie Vi, o#/Vwv#0},
OLUOQU{wife=/A0€e Vo})

@ defined by structural induction on the syntax
@ evaluates in an environment p to a set of values

@ also returns a set of accumulated errors
(here, only divisions by zero)

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 14 / 81

State-based analyses Sequential program semantics (reminders)

Reminders: semantics in equational form

Principle: (without handling errors in Q)
@ see Ifpf as the least solution of an equation x = f(x)
@ partition states by control: P(L x &) ~ L — P(E)
Xy € P(E): invariant at £ € L
Vlel:X, € {me&|(t,m)eR}
— set of (recursive) equations on A}

Example:
ii:=2; X,=1
ln:=[—oo,—|—oo]; XQZCHi::2]]X]_
“yhile i <n do X3 =C[n:= [—o0, +00] | A2
©if [0,1]=0 then X;=A3UX;
éﬁi:=i+1 X5:C[[i<n]]X4
fi Xo = Xs
ﬂdone X7:X5UC[[iZ:i+1]]X6
08 XgZC[[iZn]].)Q
course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 15 / 81

State-based analyses Sequential program semantics (reminders)

Semantics in denotational form

Input-output function C[prog]

Clprog] : (P(£) x P(2)) — (P(£) x P(2))

C[x:=e] (R, 0) = (0, 0) Ul er ({plx—V]|veEV,}, Op)
Cle0?] (R, 0) = (0, 0) U [|er ({p|3ve V,ivix0}, Op)
where (V,, 0,) = E[e]p

C[if exa0thensfi] X = (C[s] o C[e>0?])X L Clert0?] X

def

C[while et 0do s done] X =
Cles4 0?] (IfpAY.X LU (C[s] o C[e < 02])Y)

Clsi; 2] = C[s2] oC[s1]

@ mutate memory states in £, accumulate errors in €2
(U is the element-wise U in P(£) x P(Q2))
@ structured: nested loops yield nested fixpoints
@ big-step: forget information on intermediate locations /¢

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 16 / 81

State-based analyses Sequential program semantics (reminders)

Abstract semantics in denotational form

Extend a numeric abstract domain £* abstracting P(€)

def

to DF = & x P(Q).
Ct[prog] : Df — D*
CH[X :=e] (R%, O) and C*[e<0?] (R%, O) are given

C'[if e 0 thens fi] X! =
(C*[s] o C* e 0?7])X* L CH ek 07] X*

C*[while e 1 0 do s done] X* e
Cllea 02 (limAYEYE v (XE U (CH[s] o C* e 07]) Y?))

Cls1; 2] < Csp] o CHs1]

@ the abstract interpreter mimicks an actual interpreter
o efficient in memory (intermediate invariants are not kept)
@ less flexibility in the iteration scheme

(iteration order, widening points, etc.)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 17 / 81

State-based analyses Concurrent program semantics

Concurrent program semantics

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 18 / 81

State-based analyses Concurrent program semantics

Labelled transition systems

Labelled transition system: (X, A, 7,7)

@ X : set of program states
o A: set of actions

o 7 C ¥ x A x X: transition relation
a
we note (0,a,0’) € T as 0 5, o’

@ 7 C Y: set of initial states

Labelled traces: sequences of states interspersed with actions

a a
denoted as 09 % 01 > -+ 0p 3 Opt1

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 19 / 81

State-based analyses Concurrent program semantics

From concurrent programs to labelled transition systems

Notations:

@ concurrent program:
N 2 o 12
parprog ::= "iprog;'! || --- || ""prog,
def

o threads identifiers: T = {1,...,n}

Program states: ¥ = ((T— £) xE)UQ

@ a control state L(t) € L for each thread t € T and
@ a single shared memory state p € £

@ or an error state w € Q

Initial states:

threads start at their first control point ¢/, variables are set to 0:

T % {(ALLL, AV.0) }
Actions: thread identifiers: A < T

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 20 / 81

State-based analyses Concurrent program semantics

From concurrent programs to labelled transition systems

Transition relation: 7C Y xAXx X

def

(La p)_t>7'([-,7p/) — (L(t)7p)_>r[progt]([-,(t)7p/) A
Vu # t: L(u) = L'(u)
(L7 p)i>7' w <d:ef> (L(t)7 p)_>~r[progt] w

@ based on the transition relation of individual threads
seen as sequential processes prog,:
Tlprog] C(Lx &) x ((LxE)UQ)

e choose a thread t to run
e update p and L(t)
o leave L(u) intact for u # t

(See course 3 for the full definition of 7[prog].)

e each 0 — ¢’ in 7[prog,] leads to many transitions in 7!

course 11 Static Analysis of Concurrent Programs Antoine Miné p.21 /81

State-based analyses Concurrent program semantics

Interleaved trace semantics

Maximal and finite prefix trace semantics are as before:

. t
Blocking states: B < {o|Vo':Vt:o 4 o'}

Maximal traces: M, (finite or infinite)

th— . tj
Moo def {003-~ "—>lon\n20Aao €I Nop € BAYi<nio; ;041U
.
{o‘gg(rl...\nEO/\Ug EIANYIi<w:o; 7 0iy1}

Finite prefix traces: 7,

e th— . t;
T d:f{agg~~ —>la,,|n20Aao EIANVIi<noj =041}

Fixpoint form: 7, = Ifp F, where

Fp(X):ZU{Joi~~-ian+1|n20/\aog~-~t':>10nEX/\U,,i.,—JnH}

Abstraction: Tp = au<(Moo)

course 11 Static Analysis of Concurrent Programs Antoine Miné p.22 /81

State-based analyses Concurrent program semantics

Fairness

Fairness conditions: avoid threads being denied to run

Given enabled(o,t) <% 3o’ € Y0 5, o,

an infinite trace og LY < Op In s
o weakly fair if Vt € T:
(Ji:Vj > i:enabled(cj,t)) = (Vi:3j >iaj=1t)
(no thread can be continuously enabled without running)

e strongly fair if Vt € T:
(Vi:3j > i:enabled(cj, t)) = (Vi:3j >iaj=1t)

(no thread can be infinitely often enabled without running)

Proofs under fairness conditions given:

@ the maximal traces M, of a program

@ a property X to prove (as a set of traces)

@ the set F of all (weakly or strongly) fair and of finite traces
— prove M, N F C X instead of Mo, C X

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 23 / 81

State-based analyses Concurrent program semantics

Fairness (cont.)

