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Overview of the lecture

How to reason about memory properties

Last lecture:

@ analyses specific to several kinds of structures
@ concrete and abstract memory models
@ an introduction to shape analysis with TVLA

Today:

a logic to describe properties of memory states
abstract domain

static analysis algorithms

combination with numerical domains

widening operators...
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@ An introduction to separation logic

e A shape abstract domain relying on separation

© Combination with a numerical domain

e Standard static analysis algorithms

© Inference of inductive definitions / call-stack summarization

@ Conclusion



An introduction to separation logic

Our model

Environment 4+ Heap
o Addresses are values: Vyqqr CV

@ Environments ¢ € E map variables into their addresses

Heaps (# € H) map addresses into values

E = X%Vaddr
H = Vaddr—>V

@ f# is actually only a partial function
@ Memory states:
M=FEx H
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An introduction to separation logic

Example of a concrete memory state (variables)

@ x and z are two list elements containing values 64 and 88, and where
the former points to the latter

@ y stores a pointer to z

Memory layout

(pointer values underlined)

=

address
&x = 300
304

&y = 308
&z = 312
316

Xavier Rival (INRIA)

e: x  +— 300
y  +— 308
z o 312
fi: 300 > 64
304 +— 312
308 > 312
312 > 88
316 +— 0
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An introduction to separation logic

Example of a concrete memory state (variables + heap)

@ same configuration

@ + z points to a heap allocated list element (in purple)

Memory layout

e: X — 300

address y — 308

gx = 300 [ 64 z = 312
304 | 312

by — 308 wi fi: 300 — 64

uz —312| 88 304 — 312

316 | 508 308 — 312

:| 312 — 88

25 316 — 508

0x0 508 — 25

512 — O
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An introduction to separation logic

Weak update problems

x € [-10,-5]; y € [5, 10]
int x p;
if(?) e What is the final range for x ?
P = &x;
else
p = &y;
*p = 0;

@ What is the final range for y 7

v

After the if statement, p may contain any address in {&x, &y}
Thus, the assignment must consider all cases, in a conservative way
Thus, x may receive a new value (0) or keep its old value
Conclusion: x € [-10,0], y € [0, 10]

Weak updates J

Any imprecision in the analysis may lead to weak updates...
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An introduction to separation logic

Separation logic principle: avoid weak updates

How to deal with weak updates 7
Avoid them !

@ Always materialize exactly the cell that needs be modified

@ Can be very costly to achieve, and not always feasible

@ Notion of property that holds over a memory region
@ Use a special separating conjunction operator *

e Local reasoning:
powerful principle, which allows to consider only part of the program
memory

@ Separation logic has been used in many contexts, including manual
verification, static analysis, etc...
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An introduction to separation logic

Separation logic
@ Logic made of a set of formulas
@ inference rules...

Pure formulas
@ Set of pure formulas, similar to first order logics

e = n (neN)
|/ l-value
| €& +é€ binary
P o= e=¢ [P VP |PAP...

@ Denote numerical properties among the values

Heap formulas (syntax on the next slide)
@ Set of formulas to describe concrete heaps

e Concretization relation of the form (e, £) € ~v(F)

v
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An introduction to separation logic

Heap formulas

Main connectors
Each formula describes a heap region

F emp empty region

true complete heap

/— v  memory cell

F’ « F” separating conjunction
F' N F”  classical conjunction

many other connectors (see biblio)

Denotations: the usual stuff...
o y(emp)=0; ~(true)=M
o (e, h) € v(F' A F")if and only if (e, #) € v(F') and (e, £) € y(F")

Separating conjunction: next slide...
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An introduction to separation logic

The separating conjunction

Single cells
(e, £) € v(I — v) if and only if £ = [[/](e, #) — V]

