Shape analysis based on separation logic MPRI — Cours "Interprétation abstraite : application à la vérification et à l'analyse statique"

Xavier Rival

INRIA

Dec, 17th, 2014

Overview of the lecture

How to reason about memory properties

Last lecture:

- analyses specific to several kinds of structures
- concrete and abstract memory models
- an introduction to shape analysis with TVLA

Today:

- a logic to describe properties of memory states
- abstract domain
- static analysis algorithms
- combination with numerical domains
- widening operators...

Outline

- 1 An introduction to separation logic
- 2 A shape abstract domain relying on separation
- Combination with a numerical domain
- 4 Standard static analysis algorithms
- 5 Inference of inductive definitions / call-stack summarization
- Conclusion

Our model

Environment + Heap

- Addresses are values: $\mathbb{V}_{addr} \subseteq \mathbb{V}$
- Environments $e \in \mathbb{E}$ map variables into their addresses
- Heaps ($h \in \mathbb{H}$) map addresses into values

$$\begin{array}{ll} \mathbb{E} & = & \mathbb{X} \to \mathbb{V}_{\mathrm{addr}} \\ \mathbb{H} & = & \mathbb{V}_{\mathrm{addr}} \to \mathbb{V} \end{array}$$

- h is actually only a partial function
- Memory states:

$$\mathbb{M} = \mathbb{E} \times \mathbb{H}$$

Example of a concrete memory state (variables)

- x and z are two list elements containing values 64 and 88, and where the former points to the latter
- y stores a pointer to z

Memory layout (pointer values underlined)

Example of a concrete memory state (variables + heap)

- same configuration
- + z points to a heap allocated list element (in purple)

Memory layout

e :	х у z		300 308 312
h :	304 308 312 316	\mapsto \mapsto	312 312 88 508
	508 512	$\mapsto \\ \mapsto$	0

Weak update problems

```
\begin{split} x &\in [-10, -5]; \ y \in [5, 10] \\ &\text{int} \star \ p; \\ &\text{if}(?) \\ & p = \&x; \\ &\text{else} \\ & p = \&y; \\ &\star p = 0; \end{split}
```

- ullet What is the final range for x ?
- What is the final range for y?

- After the if statement, p may contain any address in {&x, &y}
- Thus, the assignment must consider all cases, in a conservative way
- ullet Thus, x may receive a new value (0) or keep its old value
- Conclusion: $x \in [-10, 0], y \in [0, 10]$

Weak updates

Any imprecision in the analysis may lead to weak updates...

Separation logic principle: avoid weak updates

How to deal with weak updates?

Avoid them !

- Always materialize exactly the cell that needs be modified
- Can be very costly to achieve, and not always feasible
- Notion of property that holds over a memory region
- Use a special separating conjunction operator *
- Local reasoning: powerful principle, which allows to consider only part of the program memory
- Separation logic has been used in many contexts, including manual verification, static analysis, etc...

Separation logic

- Logic made of a set of formulas
- inference rules...

Pure formulas

Set of pure formulas, similar to first order logics

Denote numerical properties among the values

Heap formulas (syntax on the next slide)

- Set of formulas to describe concrete heaps
- Concretization relation of the form $(e, h) \in \gamma(F)$

Xavier Rival (INRIA)

Heap formulas

Main connectors

Each formula describes a heap region

Denotations: the usual stuff...

- $\gamma(\mathsf{emp}) = \emptyset$; $\gamma(\mathsf{true}) = \mathbb{M}$
- $(e, h) \in \gamma(F' \wedge F'')$ if and only if $(e, h) \in \gamma(F')$ and $(e, h) \in \gamma(F'')$

Separating conjunction: next slide...

The separating conjunction

Single cells

$$(e, h) \in \gamma(I \mapsto v)$$
 if and only if $h = [\llbracket I \rrbracket (e, h) \mapsto v]$

Merge of concrete stores

Let
$$h_0, h_1 \in (\mathbb{V}_{\mathrm{addr}} \to \mathbb{V})$$
, such that $\mathsf{dom}(h_0) \cap \mathsf{dom}(h_1) = \emptyset$.

Then, we let $h_0 \otimes h_1$ be defined by:

$$h_0 \circledast h_1 : \operatorname{dom}(h_0) \cup \operatorname{dom}(h_1) \longrightarrow \mathbb{V}$$

$$x \in \operatorname{dom}(h_0) \longmapsto h_0(x)$$

$$x \in \operatorname{dom}(h_1) \longmapsto h_1(x)$$

Concretization of separating conjunction

- Logical formulas denote sets of heaps; concretization γ
- Binary logical connector on formulas * defined by:

$$\gamma(F_0 * F_1) = \{(e, h_0 \circledast h_1) \mid (e, h_0) \in \gamma(F_0) \land (e, h_1) \in \gamma(F_1)\}$$

Separating conjunction vs non separating conjunction

- Classical conjunction: properties for the same memory region
- Separating conjunction: properties for disjoint memory regions

$a \mapsto \&b \land b \mapsto \&a$

- the same heap verifies $a \mapsto \&b$ and $b \mapsto \&a$
- there can be only one cell
- thus *a* = *b*

$$a \mapsto \&b * b \mapsto \&a$$

- two separate sub-heaps respectively satisfy a → &b and b → &a
- thus $a \neq b$
- Separating conjunction and non-separating conjunction have very different properties
- Both express very different properties
 e.g., no ambiguity on weak / strong updates

An example

Concrete memory layout (pointer values underlined)

 $\begin{array}{ccc} 312 & \mapsto & 88 \\ 316 & \mapsto & 0 \end{array}$

A formula that abstracts away the addresses:

$$x \mapsto \langle 64, \& z \rangle * y \mapsto \& z * z \mapsto \langle 88, 0 \rangle$$

Separating and non separating conjunction

- There are two conjunction operators ∧ and *
- How to relate them ?