Example: while x>0 do x:=x+1 done || x:=-1
@ may not terminate without fairness

@ always terminates under weak and strong fairness

Finite prefix trace abstraction

Mo NF C X is abstracted into testing < (Moo N F) C < (X)
for all fairness conditions F, cu<(Mo N F) = a<x(Mos) = Tp

—> fairness-dependent properties cannot be proved with finite prefixes only

In the following, we ignore fairness conditions.
(see [Cous85])

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 24 / 81

State-based analyses Concurrent program semantics

Equational state semantics

State abstraction R: as before

def . t;
o R = {0|3n20,003~-~0n:0061‘v:<n:0,——>7—0,-+1/\0:0n}

@ R = ap(Tp) where ap(X) d:ef{J|Eln20,aoi~~-an€X:a:Un}

@ R =IfpFr where Fr(X)=ZU{o |30’ € X,teT:0' 5, 0}

Equational form: (without handling errors in Q)

o foreach L € T — L, a variable X} with value in £

@ equations are derived from thread equations eq(prog,) as:

XLl = UtET{ F(XL27 s ’XI—N) |

(X, = F(Xy,, ..., Xy,)) € eq(prog,):

Vi < N:Li(t) =4;,Vu#t: Li(u) = Li(uv) }
Join with U equations from eq(prog,) updating a single thread t € T.

(See course 3 for the full definition of eq(prog).)

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 25 / 81

State-based analyses Concurrent program semantics

Equational state semantics (example)

Example: inferring 0 < x <y < 102

t1 | to

while 10 =0 do’? | while 0 =0 do®

if x<y then if y<100 then
Bxi=x+1 L6y :=y+[1,3]
fi fi
done done
course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 26 / 81

State-based analyses Concurrent program semantics

Equational state semantics (example)

Example: inferring 0 < x <y < 102

t1 | to

while 10 = 0 do’? | while “0 =0 do®

if x<y then if y<100 then
Bxi=x+1 y:=y+[1,3]
fi fi
done done

(Simplified) equation system:
Xi4=T1TU ClIX =x+ 1]].)(3’4 @] C[[x > y]]XgA
UC[y:=y+[1,3]]X1,6 UC[y > 100] Xy 5
Aoy =14 U ClIy =y+ [173]]X2,6 U ClIy > 100]] Ao 5
X34 = Clx<y] A> 4 U Cly=y+ [173HIX3,6 UCJy >100] Az 5
Xis=Clx=x4+1]X35UC[x>y]XosUX14
Xos =15 U Aoy
X375 = C[[X < y]] X275 @] X3,4
X =Clx:=x+1]A36 UC[x>y] A6 UC[y <100] A1 5
X276 = X176 @]} ClIy < 100]] X2,5
X3’5 = CIIX < y]] XQ’G U Cﬂy < 100]].)(3)5

course 11 Static Analysis of Concurrent Programs Antoine Miné

State-based analyses

Concurrent program semantics

Equational state semantics (example)

Example: inferring 0 < x <y < 102

(51

to

while “10 =0 do??

while 40 =0 do®®

if x<y then if y<100 then
LBxi=x+1 £y :=y+[1,3]
fi fi
done done

Pros:
@ easy to construct
@ easy to further abstract in an abstract domain &£*

Cons:
@ explosion of the number of variables and equations
@ explosion of the size of equations
— efficiency issues
@ the equation system does not reflect the program structure

(not defined by induction on the concurrent program)

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 26 / 81

State-based analyses Concurrent program semantics

Wish-list

We would like to:

@ keep information attached to syntactic program locations
(control points in £, not control point tuples in T — L)

@ be able to abstract away control information
(precision/cost trade-off control)

@ avoid duplicating thread instructions
@ have a computation structure based on the program syntax

(denotational style)

Ideally: thread-modular denotational-style semantics

(analyze each thread independently by induction on its syntax)

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 27 / 81

Towards thread-modular analyses Detour through proof methods

Detour through proof methods

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 28 /81

Towards thread-modular analyses Detour through proof methods

Floyd—Hoare logic

Logic to prove properties about sequential programs [Hoar69].

Hoare triples: {P}prog{Q}
@ annotate programs with logic assertions {P} prog{Q}
(if P holds before prog, then Q holds after prog)

@ check that {P}prog{Q} is derivable with the following rules
(the assertions are program invariants)
{PAex0}s{Q} PAewx0=Q

{P[e/X]} X :=e{P} {P}if e10 thens £fi{Q}
{Prsi{@} {Q}=2{R} {PAexi0}s{P}
{P}s1;2{R} {P}while e <10 do s done {P A e 40}

{P}s{Q} P=PFP Q=0Q
{P}s{Q}

course 11 Static Analysis of Concurrent Programs Antoine Miné p.29 /81

Towards thread-modular analyses Detour through proof methods

Floyd—Hoare logic as abstract interpretation

Link with the equational state semantics:

Correspondence between ‘prog’ and {P} prog{Q}:
o if P (resp. Q) models exactly the points in Ay (resp. Xp)
then {P} prog {Q} is a derivable Hoare triple
o if {P}prog{Q} is derivable, then Xy, = P and Xy = Q
(all the points in Xy (resp. X,/) satisfy P (resp. Q))
= X, provide the most precise Hoare assertions
in a constructive form

o v(X*) provide (less precise) Hoare assertions
in a computable form

Link with the denotational semantics:

both C[prog] and the proof tree for {P} prog{Q}
reflect the syntactic structure of prog

(compositional methods)

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 30 / 81

Towards thread-modular analyses Detour through proof methods

Owicki—Gries proof method

Extension of Floyd—Hoare to concurrent programs [Owic76].