Merge of concrete stores

Let fg, i1 € (Vagaar — V), such that dom(fy) Ndom(4y) = 0.
Then, we let g ® f; be defined by:
hg ® fy : dom(hy) Udom(h) — V
x € dom(fy) —  ho(x)
X € dom(ﬁl) — ﬁl(X)

Concretization of separating conjunction
@ Logical formulas denote sets of heaps; concretization ~
@ Binary logical connector on formulas * defined by:
V(Fo * F1) = {(e; fo ® 1) | (e, o) € v(Fo) A (e, 1) € v(F1)}
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An introduction to separation logic

Separating conjunction vs non separating conjunction

@ Classical conjunction: properties for the same memory region

e Separating conjunction: properties for disjoint memory regions

a— &b Nb— &a ar— &b *x b &a
@ the same heap verifies a — &b @ two separate sub-heaps
and b +— &a respectively satisfy a — &b
@ there can be only one cell and b — &a
o thusa=0b o thusa # b

@ Separating conjunction and non-separating conjunction have very
different properties

@ Both express very different properties
e.g., no ambiguity on weak / strong updates
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An introduction to separation logic

An example

Concrete memory layout

(pointer values underlined) e- X
y
address z
&x = 300| 64
304 | 312 h: 300
gy = 308 [ 312 304
&z =312| 88 308
316 | 0x0 312
316

300
308
312

RS

64
312
312
88

U N

A formula that abstracts away the addresses:

X > (64,&z) * y — &z * z — (88,0)
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An introduction to separation logic

Separating and non separating conjunction

@ There are two conjunction operators A and x

o How to relate them ?

Separating conjunction vs normal conjunction

(e,h0) €v(Fo)  (em) €v(FA)  (eh) €v(Fo) (e h) €v(F1)
(e, hy & ﬁl) € ’}/(Fo * Fl) (e, ﬁ) € ’Y(Fo N Fl)

@ Reminiscent of Linear Logic [Girard87]:
resource aware / non resource aware conjunction operators
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An introduction to separation logic

Programs with pointers: syntax

Syntax extension: quite a few additional constructions

x = malloc(c) allocation of ¢ bytes
free(x) deallocation of the block pointed to by x

1 == l-valules
| x (x € X)
|
| xe pointer dereference
| 1-f field read
e o= expressions
| 1
| &l "address of" operator
s 1= statements
|
|
|

We do not consider pointer arithmetics here
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An introduction to separation logic

Programs with pointers: semantics

Case of l-values:

(e h) = ) |
[e](e, ) = {g([[e I(e, 4)) 'c‘:tEZ]l\E\/ei;z)#()/\[[e]](e,ﬁ)EDom(ﬁ)

[1-£](e, heap) [1](e, £) + offset(f) (numeric offset)

Case of expressions:

(e, heap) = ([2](c. heap))
[&1] (e, heap) = [1](e, heap)
Case of statements:

e memory allocation x = malloc(c): (e, £) — (e, A’) where
ﬁ,:ﬁ[e(x)%k]w{k'—} Vibk+ 1= Vg1, k+c—1— Vk+c71}
and k,...,k+c—1 are freshin £

e memory deallocation free(x): (e, #) — (e, #’) where k = ¢(x) and
ﬁ:ﬁlﬂﬂ{k'—) Vi, k+1+— Vk+1,...,k+C—1'—> Vk+c—1}
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An introduction to separation logic
Separating logic triple

Program proofs based on triples
e Notation: {F}p{F’} if and only if:
Vs,s' €S, sey(F)ASs € [p](s) = s € y(F')
Hoare triples

@ Application: formalize proofs of programs

A few rules (straightforward proofs):
Fo—F {Rip{fi} FA—=F
{Fo}p{F1}

consequence

{x =»?}x =e{x— e} mutation

mutation — 2

{x=?x Fix:=e{x—ex F}

(we assume that e does not allocate memory)
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An introduction to separation logic

The frame rule

What about the resemblance between rules “mutation” and “mutation-2" ?