Separating conjunction vs normal conjunction

$$\frac{(e, h_0) \in \gamma(F_0) \qquad (e, h_1) \in \gamma(F_1)}{(e, h_0 \circledast h_1) \in \gamma(F_0 * F_1)} \qquad \frac{(e, h) \in \gamma(F_0) \qquad (e, h) \in \gamma(F_1)}{(e, h) \in \gamma(F_0 \land F_1)}$$

 Reminiscent of Linear Logic [Girard87]: resource aware / non resource aware conjunction operators

Programs with pointers: syntax

Syntax extension: quite a few additional constructions

```
1 ::= I-valules
                        (x \in X)
                        pointer dereference
        1 \cdot f
                        field read
e ::= expressions
                        "address of" operator
s ::= statements
        x = malloc(c) allocation of c bytes
        free(x) deallocation of the block pointed to by x
```

We do not consider pointer arithmetics here

Programs with pointers: semantics

Case of I-values:

Case of expressions:

$$[[1]](e, heap) = h([[1]](e, heap))$$
$$[[\&1]](e, heap) = [[1]](e, heap)$$

Case of statements:

- memory allocation x = malloc(c): $(e, h) \rightarrow (e, h')$ where $h' = h[e(\mathbf{x}) \leftarrow k] \uplus \{k \mapsto v_k, k+1 \mapsto v_{k+1}, \dots, k+c-1 \mapsto v_{k+c-1}\}$ and $k, \ldots, k+c-1$ are fresh in h
- memory deallocation free(x): $(e, h) \rightarrow (e, h')$ where k = e(x) and $h = h' \uplus \{k \mapsto v_k, k+1 \mapsto v_{k+1}, \dots, k+c-1 \mapsto v_{k+c-1}\}$

Shape analysis based on separation logic

Separating logic triple

Program proofs based on triples

• Notation: $\{F\}p\{F'\}$ if and only if:

$$\forall s, s' \in \mathbb{S}, \ s \in \gamma(F) \land s' \in \llbracket p \rrbracket(s) \Longrightarrow s' \in \gamma(F')$$

Hoare triples

• Application: formalize proofs of programs

A few rules (straightforward proofs):

$$\frac{F_0 \Longrightarrow F_0' \qquad \{F_0'\} p\{F_1'\} \qquad F_1' \Longrightarrow F_0'}{\{F_0\} p\{F_1\}} \ \ \textit{consequence}$$

$$\overline{\{x\mapsto?\}x:=e\{x\mapsto e\}} \ \ \textit{mutation}$$

$$\overline{\{x\mapsto?*F\}x:=e\{x\mapsto e*F\}}$$
 mutation – 2

(we assume that e does not allocate memory)

The frame rule

What about the resemblance between rules "mutation" and "mutation-2"?

Theorem: the frame rule

$$\frac{\{F_0\}s\{F_1\}}{\{F_0*F\}s\{F_1*F\}} \text{ frame}$$

- Proof by induction on the rules (see biblio for a more complete set of rules)
- Rules are proved by case analysis on the program syntax

We can reason locally about programs

Application of the frame rule

Let us consider the program below:

```
int i;

int \star x;

int \star y; {i \mapsto? * x \mapsto? * y \mapsto?}

x = &i; {i \mapsto? * x \mapsto &i * y \mapsto?}

y = &i; {i \mapsto? * x \mapsto &i * y \mapsto &i}

\star x = 42; {i \mapsto 42 * x \mapsto &i * y \mapsto &i}
```

- Each step impacts a disjoint memory region
- This case is easy
 See biblio for more complex applications
 (verification of the Deutsch-Shorr-Waite algorithm)

Summarization and inductive definitions

What do we still miss?

So far, formulas denote **fixed sets of cells**Thus, no summarization of unbounded regions...

Example all lists pointed to by x, such as:

 How to precisely abstract these stores with one formula i.e., no infinite disjunction?

Inductive definitions in separation logic

List definition

$$\begin{array}{ll} \alpha \cdot \mathbf{list} &:= & \alpha = \mathbf{0} \, \wedge \, \mathbf{emp} \\ & \vee & \alpha \neq \mathbf{0} \, \wedge \, \alpha \cdot \mathbf{next} \mapsto \gamma * \alpha \cdot \mathbf{data} \mapsto \beta * \gamma \cdot \mathbf{list} \end{array}$$

Formula abstracting our set of structures:

$$\&x \mapsto \alpha * \alpha \cdot \mathsf{list}$$

- Summarization: this formula is finite and describe infinitely many heaps
- Concretization: next slide...

Practical implementation in verification/analysis tools

- Verification: hand-written definitions
- Analysis: either built-in or user-supplied, or partly inferred

Concretization by unfolding

Intuitive semantics of inductive predicates

- Inductive predicates can be **unfolded**, by unrolling their definitions Syntactic unfolding is noted $\stackrel{\mathcal{U}}{\longrightarrow}$
- A formula F with inductive predicates describes all stores described by all formulas F' such that $F \xrightarrow{\mathcal{U}} F'$

Example:

• Let us start with $x \mapsto \alpha_0 * \alpha_0 \cdot \mathbf{list}$; we can unfold it as follows: $\&x \mapsto \alpha_0 * \alpha_0 \cdot \mathbf{list}$

$$\begin{array}{ll} \stackrel{\mathcal{U}}{\longrightarrow} & \&\mathtt{x} \mapsto \alpha_0 * \alpha_0 \cdot \mathtt{next} \mapsto \alpha_1 * \alpha_0 \cdot \mathtt{data} \mapsto \beta_1 * \alpha_1 \cdot \mathsf{list} \\ \stackrel{\mathcal{U}}{\longrightarrow} & \&\mathtt{x} \mapsto \alpha_0 * \alpha_0 \cdot \mathtt{next} \mapsto \alpha_1 * \alpha_0 \cdot \mathtt{data} \mapsto \beta_1 * \mathsf{emp} \wedge \alpha_1 = \mathbf{0x0} \end{array}$$

• We get the concrete state below:

Example: tree

• Example:

Inductive definition

• Two recursive calls instead of one:

$$\begin{array}{ll} \alpha \cdot \mathsf{tree} &:= & \alpha = \mathsf{0} \, \wedge \, \mathsf{emp} \\ & \vee & \alpha \neq \mathsf{0} \, \wedge \, \alpha \cdot \mathsf{left} \mapsto \beta * \alpha \cdot \mathsf{right} \mapsto \gamma \\ & * \beta \cdot \mathsf{tree} * \gamma \cdot \mathsf{tree} \end{array}$$

Example: doubly linked list

• Example:

Inductive definition

• We need to propagate the prev pointer as an additional parameter:

$$\begin{array}{lll} \alpha \cdot \mathbf{dII}(p) & := & \alpha = 0 \, \wedge \, \mathbf{emp} \\ & \vee & \alpha \neq 0 \, \wedge \, \alpha \cdot \mathtt{next} \mapsto \gamma * \alpha \cdot \mathtt{prev} \mapsto p * \gamma \cdot \mathbf{dII}(\alpha) \end{array}$$

Example: sortedness

Example: sorted list

Inductive definition

- Each element should be greater than the previous one
- The first element simply needs be greater than $-\infty...$
- We need to propagate the lower bound, using a scalar parameter

$$\begin{array}{ll} \alpha \cdot \mathsf{Isort}_{\mathrm{aux}}(\mathit{n}) & := & \alpha = \mathsf{0} \, \land \, \mathsf{emp} \\ & \lor & \alpha \neq \mathsf{0} \, \land \, \beta \leq \mathit{n} \, \land \, \alpha \cdot \mathsf{next} \mapsto \gamma \\ & & \ast \, \alpha \cdot \mathsf{data} \mapsto \beta \ast \gamma \cdot \mathsf{Isort}_{\mathrm{aux}}(\beta) \end{array}$$

$$\alpha \cdot \mathsf{Isort}() := \alpha \cdot \mathsf{Isort}_{\mathrm{aux}}(-\infty)$$

A new overview of the remaining part of the lecture

How to apply separation logic to static analysis and design abstract interpretation algorithms based on it ?

In this lecture, we will:

- choose a small but expressive set of separation logic formulas
- define wide families of abstract domains
- study algorithms for local concretization (equivalent to focus) and global abstraction (widening...)

Outline

- An introduction to separation logic
- 2 A shape abstract domain relying on separation
- 3 Combination with a numerical domain
- 4) Standard static analysis algorithms
- 5 Inference of inductive definitions / call-stack summarization
- 6 Conclusion

Choice of a set of formulas

Our set of predicates

- An abstract value is a separating conjunction of terms
- Each term describes
 - either a contiguous region
 - or a summarized region, described by an inductive defintion
- Abstract elements have a straightforward interpretation as a shape graph
- Unless necessary, we omit environments (concretization into sets of heaps)

Abstraction into separating shape graphs

Memory splitting into regions

Region summarization:

- abstraction parameterized by a set of inductive definitions
- Defines a concretization relation
- Let us formalize this...

Contiguous regions

Shape graphs

- Edges: denote memory regions
- Nodes: denote values, i.e. addresses or cell contents

Points-to edge, denote contiguous memory regions

- Separation logic formula: $\alpha \cdot f \mapsto \beta$
- Abstract and concrete views:

Concretization:

$$\gamma_{\mathrm{S}}(\alpha \cdot \mathbf{f} \mapsto \beta) = \{([\nu(\alpha) + \mathsf{offset}(\mathbf{f}) \mapsto \nu(\beta)], \nu) \mid \nu : \{\alpha, \beta, \ldots\} \to \mathbb{N}\}$$

 \triangleright ν : bridge between memory and values

Separation

- A graph = a set of edges
- Denotes the separating conjunction of the edges

Empty graph emp

 $\gamma_{\mathrm{S}}(\mathsf{emp}) = \{(\emptyset, \nu) \mid \nu : \mathsf{nodes} \to \mathbb{V}\} \text{ i.e., empty store}$

Separating conjunction

$$\gamma_{\mathrm{S}}(S_{0}^{\sharp} * S_{1}^{\sharp}) \ = \ \{(\mathit{h}_{0} \circledast \mathit{h}_{1}, \nu) \mid (\mathit{h}_{0}, \nu) \in \gamma_{\mathrm{S}}(S_{0}^{\sharp}) \land (\mathit{h}_{1}, \nu) \in \gamma_{\mathrm{S}}(S_{1}^{\sharp})\}$$

Separation example

Field splitting model

- Separation impacts edges / fields, not pointers
- Shape graph

accounts for both abstract states below:

In other words, separation

- asserts addresses are distinct
- says nothing about contents

Inductive edges

List definition

$$\begin{array}{ll} \alpha \cdot \mathsf{list} & ::= & (\mathsf{emp}, \alpha = \mathsf{0}) \\ & | & (\alpha \cdot \mathsf{next} \mapsto \beta_0 * \alpha \cdot \mathsf{data} \mapsto \beta_1 * \beta_0 \cdot \mathsf{list}, \alpha \neq \mathsf{0}) \end{array}$$

where emp denotes the empty heap

Concretization as a least fixpoint

Given an inductive def ι

$$\gamma_{S}(\alpha \cdot \iota) = \bigcup \left\{ \gamma_{S}(F) \mid \alpha \cdot \iota \xrightarrow{\mathcal{U}} F \right\}$$

• Alternate approach:

index inductive applications with induction depth allows to reason on length of structures

Inductive structures IV: a few instances

More complex shapes: trees

Relations among pointers: doubly-linked lists

Relations between pointers and numerical: sorted lists

Inductive segments

A frequent pattern:

Could be expressed directly as an inductive with a parameter:

$$\begin{array}{ll} \alpha \cdot \mathsf{list_endp}(\pi) & ::= & (\mathsf{emp}, \alpha = \pi) \\ & | & (\alpha \cdot \mathsf{next} \mapsto \beta_0 * \alpha \cdot \mathsf{data} \mapsto \beta_1 \\ & * \beta_0 \cdot \mathsf{list_endp}(\pi), \alpha \neq 0) \end{array}$$

 This definition would derive from list
 Thus, we make segments part of the fundamental predicates of the domain

Multi-segments: possible, but harder for analysis

Outline

- An introduction to separation logic
- 2 A shape abstract domain relying on separation
- 3 Combination with a numerical domain
- 4 Standard static analysis algorithms
- 5 Inference of inductive definitions / call-stack summarization
- Conclusion

Example

How to express both shape and numerical properties ?