Principle: add a new rule, for ||

{P1}si{Qi} {P2}s{Q}
{PiAP}si | s5{Q1AQ}

course 11 Static Analysis of Concurrent Programs Antoine Miné p.31/81

Towards thread-modular analyses Detour through proof methods

Owicki—Gries proof method

Extension of Floyd—Hoare to concurrent programs [Owic76].

Principle: add a new rule, for ||

{P1}si{Qi} {P2}s{Q}
{PiAP}si | s5{Q1AQ}

This rule is not always sound!

e.g., we have {X=0,Yy=0}Xx:=1{X=1,Y=0}
and {X=0,Y=0}ifX=0thenY:=1fi{X=0,Y=1}
butnot {X=0,Y=0}X:=1|if X=0thenY:=1 fi{false}

=— we need a side-condition to the rule:
{P1}s1 {@1} and {P>} s, {Q2} must not interfere

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 31 /81

Towards thread-modular analyses Detour through proof methods

Owicki—Gries proof method (cont.)

interference freedom
given proofs Ay and Ay of {P1}s1 {Q:1} and {P>} s, { @2}

A1 does not interfere with Aj if:
for any ® appearing before a statement in Aj
for any {P}} s) {Q}} appearing in Az
{® A P;} sy {®} holds
and moreover {Q1 A P}} s, {Q1}

i.e.: the assertions used to prove {P1}s; {Qi1} are stable by s,
eg, {X=0Ye[0,1}Xx:=1{X=1Y€[0,1]}
{x€[0,1],Y=0}if X =0thenY:=1fi{X €[0,1],Y € [0,1]}
— {X=0,Yy=0}X:=1|[ifX=0thenY:=1fi{X=1,Y€[0,1]}
Summary:
@ pros: the invariants are local to threads

@ cons: the proof is not compositional

(proving one thread requires delving into the proof of other threads)

= not satisfactory

course 11 Static Analysis of Concurrent Programs Antoine Miné p.32/81

Towards thread-modular analyses Detour through proof methods

Jones' rely-guarantee proof method

Idea: explicit interferences with (more) annotations [Jone81].

Rely-guarantee “quintuples’: R, G + {P}prog{Q}
@ if P is true before prog is executed
@ and the effect of other threads is included in R (rely)
o then @ is true after prog

@ and the effect of prog is included in G (guarantee)

where:
@ P and @ are assertions on states (in P(X))

@ R and G are assertions on transitions (in P(Z x A x X))
The parallel composition rule becomes:

RV Gy, Gy + {Pl}Sl {Ql} RV G, Gy - {P2}S2 {Q2}
R,G1V Gy - {Pl AN PQ}Sl H Sg{Ql A Qg}

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 33 /81

Towards thread-modular analyses Detour through proof methods

Rely-guarantee example

Example: proving 0 < x <y <102

while ‘10 =0 do®? while 40 =0 do®®

if x<y then if y<100 then

Bxi=x+1 £0y:=y+[1,3]

fi fi
done done
at (1,02 : x,y €[0,102], x <y at /4,05 : x,y €[0,102], x <y
at (3: x €[0,101], y € [1,102], x <y at l6: x €[0,99], y €[0,99], x <y

v v

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 34 /81

Towards thread-modular analyses Detour through proof methods

Rely-guarantee example

Example: proving 0 < x <y <102

while ‘10 =0 do’? | x unchanged y unchanged | while “0 =0 do®®

if x<y then y incremented 0<x<y if y<100 then

Bxi=x+1 0<y<102 £y:=y+[1,3]

fi fi
done done
at (1,02 : x,y €[0,102], x <y at /4,05 : x,y €[0,102], x <y
at (3: x €[0,101], y € [1,102], x <y at l6: x €[0,99], y €[0,99], x <y

v v

In this example:
@ guarantee exactly what is relied on (R = G; and Rx = G;)
@ rely and guarantee are global assertions

Benefits of rely-guarantee:
@ invariants are still local to threads
@ checking a thread does not require looking at other threads,
only at an abstraction of their semantics

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 34 /81

Detour through proof methods

t | [%)
flx;zx+1f2|f3x;zx+1f4

Goal: prove {x =0} t; || to {x = 2}.

Towards thread-modular analyses Detour through proof methods

Auxiliary variables

t1 | to

“x::x+1f2‘€3x::x+1“

Goal: prove {x =0} t; || t2 {x = 2}.
we must rely on and guarantee that
each thread increments x exactly once!