Theorem: the frame rule

{Fots{F1}
{Fo * F}s{F1 % F}

frame

@ Proof by induction on the rules
(see biblio for a more complete set of rules)

@ Rules are proved by case analysis on the program syntax

We can reason locally about programs
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An introduction to separation logic

Application of the frame rule

Let us consider the program below:

inti;

int x x;

int xy; {i—=7xx—=?7xy—7?}
x=4&i; {i-?7xx—&i*xy—7}
y=4&i; {im?xx—&i*xy— &i}
*x=42; {i—42%xx—&ixy—&i}

@ Each step impacts a disjoint memory region

@ This case is easy
See biblio for more complex applications
(verification of the Deutsch-Shorr-Waite algorithm)
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An introduction to separation logic

Summarization and inductive definitions

What do we still miss ?

So far, formulas denote fixed sets of cells
Thus, no summarization of unbounded regions...

o Example all lists pointed to by x, such as:
&x

ex | «—1 ] ox0 |

w [T }.4‘/ \0xo}

\
— [0 ]
|

= B

@ How to precisely abstract these stores with one formula i.e., no
infinite disjunction 7
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An introduction to separation logic

Inductive definitions in separation logic

List definition

a-list = a=0 A emp
V. a#0 A a-next — v *a-datar— 3 x - list

@ Formula abstracting our set of structures:
&x — a * « - list

@ Summarization: this formula is finite and describe infinitely many
heaps

@ Concretization: next slide...

Practical implementation in verification/analysis tools
e Verification: hand-written definitions

@ Analysis: either built-in or user-supplied, or partly inferred
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An introduction to separation logic

Concretization by unfolding

Intuitive semantics of inductive predicates
@ Inductive predicates can be unfolded, by unrolling their definitions

Syntactic unfolding is noted “,
@ A formula F with inductive predicates describes all stores described by

all formulas F’ such that F 45 F/

Example:
@ Let us start with x — ag * ag - list; we can unfold it as follows:
&x — g * o - list
H, &x — ag * ag - next — aq * g - data — [y * ag - list
A, &x — g * g - next — ag * g - data — 31 * emp A a; = 0x0

o We get the concrete state below:

ex [ «— ] ox0 |
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An introduction to separation logic

Example: tree

e Example:

0x0
0x0

Inductive definition

@ Two recursive calls instead of one:

«a-tree = a=0A emp

N

0x0

0x0

V. a#0A o -left — B x a-right — v

x 3 - tree x vy - tree

Xavier Rival (INRIA) Shape analysis based on separation logic
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An introduction to separation logic

Example: doubly linked list

o Example:

— | — | 0x0
0x0 | —* —"

Inductive definition

@ We need to propagate the prev pointer as an additional parameter:

a-dll(p) = a=0 A emp
V. a#0 A a-next— yxa-prev— pxv-dll(a
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An introduction to separation logic

Example: sortedness

e Example: sorted list

&x o — | — | 0x0

Inductive definition
@ Each element should be greater than the previous one
@ The first element simply needs be greater than —cc...

@ We need to propagate the lower bound, using a scalar parameter

a - Isortyyx(n) = a=0A emp
V. a#0A B<nA a- next -y
x a - data > [ * v - Isortaux(5)

a-lsort() = a - Isort .y (—o0)
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An introduction to separation logic

A new overview of the remaining part of the lecture

How to apply separation logic to static analysis and design abstract
interpretation algorithms based on it ?