List of even elements:

Sorted list:

- Many other examples:
 - ► list of open filed descriptors
 - tries
 - balanced trees: red-black, AVL...
- Note: inductive definitions also talk about data

A first approach to domain combination

Basis

 \bullet Graphs form a shape domain \mathbb{D}_S^\sharp abstract stores together with a physical mapping of nodes

$$\gamma_{\mathrm{S}}: \mathbb{D}^{\sharp}_{\mathrm{S}}
ightarrow \mathcal{P}((\mathbb{D}^{\sharp}_{\mathrm{S}}
ightarrow \mathbb{M}) imes (\mathsf{nodes}
ightarrow \mathbb{V}))$$

• Numerical values are taken in a numerical domain $\mathbb{D}_{\mathrm{num}}^{\sharp}$ abstracts physical mapping of nodes

$$\gamma_{ ext{num}}: \mathbb{D}^{\sharp}_{ ext{num}} o \mathcal{P}((\mathsf{nodes} o \mathbb{V}))$$

Concretization of the combined domain [CR]

$$\gamma(S^{\sharp}, N^{\sharp}) = \{ \sigma \in \mathbb{M} \mid \exists \nu \in \gamma_{\text{num}}(N^{\sharp}), \ (\sigma, \nu) \in \gamma_{\text{S}}(S^{\sharp}) \}$$

Quite similar to a reduced product

Combination by reduced product

Reduced product

- Product abstraction: $\mathbb{D}^{\sharp} = \mathbb{D}_{0}^{\sharp} \times \mathbb{D}_{1}^{\sharp}$ $\gamma(x_{0}, x_{1}) = \gamma(x_{0}) \cap \gamma(x_{1})$
- Reduction: \mathbb{D}_r^{\sharp} is the quotient of \mathbb{D}^{\sharp} by the equivalence relation \equiv defined by $(x_0, x_1) \equiv (x_0', x_1') \iff \gamma(x_0, x_1) = \gamma(x_0', x_1')$
- Domain operations (join, transfer functions) are pairwise (are usually composed with reduction)
- Why not to use a product of the shape domain with a numerical domain?
- How to compare / join the following two elements ?

and

Towards a more adapted combination operator

Why does this fail here?

- The set of nodes / symbolic variables is not fixed
- Variables represented in the numerical domain depend on the shape abstraction
- ⇒ Thus the product is **not** symmetric

Intuitions

- ullet Graphs form a shape domain \mathbb{D}_{S}^{\sharp}
- ullet For each graph $S^\sharp\in\mathbb{D}_{\mathrm{S}}^\sharp$, we have a numerical lattice $\mathbb{D}_{\mathrm{num}(S^\sharp)}^\sharp$
 - example: if graph S^{\sharp} contains nodes $\alpha_0, \alpha_1, \alpha_2, \mathbb{D}^{\sharp}_{\mathbf{num}\langle S^{\sharp}\rangle}$ should abstract $\{\alpha_0, \alpha_1, \alpha_2\} \to \mathbb{V}$
- An abstract value is a pair (S^{\sharp}, N^{\sharp}) , such that $N^{\sharp} \in \mathbb{D}^{\sharp}_{\mathbf{num}(N^{\sharp})}$

Cofibered domain

Definition [AV]

- Basis: abstract domain $(\mathbb{D}_0^{\sharp},\sqsubseteq_0^{\sharp})$, with concretization $\gamma_0:\mathbb{D}_0^{\sharp}\to\mathbb{D}$
- Function: $\phi: \mathbb{D}_0^\sharp \to \mathcal{D}_1$, where each element of \mathcal{D}_1 is an abstract domain $(\mathbb{D}_1^\sharp, \sqsubseteq_1^\sharp)$, with a concretization $\gamma_{\mathbb{D}_1^\sharp}: \mathbb{D}_1^\sharp \to \mathbb{D}$
- Lift functions: $\forall x^{\sharp}, y^{\sharp} \in \mathbb{D}_{0}^{\sharp}$, such that $x^{\sharp} \sqsubseteq_{0}^{\sharp} y^{\sharp}$, there exists a function $\Pi_{x^{\sharp}, y^{\sharp}} : \phi(x^{\sharp}) \to \phi(y^{\sharp})$, that is monotone for $\gamma_{x^{\sharp}}$ and $\gamma_{y^{\sharp}}$
- Domain: \mathbb{D}^{\sharp} is the set of pairs $(x_0^{\sharp}, x_1^{\sharp})$ where $x_1^{\sharp} \in \phi(x_0^{\sharp})$

- Generic product, where the second lattice depends on the first
- Provides a generic scheme for widening, comparison

Domain operations

Lift functions allow to switch domain when needed

Comparison of $(x_0^{\sharp}, x_1^{\sharp})$ and $(y_0^{\sharp}, y_1^{\sharp})$

- First, compare x_0^{\sharp} and y_0^{\sharp} in \mathbb{D}_0^{\sharp}
- 2 If $x_0^{\sharp} \sqsubseteq_0^{\sharp} y_0^{\sharp}$, compare $\Pi_{x_0^{\sharp}, y_0^{\sharp}}(x_1^{\sharp})$ and y_1^{\sharp}

Widening of $(x_0^{\sharp}, x_1^{\sharp})$ and $(y_0^{\sharp}, y_1^{\sharp})$

- f 0 First, compute the widening in the basis $z_0^\sharp = x_0^\sharp riangle y_0^\sharp$
- Then move to $\phi(z_0^\sharp)$, by computing $x_2^\sharp = \Pi_{x_0^\sharp, z_0^\sharp}(x_1^\sharp)$ and $y_2^\sharp = \Pi_{v_0^\sharp, z_0^\sharp}(y_1^\sharp)$
- **3** Last widen in $\phi(z_0^{\sharp})$: $z_1^{\sharp} = x_2^{\sharp} \nabla_{z_0^{\sharp}} y_2^{\sharp}$

 $(x_0^{\sharp}, x_1^{\sharp}) \nabla (y_0^{\sharp}, y_1^{\sharp}) = (z_0^{\sharp}, z_1^{\sharp})$

Domain operations

Transfer functions, e.g., assignment

- Require memory location be materialized in the graph
 - i.e., the graph may have to be modified
 - the numerical component should be updated with lift functions
- Require update in the graph and the numerical domain
 - i.e., the numerical component should be kept coherent with the graph

Proofs of soundness of transfer functions rely on:

- the soundness of the lift functions
- the soundness of both domain transfer functions