Solution: auxiliary variables

do not change the semantics but store extra information:

@ past values of variables (history of the computation)
@ program counter of other threads (pc,)
Example: for t1: {(pc, =3Ax=0)V (pc, = 4 Ax =1)}
x:=x+1
{(pco =B Nx=1)V(pc, =4 ANx=2)}

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 35 /81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Rely-guarantee as abstract interpretation

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 36 /81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Local states

State projection: on athreadt €T

course 11

add auxiliary variables V; <= VU {pc, |t/ e T, t' # t}

. . def
enriched environments for t: & = V; = R
(for simplicity, pc,s are numeric variables, i.e., £L C R)

local states: ¥; < (£ x &)UQ

recall that T % (T > £) x &)uQ

2+ has a simpler, sequential control state

projection: mi(L, p) = (L(t), p[Vt' # t: pcy — L(t)])
from X to X;: shift control state to auxiliary variables
extended naturally to 7: : P(X) — P(X¢)

7+ is a bijection, no information is lost

Static Analysis of Concurrent Programs Antoine Miné

p. 37 /81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Local invariants

b b
o0 (] [
b b
e oo o——@

Abstraction steps to local reachable states:

e concrete (prefix) labelled trace semantics: 7,

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 38 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Local invariants

Abstraction steps to local reachable states:

e concrete (prefix) labelled trace semantics: 7,
e state reachability abstraction: R = a,(7,) € P(X)

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 38 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Local invariants

Abstraction steps to local reachable states:

e concrete (prefix) labelled trace semantics: 7,
e state reachability abstraction: R = a,(7,) € P(X)

o local state reachability: RI(t) & m(R) € P(Z:)

thread’s view of reachable states

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 38 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Interferences

b b
o0 [[
|
b\ a b a
e—0—0 o—©O

Interference: A€ T — P(X x X) caused by a thread t € T
A(t) = o™ (T,)(t)
where o (X)(t) & {(0,0")|3--0 S o' € X}

Subset of the transition system 7:
@ spawned by t
@ and actually observed in some execution trace (in 7;)

course 11 Static Analysis of Concurrent Programs Antoine Miné p.39 /81

Fixpoi

Towards thread-modular analyses Rely-guarantee as abstract interpretation

nt form

Local state fixpoint:

course 11

we express RI(t) as a function of A and thread t € T:
RI(t) = Ifp Re(A) where
Re: (T—=P(XxX))—P(X:) = P(Xe)
R(V)(X) & m(@) U
{me(0") | Ime(o) € X:0 5r 0/ VAU #£ t:(0,0") € Y(u)}

A state is reachable if it is initial,
or reachable by transitions from t or from the environment A.

R: only looks into the syntax of thread t.
R: is parameterized by the interferences from other threads Y.

Static Analysis of Concurrent Programs Antoine Miné

p. 40 / 81

Towards thread-modular analyses

Fixpoint form

Rely-guarantee as abstract interpretation

Local state fixpoint: illustration

Thread

x=0

while x<y
X+

/* blabla*/

Ifp R¢(A) interleaves:

@ transitions in m; from thread t

course 11 Static Analysis of Concurrent Programs

Antoine Miné

p. 41 /81

Towards thread-modular analyses

Fixpoint form

Rely-guarantee as abstract interpretation

Local state fixpoint: illustration

Thread

x=0
while x<y
X+

/* bla bla */

Ifp R¢(A) interleaves:

@ transitions in m; from thread t
@ transitions in A from interferences
course 11

Static Analysis of Concurrent Programs Antoine Miné

p. 41 /81

Towards thread-modular analyses

Fixpoint form

Rely-guarantee as abstract interpretation

Local state fixpoint: illustration

b b a
a
(@ @ @ @
b 3 4)
! \))
'~ Tees -7 _
~ 7777777v 7777777777 -
LT !
L L
Thread
x=0
while x<y
X++;
/* bla bla */

Ifp R¢(A) interleaves:

@ transitions in m; from thread t
@ transitions in A from interferences
course 11

Static Analysis of Concurrent Programs Antoine Miné

p. 41 /81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form (cont.)

Interferences:

Thread

x=0

while x<y)
X+

/* bla bla */

@ we express A(t) as a function of R/ and thread t € T:
A(t) = B(RI/)(t) where
B:(Ilier {t} = P(Xt) = T = P(X xX)
B(Z)(t) & {(0,0") |me(c) € Z(t) Ao 5, 07}

Collect transitions starting from reachable states.

No fixpoint needed.

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 42 /81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form (cont.)

Nested fixpoint characterization:

Q@ RI(t) = Ifp R(A)
Q@ A(t) = B(RI)(1)

© mutual dependency between R/ and A

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 43 /81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form (cont.)

Nested fixpoint characterization:

Q@ RI(t) = Ifp R(A)
Q@ A(t) = B(RI)(1)

© mutual dependency between R/ and A
= solved using a fixpoint:

Rl = Ifp H where

H: (Ieer {t} = P(%1)) = (Lier {t} = P(X4))
H(Z)(t) = 1fp Re(B(2))

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 43 /81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form (cont.)

Nested fixpoint characterization:

Q@ RI(t) = Ifp R(A)
Q@ A(t) = B(RI)(1)

© mutual dependency between R/ and A
= solved using a fixpoint:

Rl = Ifp H where

H: (Ieer {t} = P(%1)) = (Lier {t} = P(X4))
H(Z)(t) = 1fp Re(B(2))

Completeness: Vt: M(t) ~ R (7 is bijective thanks to auxiliary variables)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 43 /81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Fixpoint form (cont.)

Constructive fixpoint form:

Use Kleene's iteration to construct fixpoints:

o RI=1Ifp H=_],.n H"(AL.0)
in the pointwise powerset lattice [],.t {t} — P(X)

o H(Z)(t) = Ifp Re(B(2)) = U,en(Re(B(2)))"(D)
in the powerset lattice P(X¢)

(similar to the sequential semantics of thread t in isolation)

— nested iterations

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 44 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Abstract rely-guarantee

Suggested algorithm: nested iterations with acceleration

once abstract domains for states and interferences are chosen

@ start from 72/ti = Aﬁ LSV ER:

@ while A,, is not stable

e compute Vt € T: 72!5+1(t)
by iteration with widening Vv

def

Ifp RY(A)

(~~ separate analysis of each thread)
AL v BHRIE,)
return 72/5

def
e compute An+1 =

@ when A,, = An+1,

— thread-modular analysis
parameterized by abstract domains
able to easily reuse existing sequential analyses

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 45 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Flow-insensitive abstraction

Idea:

@ reduce as much control information as possible

@ but keep flow-sensitivity on each thread’s control location

Local state abstraction: remove auxiliary variables
o P(Xe) = P((L x E)UQ)
o] (X) = (o) (6 p) €XIU(XNQ)

Interference abstraction: remove all control state
alif 1 P(Ex) — P(E x &)
af (V) = {(p.p) 3L, L €T — L:((L,p), (L', p)) € Y}

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 46 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Flow-insensitive abstraction (cont.)