In this lecture, we will:
@ choose a small but expressive set of separation logic formulas
@ define wide families of abstract domains

@ study algorithms for local concretization (equivalent to focus) and
global abstraction (widening...)
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@ An introduction to separation logic

e A shape abstract domain relying on separation

© Combination with a numerical domain

o Standard static analysis algorithms

© Inference of inductive definitions / call-stack summarization

@ Conclusion



A shape abstract domain relying on separation

Choice of a set of formulas

Our set of predicates

@ An abstract value is a separating conjunction of terms
@ Each term describes

either a contiguous region
or a summarized region, described by an inductive defintion

@ Abstract elements have a straightforward interpretation as a shape
graph

@ Unless necessary, we omit environments (concretization into sets of
heaps)
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A shape abstract domain relying on separation

Abstraction into separating shape graphs

e Memory splitting into regions

‘ VN\ 0x. }/N\ ox. }/N\ 0x0

& Ox.. \

values, addresses — nodes

e Graph abstraction:
cells — edges

@ next next next @
data@

@ Region summarization:

@ next list R
data

» abstraction parameterized by a set of inductive definitions

o Defines a concretization relation
o Let us formalize this...
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A shape abstract domain relying on separation

Contiguous regions

Shape graphs
o Edges: denote memory regions

o Nodes: denote values, i.e. addresses or cell contents

Points-to edge, denote contiguous memory regions
@ Separation logic formula: a- £ — (3
e Abstract and concrete views:

v(a)
@@ offset(£)

e Concretization:
rs(a = B) =
[([(e) + offset(£) > v(B)],v) | v : {a,B,...} — N}
» v: bridge between memory and values
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A shape abstract domain relying on separation

Separation

@ A graph = a set of edges

@ Denotes the separating conjunction of the edges

Empty graph emp
vs(emp) = {(0,v) | v : nodes — V} i.e., empty store

Separating conjunction

15(S§* S = {(fo® f1,v) | (fo,v) € 1s(S§) A (fa,v) € 1s(S)}
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A shape abstract domain relying on separation

Separation example

Field splitting model
@ Separation impacts edges / fields, not pointers

@ Shape graph

£ (Bo)
(]
g @y
accounts for both abstract states below:
v(a) () — v(a)

offset(£) el offset(f) ”(ﬂ),,:,’{(l‘)
offset(g) YO ‘ offset(g) S

,,,,,,,,

In other words, separation
@ asserts addresses are distinct

@ says nothing about contents
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A shape abstract domain relying on separation

Inductive edges

List definition
a-list = (emp,a=0)
|  (a-next— [y x a-data— 1 * [ - list,a # 0)

where emp denotes the empty heap

Concretization as a least fixpoint

Given an inductive def ¢

(e 0) =J{s(F) a2 F

@ Alternate approach:
index inductive applications with induction depth
allows to reason on length of structures
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A shape abstract domain relying on separation

Inductive structures IV: a few instances

@ More complex shapes: trees

left . tree
tree i)
C > L @ tree
right

@ Relations among pointers: doubly-linked lists
dli(a)

next
dil(s) u
(O— —,
prev @

@ Relations between pointers and numerical: sorted lists

Isort(31)

next @
Isort(d) u
GD_> — @] ® < 5B
data
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A shape abstract domain relying on separation

Inductive segments

e A frequent pattern:

&y
T T T
w] M

@ Could be expressed directly as an inductive with a parameter:
a-list_endp(w) == (emp,a=m)
(o - next — [y x a- data— 1
x fo - list_endp(n),a # 0)
@ This definition would derive from list
Thus, we make segments part of the fundamental predicates of

the domain

@
@ list \ list

e Multi-segments: possible, but harder for analysis

list
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@ An introduction to separation logic

e A shape abstract domain relying on separation

© Combination with a numerical domain

e Standard static analysis algorithms

© Inference of inductive definitions / call-stack summarization

@ Conclusion



Combination with a numerical domain

Example

How to express both shape and numerical properties ?

o List of even elements:

[ | [ ] [ ] 0x0
| 68 | | 2 | [ o |
o Sorted list:
0x0
[ 8 ] [ 9 |

@ Many other examples:

» list of open filed descriptors
> tries
» balanced trees: red-black, AVL...