Outline

- An introduction to separation logic
- A shape abstract domain relying on separation
- 3 Combination with a numerical domain
- 4 Standard static analysis algorithms
 - Overview of the analysis
 - Post-conditions and unfolding
 - Folding: widening and inclusion checking
- 5 Inference of inductive definitions / call-stack summarization
- 6 Conclusion

Static analysis overview

A list insertion function:

```
\label{list to a list} \begin{split} & \text{list} \star 1 \text{ assumed to point to a list} \\ & \text{list} \star t \text{ assumed to point to a list element} \\ & \text{list} \star c = 1; \\ & \text{while}(c \mathrel{!=} \texttt{NULL} \&\& c \rightarrow \texttt{next} \mathrel{!=} \texttt{NULL} \&\& (\ldots)) \{ \\ & c = c \rightarrow \texttt{next}; \\ & t \rightarrow \texttt{next} = c \rightarrow \texttt{next}; \\ & c \rightarrow \texttt{next} = t; \end{split}
```

- list inductive structure def.
- Abstract precondition:

Result of the (interprocedural) analysis

• Over-approximations of reachable concrete states e.g., after the insertion:

Transfer functions

Abstract interpreter design

- Follows the semantics of the language under consideration
- The abstract domain should provide sound transfer functions

Transfer functions

- Assignment: $x \to f = y \to g$ or $x \to f = e_{arith}$
- Test: analysis of conditions (if, while)
- Variable creation and removal
- Memory management: malloc, free

Should be sound i.e., not forget any concrete behavior

Abstract operators

- Join and widening: over-approximation
- Inclusion checking: check stabilization of abstract iterates

 Xavier Rival (INRIA) Shape analysis based on separation logic Dec. 17th, 2014

46 / 82

Abstract operations

Denotational style abstract interpreter

- Concrete denotational semantics $\llbracket p \rrbracket : s \mapsto \mathcal{P}(s')$
- Abstract semantics $[p]^{\sharp}(S) = S'$, computed by the analysis:

$$s \in \gamma(\mathsf{S}) \Longrightarrow \llbracket p
rbracket(s) \subseteq \gamma(\llbracket p
rbracket^\sharp(\mathsf{S}))$$

Analysis by induction on the syntax using domain operators

The algorithms underlying the transfer functions

Unfolding: cases analysis on summaries

Abstract postconditions, on "exact" regions, e.g. insertion

• Widening: builds summaries and ensures termination

Outline

- An introduction to separation logic
- A shape abstract domain relying on separation
- Combination with a numerical domain
- 4 Standard static analysis algorithms
 - Overview of the analysis
 - Post-conditions and unfolding
 - Folding: widening and inclusion checking
- 5 Inference of inductive definitions / call-stack summarization
- 6 Conclusion

Analysis of an assignment in the graph domain

Steps for analyzing $x = y \rightarrow next$ (local reasoning)

- **1** Evaluate I-value x into points-to edge $\alpha \mapsto \beta$
- 2 Evaluate r-value y -> next into node β'
- **3** Replace points-to edge $\alpha \mapsto \beta$ with points-to edge $\alpha \mapsto \beta'$

With pre-condition:

$$\&x @_0 \longrightarrow @_0$$

$$\&y @_1 \longrightarrow @_1 \xrightarrow{next} @_2$$

- Step 1 produces $\alpha_0 \mapsto \beta_0$
- Step 2 produces β_2
- End result:

With pre-condition:

&x
$$\textcircled{00}$$
 $\textcircled{00}$ $\textcircled{00}$ $\textcircled{00}$ $\textcircled{00}$ $\textcircled{00}$ $\textcircled{00}$

- Step 1 produces $\alpha_0 \mapsto \beta_0$
- Step 2 fails
- Abstract state too abstract
- We need to refine it

Unfolding as a local case analysis

Unfolding principle

- Case analysis, based on the inductive definition
- Generates symbolic disjunctions analysis performed in a disjunction domain
- Example, for lists:

• Numeric predicates: approximated in the numerical domain

Soundness: by definition of the concretization of inductive structures

$$\gamma_{\mathrm{S}}(S^{\sharp}) \subseteq \bigcup \{\gamma_{\mathrm{S}}(S_{0}^{\sharp}) \mid S^{\sharp} \stackrel{\mathcal{U}}{\longrightarrow} S_{0}^{\sharp}\}$$

Xavier Rival (INRIA)

Analysis of an assignment, with unfolding

Principle

- We have $\gamma_S(\alpha \cdot \iota) = \bigcup \{\gamma_S(S^{\sharp}) \mid \alpha \cdot \iota \xrightarrow{\mathcal{U}} S^{\sharp}\}$
- ullet Replace $lpha \cdot \iota$ with a finite number of disjuncts and continue

Disjunct 1:

- Step 1 produces $\alpha_0 \mapsto \beta_0$
- Step 2 fails:

Null pointer dereference!

Disjunct 2:

- Step 1 produces $\alpha_0 \mapsto \beta_0$
- Step 2 produces β_2
- End result:

Unfolding and degenerated cases

$$\begin{array}{l} \textbf{assume}(1 \text{ points to a dll}) \\ c=1; \\ \textcircled{0 while}(c \neq \texttt{NULL \&\& condition}) \\ c=c-\texttt{next}; \\ \textcircled{2 if}(c \neq 0 \&\& c-\texttt{prev} \neq 0) \\ c=c-\texttt{prev} \rightarrow \texttt{prev}; \end{array}$$

• at ①:
$$\textcircled{\tiny 000} \xrightarrow{\text{dll}(\delta_1)}$$
• at ②: $\textcircled{\tiny 000} \xrightarrow{\text{dll}(\delta_0)} \textcircled{\tiny 000} \xrightarrow{\text{dll}(\delta_1)} \textcircled{\tiny 000}$
 \Rightarrow non trivial unfolding

• Materialization of c -> prev:

Segment splitting lemma: basis for segment unfolding

Materialization of c -> prev -> prev:

Implementation issue: discover which inductive edge to unfold

Abstract post-condition?