Flow-insensitive fixpoint semantics: (omitting errors Q)

We apply ozg’{ and aQ\f to the nested fixpoint semantics.

RIM T 1fp AZ AL Ifp R (B™ (Z)), where

B (Z)(t) ' {(p,p') 136, € L:(£,p) € Z(t) A (£,p) —¢ (£,0) }
(extract interferences from reachable states)

RIF(Y)(X) % Rlee(x) U AZF(Y)(X) (interleave steps)
Rloe(X) ' (41, W.0) YU { (€, ') |3(L, p) € X: (£, p) —¢ (¢,p')} (thread step)
AT (Y)(X) ef {0, p)|3p, u£t:(L,p) € XA(p,p') € Y(u)} (interference step)

where —; is the transition relation for thread t alone: T[prog,]

Cost/precision trade-off:

@ less variables
— subsequent numeric abstractions are more efficient

o sufficient to analyze our first example (slide 26)
o insufficient to analyze x :=x+ 1 || x := x + 1 (slide 35)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 47 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Non-relational interference abstraction

Idea: simplify further flow-insensitive interferences

@ numeric relations are more costly than numeric sets
—> remove input sensitivity

@ relational domains are more costly than non-relational
= abstract the interference on each variable separately

Non-relational interference abstraction:
af i P(ExE)—=(V—P(R))
X (Y) = AL x € V[3(p,) € Y:p(V) # x A p/(V) = x}

(remember which variables are modified and their new values)

To apply interferences, we get, in the nested fixpoint form:
AF(V)(X) =
(6 plV = V]) [(6 p) € X,V €V, 3u £ t:v € Y()(V) }

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 48 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

A note on unbounded threads

Extension: relax the finiteness constraint on T
@ there is still a finite syntactic set of threads T

@ some threads T, C Ts can have several instances

(possibly an unbounded number)

Flow-insensitive analysis:

@ local state and interference domains have finite dimensions
(Etand (L x E) x (L x &), as opposed to € and € X &)

@ all instances of a thread t € T are isomorphic
— iterate the analysis on the finite set Tg (instead of T)

@ we must handle self-interferences for threads in Tso:
AFF(Y)(X) =
{60 3p, u(u#tVt € Too)A(L,p) € XA (p,p') € Y(u)}

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 49 /81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

From traces to thread-modular analyses

abstract states abstract interferences
(TxL)— el E T &t

hae

non-relational interferences

ag —@ — @ — @
T — P(E)
fox
local states flow-insensitive interferences
[N N} o—©0 O o o ©o
(TxL)—PE) T—PEXE)
Pt fox
local states interferences
® o e ® © o e o e
Rl Tleer {t} — P(Xe) A:T— P(XxX)

1\7rt ’T\aitf
interleaved execution trace prefixes
® ® @ @ 7,cP(xY)

course 11 Static Analysis of Concurrent Programs

static analyzer

rely-guarantee

(without aux. variables)

rely-guarantee
(with aux. variables)

test

Antoine Miné

p. 50 / 81

Towards thread-modular analyses Rely-guarantee as abstract interpretation

Compare with sequential analyses

abstract states

et static analyzer
ag
states
(I N reachability
R € P(X)
p

execution trace prefixes

o—0—0—0o test
Tp € P(X7)
course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 51 /81

Construction of an interference-based analysis

Construction of an interference-based analysis

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 52 /81

Construction of an interference-based analysis

Reminder: sequential analysis in denotational form

Expression semantics: E[exp] : £ — (P(R) x P(Q2))

E[x]p = <{i f(X)} 0)

E[[[Cl»Q]]]P = ({xeRla<x< e}, 0)
E[—e]p ef let (V, O)=E[e]pin{({—-v|veV} O)
E[eiow e]p def

Iet<V1, 01>:E|I€‘1]]pin

let (Vo, O2) =E[ex] pin

({viow|vieVio# /Vwv#0}, O1UOU{wifo=/A0€ Va2 })
Statement semantics: C[prog] : (P(€) x P(Q)) — (P(€) x P(R))
C[x:=e](R, 0) E' (0, 0) Ull,cr ({plxV][vEV,}, Op)
Clex0?] (R, 0) = (0, 0) U l,er ({p|3vE Vp:vix0}, Op)
Clif exaOthensfi] X % (C[s] o Cle0?])X L C[e 4 0?7] X
C[while e <1 0 do s done] X ef

Cle 071 (fpAY.X U(CLs] o CLes<07])Y)

Cl[s1; 52]] C[[sz]]oC[[sl]]
where (V,, O,)) E[[e]]p

def

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 53 / 81

Construction of an interference-based analysis

Denotational semantics with interferences

Interferences in | & T x V x R
(t, X, v) means: t can store the value v into the variable X

We define the analysis of a thread t
with respect to a set of interferences | C I.

Expressions with interference: for thread t
Eifexp] : (€ x P(1)) = (P(R) x P(%2))
@ Apply interferences to read variables:
EfX](p, 1) = ({p(X)YU{v|Tu#t:(u X, v)el} 0)

@ Pass recursively | down to sub-expressions:

E—e](p, 1)
let (V, O0)=EJe](p,!)in{{—-v|veV} O)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 54 / 81

Construction of an interference-based analysis

Denotational semantics with interferences (cont.)