@ Note: inductive definitions also talk about data
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Combination with a numerical domain

A first approach to domain combination

Basis
@ Graphs form a shape domain ]D)%
abstract stores together with a physical mapping of nodes
~s - DE — P((D4 — M) x (nodes — V))
@ Numerical values are taken in a numerical domain Dﬁum
abstracts physical mapping of nodes
Youm : Dhum — P((nodes — V))

Concretization of the combined domain [CR]

(5%, N¥) = {o € M | Iv € aum(NF), (o,v) € y5(S%)}

@ Quite similar to a reduced product

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014

38 / 82



Combination with a numerical domain

Combination by reduced product

Reduced product

o Product abstraction: D = ID)g X ID>§
V(x0, x1) = v(x0) N y(x1)

o Reduction: DF is the quotient of D¥ by the equivalence relation =
defined by (x0,%1) = (xh,x}) = 7(%0,%1) = (6, x})

e Domain operations (join, transfer functions) are pairwise (are usually
composed with reduction)

@ Why not to use a product of the shape domain with a numerical
domain ?

@ How to compare / join the following two elements ?

- = leven
data an d @E O_>

« is even
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Combination with a numerical domain

Towards a more adapted combination operator

Why does this fail here 7
@ The set of nodes / symbolic variables is not fixed

@ Variables represented in the numerical domain depend on the shape
abstraction

= Thus the product is not symmetric

Intuitions
@ Graphs form a shape domain ]D)’jS

e For each graph St ¢ ]D)ﬁs, we have a numerical lattice Dium<5u>

example: if graph S* contains nodes g, a1, az, Dﬁum<5ﬁ> should
abstract {ag, a1, 00} =V

@ An abstract value is a pair (S%, N), such that N* € DiumW%
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Combination with a numerical domain

Cofibered domain

Definition [AV]
@ Basis: abstract domain (Dg,;g), with
concretization g : Dg — D
e Function: ¢ : ID)g — D1, where each element of Dy

is an abstract domain (I, Eg) with a
concretization ~yps : ]D)q — D
1

o Lift functions: Vx¥, yt € ]DDg, such that xﬁggyﬁ,
there exists a function M, ,: : (x*) = ¢(y*), that
is monotone for 7,s and 7,

e Domain: D is the set of pairs (xg,xf) where
XlIj € gb(xé)

@ Generic product, where the second lattice depends on the first

@ Provides a generic scheme for widening, comparison
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Combination with a numerical domain

Domain operations

o Lift functions allow to switch domain when needed
Comparison of (x¢,x%) and (yZ, y¥)

© First, compare xg and yg in ]D?J

@ If xChyd, compare I'ng’yg(xf) and yf

Widening of (x¢,x}) and (y¢, y%)
© First, compute the widening in the basis zg = §Vy§
@ Then move to qﬁ(zg), by computing x2jj = I'ng’zg(xf) and
vh =5 ()
#

© Last widen in qS(zg): zf = xgvzm
0

(X07 )V(}/o’)ﬁ) (20721)
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Combination with a numerical domain

Domain operations

Transfer functions, e.g., assignment

@ Require memory location be materialized in the graph

i.e., the graph may have to be modified
the numerical component should be updated with lift functions

@ Require update in the graph and the numerical domain

i.e., the numerical component should be kept coherent with the graph

Proofs of soundness of transfer functions rely on:
@ the soundness of the lift functions

@ the soundness of both domain transfer functions
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Standard static analysis algorithms = Overview of the analysis

Outline

@ Standard static analysis algorithms
@ Overview of the analysis
@ Post-conditions and unfolding
@ Folding: widening and inclusion checking
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Standard static analysis algorithms

Static analysis overview

A list insertion function:

list x 1 assumed to point to a list

list x t assumed to point to a list element

listxc=1;

while(c 1= NULL && ¢ -> next != NULL && (.. .)){
C = c ->next;

}

t ->next = ¢ -> next;
c ->next =1t;

Overview of the analysis

@ list inductive structure def.