&x
$$(\alpha_0)$$
 (α_1)
&y (α_2) (α_3)
 $N = \alpha_1 \ge 0 \land \alpha_3 \ne 0 \times 0$
 $y \rightarrow d = x + 1 \implies (\star \alpha_2) \cdot d = (\star \alpha_0) + 1$

Abstract post-condition?

Stage 1: environment resolution

• replaces x with $\star e^{\sharp}(x)$

Stage 2: propagate into the shape + numerics domain

only symbolic nodes appear

Stage 3: resolve cells in the shape graph abstract domain

- $\star \alpha_0$ evaluates to α_1 ; $\star \alpha_2$ evaluates to α_3
- $(\star \alpha_2) \cdot d$ fails to evaluate: no points-to out of α_3

Xavier Rival (INRIA)

&x
$$\alpha_0$$
 α_1 α_4

&y α_2 α_3 α_4

N = $\alpha_1 \ge 0 \land \alpha_3 \ne 0$ x0 $\land \alpha_4 \ge 0$
 $(\star \alpha_2) \cdot d = (\star \alpha_0) + 1$

Abstract post-condition?

Stage 4: unfolding (several steps, skipped here)

- locally materialize $\alpha_3 \cdot lpos$; update keys / relations in the numerics
- I-value $\alpha_3 \cdot d$ now evaluates into edge $\alpha_3 \cdot d \mapsto \alpha_4$

Stage 5: create a new node

• new node α_6 denotes a new value will store the new value

Stage 6: perform numeric assignment

 numeric assignment completely ignores pointer structures to the new node

Stage 7: perform the update in the graph

- classic strong update in a pointer aware domain
- ullet symbolic node $lpha_4$ becomes redundant and can be removed

Xavier Rival (INRIA)

Outline

- An introduction to separation logic
- A shape abstract domain relying on separation
- Combination with a numerical domain
- 4 Standard static analysis algorithms
 - Overview of the analysis
 - Post-conditions and unfolding
 - Folding: widening and inclusion checking
- 5 Inference of inductive definitions / call-stack summarization
- 6 Conclusion

Need for a folding operation

Back to the list traversal example...

```
\label{eq:continuity} \begin{array}{l} \textbf{assume}(1 \text{ points to a list}) \\ \textbf{c} = \textbf{1}; \\ \textbf{while}(\textbf{c} \neq \texttt{NULL}) \{ \\ \textbf{c} = \textbf{c} \rightarrow \texttt{next}; \\ \} \end{array}
```

- First iterates in the loop:
 - at iteration 0 (before entering the loop):

at iteration 1:

at iteration 2:

- How to guarantee termination of the analysis?
- How to introduce segment edges / perform abstraction ?

Widening

- The lattice of shape abstract values has infinite height
- Thus iteration sequences may not terminate

Definition of a widening operator ∇

Over-approximates join:

$$\left\{ \begin{array}{l} X^{\sharp} & \subseteq & \gamma(X^{\sharp} \triangledown Y^{\sharp}) \\ Y^{\sharp} & \subseteq & \gamma(X^{\sharp} \triangledown Y^{\sharp}) \end{array} \right.$$

• Enforces termination: for all sequence $(X_n^{\sharp})_{n \in \mathbb{N}}$, the sequence $(Y_n^{\sharp})_{n \in \mathbb{N}}$ defined below is ultimately stationary

$$\left\{ \begin{array}{ccc} Y_0^{\sharp} & = & X_0^{\sharp} \\ \forall n \in \mathbb{N}, & Y_{n+1}^{\sharp} & = & Y_n^{\sharp} \nabla X_{n+1}^{\sharp} \end{array} \right.$$

Canonicalization

Upper closure operator

 $\rho: \mathbb{D}^{\sharp} \longrightarrow \mathbb{D}^{\sharp}_{\operatorname{can}} \subseteq \mathbb{D}^{\sharp}$ is an **upper closure operator** (uco) iff it is monotone, extensive and idempotent.

Canonicalization

- Disjunctive completion: $\mathbb{D}^{\sharp}_{\vee}$ = finite disjunctions over \mathbb{D}^{\sharp}
- Canonicalization operator ρ_{\vee} defined by $\rho_{\vee}: \mathbb{D}^{\sharp}_{\vee} \longrightarrow \mathbb{D}^{\sharp}_{\operatorname{can}^{\vee}}$ and $\rho_{\vee}(X^{\sharp}) = \{\rho(x^{\sharp}) \mid x^{\sharp} \in X^{\sharp}\}$ where ρ is an uco and $\mathbb{D}^{\sharp}_{\operatorname{can}}$ has finite height
- Usually more simple to compute
- Canonicalization is used in many shape analysis tools:
 TVLA, most separation logic based analysis tools
- However less powerful than widening: does not exploit history of computation

Xavier Rival (INRIA)

Per region weakening

The weakening principles shown in the following apply both in canonicalization and widening approaches

We can apply the local reasoning principle to weakening

- inclusion test (comparison)
- canonicalization
- join / widening

Application: inclusion test

- Operator \sqsubseteq^{\sharp} should satisfy $X^{\sharp} \sqsubseteq^{\sharp} Y^{\sharp} \Longrightarrow \gamma(X^{\sharp}) \subseteq \gamma(Y^{\sharp})$
- If $S_0^{\sharp} \sqsubseteq^{\sharp} S_{0,\text{weak}}^{\sharp}$ and $S_1^{\sharp} \sqsubseteq^{\sharp} S_{1,\text{weak}}^{\sharp}$

Inductive weakening

Weakening identity

- X[‡]□[‡]X[‡]...
- Trivial, but useful, when a graph region appears in both widening arguments

Weakening unfolded region

- If $S_0^{\sharp} \xrightarrow{\mathcal{U}} S_1^{\sharp}$, $\gamma_{\mathrm{S}}(S_1^{\sharp}) \subseteq \gamma_{\mathrm{S}}(S_0^{\sharp})$
- Soundness follows the the soundness of unfolding
- Application to a simple example:

Comparison operator in the shape domain

Algorithm structure

Based on separation and local reasoning:

$$\gamma_{\mathrm{S}}(S_0^\sharp) \subseteq \gamma_{\mathrm{S}}(S_1^\sharp) \Longrightarrow \gamma_{\mathrm{S}}(S_0^\sharp * S^\sharp) \subseteq \gamma_{\mathrm{S}}(S_1^\sharp * S^\sharp)$$