Statements with interference: for thread t

Ci[prog] : (P(€) x P(Q2) x P(1)) — (P(E) x P(Q) x P(I))

@ pass interferences to expressions

@ collect new interferences due to assignments

@ accumulate interferences from inner statements
G[Xx:=e](R, 0, 1) %

(0,0,1) U Uper {pX = vllve Vo) Op, {({t, X, v)[veEV,})

Clsii 2] < Cls2] o Cel[si]

noting (V,, 0,) €' Ec[e] (p, /)
LI is now the element-wise U in P(€) x P(Q) x P(I)

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 55 / 81

Construction of an interference-based analysis

Denotational semantics with interferences (cont.)

Program semantics: P|[parprog]| C Q

Given parprog ::= prog; || --- || prog,, we compute:

def

P[[parprog]] = pr)\< o, I>'|_|teT [Ct[[progt]] <807 @, />]Q,I Q

@ each thread analysis starts in an initial environment set
& = {0}

o [X]q,1 projects X € P(E) x P(2) x P(I) on P(2) x P(I)
and interferences and errors from all threads are joined

(the output environments are ignored)

e P[parprog] only outputs the set of possible run-time errors

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 56 / 81

Construction of an interference-based analysis

Example

t1 | %]

while 10 =0 do’? | while 0 =0 do’®

if x<y then if y<100 then
Byi=x+1 éﬁy:=y+[1,3]
fi fi
done done

Concrete interference semantics:

iteration 1

=10

1:x=0,y=0

/4 :x=0,y€[0,102]

new | ={(t2,y,1),...,(t, y, 102) }

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 57 /81

Construction of an interference-based analysis

Example

t1 | %]

while 10 =0 do’? | while 0 =0 do’®

if x<y then if y<100 then
Byi=x+1 éﬁy:=y+[1,3]
fi fi
done done

Concrete interference semantics:

iteration 2

/:{<t25 Y 1)7"'7<t27 Y 102>}

/1:x€[0,102],y=0

/4 x=0,y€[0,102]

new | ={(t1, x,1),...,(t1,x,102),(to, y,1),...,(t2, y, 102) }

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 57 /81

Construction of an interference-based analysis

Example

t1 | %]

while 10 =0 do’? | while 0 =0 do’®

if x<y then if y<100 then
Byi=x+1 éﬁy:=y+[1,3]
fi fi
done done

Concrete interference semantics:

iteration 3

/Z{(fl, X, 1),...,(1‘1,}(, 102>,<t2, Y, 1),...,<t2, Y, 102>}
/1:x€[0,102],y=0

/4 x=0,y€[0,102]

new | = {(t1, x,1),...,(t1,x,102),(to, y,1),...,(t2, y, 102) }

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 57 /81

Construction of an interference-based analysis

Example

t1

| 2

while ‘10 =0 dof?

while 40 =0 do®®

if x<y then if y<100 then
Byxi=x+1 £0y:=y+[1,3]
fi fi
done done

Concrete interference semantics:

iteration 3

/Z{(l‘l, X, 1),...,(1‘1,}(, 102>,<t2, Y, 1),...,<t2, Y, 102>}
/1:x€[0,102],y=0

/4 x=0,y€[0,102]

new | = {(t1, x,1),...,(t1,x,102),(to, y,1),...,(t2, y, 102) }

Note: we don't get that x <y at /1, only that x,y € [0, 102]

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 57 /81

Construction of an interference-based analysis

Interference abstraction

Abstract interferences ¥

P(1) & P(T x V x R) is abstracted as ¥ < (T x V) — R
where R abstracts P(R) (e.g. intervals)

Abstract semantics with interferences Cf[[s}]

derived from C![s] in a generic way:
Example: Cf[[x =e](R%, Q, It)
@ for each Y in e, get its interference Yh, = |_|§2 {1 {u, Y)|u#t}

@ if YgR + 14, replace Y in e with get(Y, R") ugz Yg2
(where get(Y, R*) extracts the abstract values in R¥ of a variable Y from
Rt ¢ &)

@ compute (RY, O') = Ct[e] (Rf, O)
@ enrich /1(t, X) with get(X, RY")

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 58 /81

Construction of an interference-based analysis

Static analysis with interferences

P{[parprog] =
[Iim/\(0, /ﬁ>-<oa /Ii>v ugeT Cg[[progt]Hgg, 0, Hj)}ﬂw]ﬂ

@ effective analysis by structural induction

@ termination ensured by a widening

@ parametrized by a choice of abstract domains R, &£*

e interferences are flow-insensitive and non-relational in R*

o thread analysis remains flow-sensitive and relational in &£*

(reminder: [X]q, [Y]q ¢ keep only X's component in Q, Y's components in 2 and 1)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 59 /81

Construction of an interference-based analysis Path-based semantics

Path-based semantics

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 60 / 81

Construction of an interference-based analysis Path-based semantics

Control paths

atomic ::= X := exp | exp 107
7 : prog — P(atomic™)

(X :=e) & {X:=e}

7(if e 0 thens £fi) & ({e10?}-7(s))U{e4 07}

m(while e 10 do s done) & (UIZO({ ex107?}- ﬂ(s))i) {ew0?}

m(s1; 82) € w(sy) - 7(s2)

m(prog) is a (generally infinite) set of finite control paths

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 61 /81

Construction of an interference-based analysis Path-based semantics

Path-based concrete semantics of sequential programs

Join-over-all-path semantics
[P]:(P(E)xP(Q)— (PE)xP(Q) P C atomic*

[PI(R,0)= || (Clsalo---oCls1])(R, O)

S1-....sn€P

Semantic equivalence

Clprog] = [n(prog)]

(not true in the abstract)

Advantages:
@ easily extended to concurrent programs (path interleavings)

@ able to model program transformations (weak memory models)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 62 /81

Construction of an interference-based analysis Path-based semantics

Path-based concrete semantics of concurrent programs

ef
Ty =

{interleavings of 7(prog,), t € T }
{ p € atomic* |Vt € T, proj,(p) € w(prog,) }

Interleaving program semantics

P.[parprog] £ [[m]{&, 0)]o

(proj.(p) keeps only the atomic statement in p coming from thread t)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 63 /81

Construction of an interference-based analysis Path-based semantics

Soundness of the interference semantics

P.[parprog] C P[parprog]

Proof sketch:
@ define (JP]IX © |J{Celst;...isn] X|s1-...-sn€ P},
then ¢[n(s)] = C[s];
@ given the interference fixpoint / C | from P[parprog],
prove by recurrence on the length of p € 7, that:
o VteT,Vpel [pl{& 0)l,
o' e[lproj.(p) (&, D, I)]c such that
VX eV, p(X) = p'(X) or (u, X, p(X)) € I for some u # t.
o [[PI(&, Mg € Uer[clproj:(p)1(&o, 0, I)]q

Note: sound but not complete

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 64 / 81

Construction of an interference-based analysis Weakly consistent memories

Weakly consistent memories

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 65 /81

Construction of an interference-based analysis Weakly consistent memories

Issues with weak consistency

program written

Fi:=1; Fo:=1;

if Fp = 0 then | if F;{ = 0 then
51 52

fi fi

(simplified Dekker mutual exclusion algorithm)

S1 and S; cannot execute simultaneously.

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 66 / 81

Construction of an interference-based analysis Weakly consistent memories

Issues with weak consistency

program written program executed
Fi:=1; Fr:=1; s if F, = 0 then | if F; = 0 then
if Fp = 0 then | if F;{ = 0 then Fi:=1, F:=1,
51 52 51 52
fi fi fi fi

(simplified Dekker mutual exclusion algorithm)

S1 and S; can execute simultaneously.
Not a sequentially consistent behavior!

Caused by:
@ write FIFOs, caches, distributed memory
@ hardware or compiler optimizations, transformations
° ...

behavior accepted by Java [Mans05]

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 66 / 81

Weakly consistent memories

original program

(example from causality test case #4 for Java by Pugh et al.)

We should not have R; = 42.

Construction of an interference-based analysis Weakly consistent memories

Out of thin air principle

“optimized” program
— Y:=42;
Y:=R | X:=R Ri=X; | Rai=Y;

original program

R1:=X; Rr:=Y;
Y.=R; X:=R,

(example from causality test case #4 for Java by Pugh et al.)

We should not have Ry = 42.

Possible if we allow speculative writes!
— we disallow this kind of program transformations.

(also forbidden in Java)

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 67 / 81

Weakly consistent memories

original program
X:=X+1 | X:=X+1

We assumed that assignments are atomic. . .

Construction of an interference-based analysis Weakly consistent memories

Atomicity and granularity

executed program

original program

XZ:X+1|XZ:X+1 r1::X+1 r2::X+1
X:=n X:=n

We assumed that assignments are atomic. . .
but that may not be the case

The second program admits more behaviors
e.g.: X =1 at the end of the program

[Reyn04]

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 68 / 81

Construction of an interference-based analysis Weakly consistent memories

Path-based definition of weak consistency

Acceptable control path transformations: p ~~ ¢

only reduce interferences and errors

@ Reordering: X1:=e; - Xp:=e» ~» Xpi=e - X1:=¢;
(if X1 ¢ var(e2), X2 ¢ var(ey), and e; does not stop the program)

e Propagation: X:=e-s ~» X:=e- s[e/X]
(if X ¢ var(e), var(e) are thread-local, and e is deterministic)

e Factorization: sy ... s, ~» Xi=e-si[X/e]| ... sp[X/€]
(if X is fresh, Vi, var(e) N Ival(s;) = 0, and e has no error)

@ Decomposition: X:=e1 + & ~~ T:=e; - X:=T+ &
(change of granularity)

but NOT:

@ “out-of-thin-air” writes: X:=e ~» X:=42 . -X:=e

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 69 / 81

Construction of an interference-based analysis Weakly consistent memories

Soundness of the interference semantics

Interleaving semantics of transformed programs P/, [parprog]

o w(s) = {p|Ip en(s):p ~ "p}
o 7. = {interleavings of 7/(prog,), t € T}
o P [parprog] = [[.]{&, 0)lq

P.[parprog] C P[parprog]

= the interference semantics is sound
wrt. weakly consistent memories and changes of granularity

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 70 / 81

Construction of an interference-based analysis Synchronisation

Synchronisation

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 71 /81

Construction of an interference-based analysis Synchronisation

Scheduling

prog == lock(m)
| unlock(m)

m € M : finite set of non-recursive mutexes

Scheduling

@ mutexes ensure mutual exclusion

at each time, each mutex can be locked by a single thread
@ mutexes enforce memory consistency and atomicity

no optimization across lock and unlock instructions
memory caches and buffer are flushed

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 72 /81

Construction of an interference-based analysis Synchronisation

Mutual exclusion

lock(m) unlock(m)
W W '
Pl — @@ 0

R R W R
lock(m) unlock(m)

Interleaving semantics P, [parprog]:

restrict interleavings of control paths

Interference semantics P[parprog], P! parprog]:

partition wrt. an abstract local view of the scheduler C
& ~ ExC, & ~ C—¢&t

def def

ol = TXVXR ~ I =TxCxVxR,
I (TxV) 5 RE ~ IFE (TxCxV)— R

course 11 Static Analysis of Concurrent Programs Antoine Miné

p.73 /81

Construction of an interference-based analysis Synchronisation

Mutual exclusion

lock(m) unlock(m)