- Algorithm:
 - applies local rules and "consumes" graph regions proved weaker
 - keeps discovering new rule applications
- Structural rules such as:
 - segment splitting:

$$S^{\sharp} \sqsubseteq^{\sharp} \textcircled{\alpha} \xrightarrow{\iota} \implies S^{\sharp} * \textcircled{\beta} \xrightarrow{\iota} \textcircled{\alpha} \sqsubseteq^{\sharp} \textcircled{\beta} \xrightarrow{\iota}$$

Correctness:

$$S_0^{\sharp} \sqsubseteq^{\sharp} S_1^{\sharp} \implies \gamma_{\mathrm{S}}(S_0^{\sharp}) \subseteq \gamma_{\mathrm{S}}(S_1^{\sharp})$$

Xavier Rival (INRIA)

Comparison operator in the combined domain

We need to tackle the fact nodes names may differ (cofibered domain)

Instrumented comparison in the shape domain

- Comparison $S_0^{\sharp} \sqsubseteq^{\sharp} S_1^{\sharp}$: rules should compute a physical mapping $\Psi : \mathbf{nodes}_1 \longrightarrow \mathbf{nodes}_0$
- Soundness condition: $(\sigma, \nu) \in \gamma_S(S_0^\sharp) \Longrightarrow (\sigma, \nu \circ \Psi) \in \gamma_S(S_0^\sharp)$

Comparison in the cofibered domain

- Lift function for numerical abstract values: $\Pi_{S_0^{\sharp},S_1^{\sharp}}(N_0^{\sharp}) = N_0^{\sharp} \circ \Psi$
- Thus, we simply need to compare $N_0^{\sharp} \circ \Psi$ and N_1^{\sharp}

Xavier Rival (INRIA) Shape analysis based on separation logic

Join operator

- Similar iterative scheme, based on local rules
- But needs to reason locally on two graphs in the same time: each rule maps two regions into a common over-approximation

Graph partitioning and mapping

- Inputs: $S_0^{\sharp}, S_1^{\sharp}$
- Performed by a function Ψ : nodes₀ × nodes₁ \rightarrow nodes₁
- Ψ is computed at the same time as the join

If
$$\forall i \in \{0,1\}, \ \forall s \in \{\text{lft,rgh}\}, \ S_{i,s}^{\sharp} \sqsubseteq^{\sharp} S_{s}^{\sharp},$$

Segment introduction

Rule

$$\mathsf{then} \quad \left\{ \begin{array}{l} S_{\mathrm{lft}}^{\sharp} \triangledown S_{\mathrm{rgh}}^{\sharp} \ = \ \textcircled{\tiny{0}} \qquad \qquad \stackrel{\iota}{\longleftarrow} \ \textcircled{\tiny{0}} \qquad \qquad \\ (\alpha,\beta_0) \overset{\Psi}{\longleftrightarrow} \gamma_0 \\ (\alpha,\beta_1) \overset{\Psi}{\longleftrightarrow} \gamma_1 \end{array} \right.$$

Application to list traversal, at the end of iteration 1:

• before iteration 0:

• end of iteration 0:

join, before iteration 1:

 $\begin{cases}
\Psi(\alpha_0, \beta_0) = \gamma_0 \\
\Psi(\alpha_0, \beta_1) = \gamma_1
\end{cases}$

Xavier Rival (INRIA)

Shape analysis based on separation logic

Dec. 17th, 2014

Segment extension

Rule

Application to list traversal, at the end of iteration 1:

previous invariant before iteration 1:

$$\begin{array}{c|c}
 & \text{list} & \text{list} \\
\hline
1 & \text{list} & c
\end{array}$$

• end of iteration 1:

join, before iteration 1:

$$\begin{cases}
\Psi(\alpha_0, \beta_0) = \gamma_0 \\
\Psi(\alpha_1, \beta_2) = \gamma_1
\end{cases}$$

Xavier Rival (INRIA)

Dec. 17th, 2014

65 / 82

Rewrite system properties

- Comparison, canonicalization and widening algorithms can be considered rewriting systems over tuples of graphs
- Each step applies a rule / computation step

Termination

- The systems are terminating
- This ensures comparison, canonicalization, widening are computable

Non confluence!

- The results depends on the order of application of the rules
- Implementation requires the choice of an adequate strategy

Properties

Inclusion checking is sound

If
$$S_0^{\sharp} \sqsubseteq^{\sharp} S_1^{\sharp}$$
, then $\gamma(S_0^{\sharp}) \subseteq \gamma(S_1^{\sharp})$

Canonicalization is sound

$$\gamma(S^{\sharp}) \subseteq \gamma(
ho_{\mathsf{can}}(S^{\sharp}))$$

Widening is sound and terminating

$$\gamma(S_0^{\sharp}) \subseteq \gamma(S_0^{\sharp} \triangledown S_1^{\sharp})$$
$$\gamma(S_1^{\sharp}) \subseteq \gamma(S_0^{\sharp} \triangledown S_1^{\sharp})$$

∇ ensures termination of abstract iterates

- Soundness of local reasoning and of local rules
- Termination of widening: ∇ can introduce only segments, and may not introduce infintely many of them

Xavier Rival (INRIA)

Stage 1: abstract environment

• compute new abstract environment and initial node relation e.g., α_0 , β_0 both denote &x

Stage 2: join in the "cofibered" layer

operations to perform:

- 1 compute the join in the graph
- convert value abstractions, and join the resulting lattice

Stage 2: graph join

- apply local join rules
 ex: points-to matching, weakening to inductive...
- incremental algorithm

Stage 2: graph join

- apply local join rules
 ex: points-to matching, weakening to inductive...
- incremental algorithm

Stage 2: graph join

- apply local join rules
 ex: points-to matching, weakening to inductive...
- incremental algorithm

Stage 3: conversion function application in numerics

- remove nodes that were abstracted away
- rename other nodes

Stage 4: join in the numeric domain

• apply ⊔ for regular join, ∇ for a widening

Outline

- An introduction to separation logic
- 2 A shape abstract domain relying on separation
- 3 Combination with a numerical domain
- 4 Standard static analysis algorithms
- 5 Inference of inductive definitions / call-stack summarization
- 6 Conclusion