Data-race effects

Partition wrt. mutexes M C M held by the current thread t
o Ci[X:=e](p, M,) adds
{(t, M, X, v) |[veE[X](p, M, 1)} to
o E[X](p, M, 1) =
{pX)}U{v|{t', M X, vyel, t£t, MNM =0}
o flow-insensitive, subject to weak memory consistency

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 73 /81

Construction of an interference-based analysis Synchronisation

Mutual exclusion

lock(m) unlock(m)
W W '
Pl — @@

P2 rerrereeee e H—H
R R W R

lock(m) unlock(m)

Well-synchronized effects

@ last write before unlock affects first read after lock

@ partition interferences wrt. a protecting mutex m (and M)
@ CiJunlock(m)] (p, M, I') stores p(X) into /

o Ci[lock(m)](p, M, I') imports values form /I into p

@ imprecision: non-relational, largely flow-insensitive

course 11 Static Analysis of Concurrent Programs Antoine Miné

p.73 /81

Construction of an interference-based analysis

Example analysis

Synchronisation

abstract consumer/producer

t1 %]
while 0=0 do while 0=0 do
lock(m); %t lock(m);
if X>0 then “X:=X-1 fi; X:=X+1;
unlock(m) ; if X>10 then X:=10 fi;
B3y =x unlock(m)
done done

@ at /1, the unlock-lock effect from t» imports {X} x [1,10]

e at /2, X € [1,10], no effect from to: X:=X-1 is safe
@ at /3, X € [0,9], and t» has the effects {X} x [1,10]

so, X € [0, 10]

course 11 Static Analysis of Concurrent Programs Antoine Miné

p. 74 / 81

Construction of an interference-based analysis Limitations of the interference abstraction

Limitations of the interference abstraction

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 75 /81

Construction of an interference-based analysis Limitations of the interference abstraction

Lack of relational lock invariants

a difficult example

E:X=Y=5
while 0=0 do while 0=0 do
lock(m); lock(m);
if X>0 then if X<10 then
X:=X-1; X:=X+1;
Y:=Y-1; Y:=Y+1;
igal g fi;
unlock (m) unlock(m)
done done
v

Our analysis finds X € [0, 10], but no bound on Y.
Actually Y € [0, 10].

To prove this, we would need to infer the relational invariant X =Y
at lock boundaries.

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 76 / 81

Construction of an interference-based analysis Limitations of the interference abstraction

Lack of inter-process flow-sensitivity

a more difficult example

while 0=0 do while 0=0 do
lock(m); lock(m);
X:=X+1; X:= X+1;
unlock(m) ; unlock(m) ;
lock(m); lock(m);
X:=X-1; X:=X-1;
unlock(m) unlock(m)
done done
v

Our analysis finds no bound on X.
Actually X € [—2,2] at all program points.

To prove this we need to infer an invariant on
the history of interleaved executions:
no more than two incrementation (resp. decrementation) can occur

without a decrementation (resp. incrementation).

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 77 / 81

Bibliography

Bibliography

Bibliography

[Bour93] F. Bourdoncle. Efficient chaotic iteration strategies with
widenings. In Proc. FMPA'93, LNCS vol. 735, pp. 128-141, Springer,
1993.

[Carr09] J.-L. Carré & C. Hymans. From single-thread to
multithreaded: An efficient static analysis algorithm. In
arXiv:0910.5833v1, EADS, 2009.

[Cous84] P. Cousot & R. Cousot. Invariance proof methods and
analysis techniques for parallel programs. In Automatic Program
Construction Techniques, chap. 12, pp. 243-271, Macmillan, 1984.

[Cous85] R. Cousot. Fondements des méthodes de preuve d'invariance
et de fatalité de programmes paralléles. In Thése d'Etat es sc. math.,
INP Lorraine, Nancy, 1985.

[Hoar69] C. A. R. Hoare. An axiomatic basis for computer
programming. In Com. ACM, 12(10):576-580, 1969.

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 79 /81

Bibliography

Bibliography (cont.)

[Jone81] C. B. Jones. Development methods for computer programs
including a notion of interference. In PhD thesis, Oxford University, 1981.

[Lamp77] L. Lamport. Proving the correctness of multiprocess
programs. In IEEE Trans. on Software Engineering, 3(2):125-143, 1977.

[Lamp78] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. In Comm. ACM, 21(7):558-565, 1978.

[Mans05] J. Manson, B. Pugh & S. V. Adve. The Java memory
model. In Proc. POPL'05, pp. 378-391, ACM, 2005.

[Minél2] A. Miné. Static analysis of run-time errors in embedded
real-time parallel C programs. In LMCS 8(1:26), 63 p., arXiv, 2012.

[Owic76] S. Owicki & D. Gries. An axiomatic proof technique for
parallel programs I. In Acta Informatica, 6(4):319-340, 1976.

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 80 / 81

Bibliography

Bibliography (cont.)

[Reyn04] J. C. Reynolds. Toward a grainless semantics for
shared-variable concurrency. In Proc. FSTTCS'04, LNCS vol. 3328,

pp. 35-48, Springer, 2004.

[Sara07] V. A. Saraswat, R. Jagadeesan, M. M. Michael & C. von
Praun. A theory of memory models. In Proc. PPoPP’07, pp. 161-172,
ACM, 2007.

course 11 Static Analysis of Concurrent Programs Antoine Miné p. 81 /81

	Introduction
	State-based analyses
	Sequential program semantics (reminders)
	Concurrent program semantics

	Towards thread-modular analyses
	Towards thread-modular analyses
	Detour through proof methods
	Rely-guarantee as abstract interpretation

	Construction of an interference-based analysis
	Path-based semantics
	Weakly consistent memories
	Synchronisation
	Limitations of the interference abstraction

	Bibliography