Interprocedural analysis

- Analysis of programs that consist in several functions (or procedures)
- Difficulty: how to cope with multiple (possibly recursive) calls

Relational approach

- analyze each function once
- compute function summaries abstraction of input-output relations
- analysis of a function call: instantiate the function summary (hard)

Inlining approach

- inline functions at function calls
- just an extension of intraprocedural analysis

- In this section, we study the inlining approach for recursion
- Side result: a widening for inductive definitions

Approaches to interprocedural analysis

"relational" approach

"inlining" approach

analyze each definition abstracts $\mathcal{P}(\bar{\mathbb{S}} \to \bar{\mathbb{S}})$

- + modularity
- + reuse of invariants
- deals with state relations
 - complex higher order iteration strategy

challenge: frame problem

analyze each call abstracts $\mathcal{P}(\mathbb{S})$

- not modular
- re-analysis in ≠ contexts
 - + deals with states
- + straightforward iteration

challenge: unbounded calls

Challenges in interprocedural analysis

turns a linked list into a doubly linked list removes some elements

- Heap is unbounded, needs abstraction (shape analysis)
- But stack may also grow unbounded, needs abstraction
- Complex relations between both stack and heap

- Concrete assembly call stack modelled in a separating shape graph together with the heap
 - one node per activation record address

- Concrete assembly call stack modelled in a separating shape graph together with the heap
 - one node per activation record address

- Concrete assembly call stack modelled in a separating shape graph together with the heap
 - one node per activation record address
 - explicit edges for frame pointers

- Concrete assembly call stack modelled in a separating shape graph together with the heap
 - one node per activation record address
 - explicit edges for frame pointers
 - ▶ local variables turn into activation record fields

- Concrete assembly call stack modelled in a separating shape graph together with the heap
 - one node per activation record address
 - explicit edges for frame pointers
 - ▶ local variables turn into activation record fields

Xavier Rival (INRIA)

- Concrete assembly call stack modelled in a separating shape graph together with the heap
 - one node per activation record address
 - explicit edges for frame pointers
 - ► local variables turn into activation record fields

Second and third iterates: a repeating pattern

• Computing an inductive rule for summarization: subtraction

Second and third iterates: a repeating pattern

- Computing an inductive rule for summarization: subtraction
 - subtract top-most activation record

Second and third iterates: a repeating pattern

- Computing an inductive rule for summarization: subtraction
 - subtract top-most activation record
 - subtract common stack region

Second and third iterates: a repeating pattern

- Computing an inductive rule for summarization: subtraction
 - subtract top-most activation record
 - subtract common stack region
 - ▶ gather relations with next activation records: additional parameters
 - collect numerical constraints

Second and third iterates: a repeating pattern

• Computing an inductive rule for summarization: subtraction

Inferred inductive rule

Inference of a call-stack summary: widening iterates

Fixpoint at function entry:

first iterate:

second iterate:

widened iterate:

Fixpoint reached

- Fixpoint upon function return:
 - function return involves unfolding of stack summaries
 - ▶ simpler widening sequence: no rule to infer

Widening over inductive definitions

Domain structure

An abstract value should comprise:

- a set S of unfolding rules for the stack inductive
- a shape graph G
- a numeric abstract value N

Shape graph G is defined in a lattice specified by S, thus, this is an instance of the **cofibered abstraction**

- Lift functions are trivial:
 - adding rules simply weakens shape graphs
 - i.e., no need to change them syntactically, their concretization just gets weaker
- Termination in the lattice of rules:
 limiting of the number of rules that can be generated to some given bound

Outline

- An introduction to separation logic
- 2 A shape abstract domain relying on separation
- 3 Combination with a numerical domain
- 4 Standard static analysis algorithms
- 5 Inference of inductive definitions / call-stack summarization
- 6 Conclusion

Abstraction choices

Many families of symbolic abstractions including TVLA and separation logic based approaches

Variants: region logic, ownership, fractional permissions

Common ingredients

- Splitting of the heap in regions
 - TVLA: covering, via embedding
 - ► Separation logic: partitioning, enforced at the concrete level
- Use of induction in order to summarize large regions
- More limited pointer analyses: no inductives, no summarization...

Algorithms

Rather different process, compared to numerical domains

From abstract to concrete (locally)

- Unfold abstract properties in a local maner
- Allows quasi-exact analysis of usual operations (assignment, condition test...)

From concrete to abstract (globally)

- Guarantees termination
- Allows to infer pieces of code build complex structures
- Intuition:
 - static analysis involves post-fixpoint computations (over program traces)
 - widening produces a fixpoint over memory cells

Open problems

Many opportunities for research:

- Improving expressiveness
 e.g., sharing in data-structures
 - new abstractions
 - combining several abstractions into more powerful ones
- Improving scalability
 - shape analyses remain expensive analyses, with few "cheap" and useful abstractions
 - cut down the cost of complex algorithms
 - ▶ isolate smaller families of predicates
- Applications, beyond software safety:
 - security
 - verification of functional properties

Internships

Several topics possible, soon to be announced on the lecture webpage:

Internal reduction operator

- inductive definitions are very expressive thus tricky to reason about
- design of an internal reduction operator on abstract elements with inductive definitions

Modular inter-procedural analysis

- a relation between pre-conditions and post-conditions can be formalized in a single shape graph
- design of an abstract domain for relations between states

Bibliography

- [SRW]: Parametric Shape Analysis via 3-Valued Logic.
 Shmuel Sagiv, Thomas W. Reps et Reinhard Wilhelm.
 In POPL'99, pages 105–118, 1999.
- [JR]: Separation Logic: A Logic for Shared Mutable Data Structures.
 - John C. Reynolds. In LICS'02, pages 55-74, 2002.
- [DHY]: A Local Shape Analysis Based on Separation Logic.
 Dino Distefano, Peter W. O'Hearn et Hongseok Yang.
 In TACAS'06, pages 287–302.
- [AV]: Abstract Cofibered Domains: Application to the Alias Analysis of Untyped Programs.
 - Arnaud Venet. In SAS'96, pages 366–382.
- [CR]: Relational inductive shape analysis.
 Bor-Yuh Evan Chang et Xavier Rival.
 In POPL'08, pages 247–260, 2008.