@ Abstract precondition:

' C list

to——0O

Result of the (interprocedural) analysis

e Over-approximations of reachable concrete states

e.g., after the insertion:

next next list

Xavier Rival (INRIA) Shape analysis based on separation logic
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Standard static analysis algorithms = Overview of the analysis

Transfer functions

Abstract interpreter design
e Follows the semantics of the language under consideration

@ The abstract domain should provide sound transfer functions

Transfer functions
@ Assignment: x > f =y — g or x = f = eyith
o Test: analysis of conditions (if, while)
@ Variable creation and removal

@ Memory management: malloc, free

Should be sound i.e., not forget any concrete behavior

Abstract operators

@ Join and widening: over-approximation

@ Inclusion checkmg check stabilization of abstract |terates
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Standard static analysis algorithms = Overview of the analysis

Abstract operations

Denotational style abstract interpreter
o Concrete denotational semantics [p] : s — P(s')

o Abstract semantics [p]*(S) = S/, computed by the analysis:
s € 1(S) = [pl(s)  v([PI*(S))

Analysis by induction on the syntax using domain operators

[poi p1]*(S) = [l o [Pol*(S)
[ =c*S) = assign((,e,S)
[£ = malloc(n)]#(S) alloc(t, n,S)
[free(0)]*(S) = free(f,n,S)
- _f join(Ip*(guard(e, S)).
[if(e) pt else Pfﬂu(s) = { [[pf]]’i(guarcf(e = false, S)))
[while(e)p]*(S) = guard(e = false, Ifp’s F?)
where, F*: Sq s [p]*(guard(e, So))
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Standard static analysis algorithms = Overview of the analysis

The algorithms underlying the transfer functions

@ Unfolding: cases analysis on summaries

X . y .
list next list

Xist st O—
OO _—
%O

e Abstract postconditions, on “exact” regions, e.g. insertion

next

next : list
dataO

y next

6“st > "\ next list, — <X>—’“St ©< daza)
k&,@ dataO

\ :X list @y

@ Widening: builds summaries and ensures termination

y next Ol_'St>

:" list :y list
dataO

:" list :y list v Gx list |
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Standard static analysis algorithms  Post-conditions and unfolding

Outline

@ Standard static analysis algorithms
@ Overview of the analysis
@ Post-conditions and unfolding
@ Folding: widening and inclusion checking
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Standard static analysis algorithms  Post-conditions and unfolding

Analysis of an assignment in the graph domain

Steps for analyzing x = y -> next (local reasoning)
© Evaluate |-value x into points-to edge o — [
© Evaluate r-value y -> next into node 3’

© Replace points-to edge o — 3 with points-to edge o+ /3’

With pre-condition: With pre-condition:
&x @ @ &x @ @
@ Step 1 produces ag — S @ Step 1 produces ag — Sy
@ Step 2 produces fI» e Step 2 fails

o End result:

&x @ Abstract state too abstract J

&y @ We need to refine it
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Standard static analysis algorithms  Post-conditions and unfolding

Unfolding as a local case analysis

Unfolding principle
e Case analysis, based on the inductive definition

@ Generates symbolic disjunctions
analysis performed in a disjunction domain

e Example, for lists:

list
next @
list u a#0
@_> data @

@ Numeric predicates: approximated in the numerical domain

Soundness: by definition of the concretization of inductive structures

15(5%) € UDrs(Sh) | 5 sf)
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Standard static analysis algorithms  Post-conditions and unfolding

Analysis of an assignment, with unfolding

Principle

@ We have ys(a-¢) = U{1s(SH) | a - ¢ N sty

@ Replace a - ¢ with a finite number of disjuncts and continue

Disjunct 2:

Disjunct 1: @ Gy nexe it
&x &y . ‘ data @
W@—»@:O

@ Step 1 produces g +— Fo
@ Step 1 produces ag — [ @ Step 2 produces [
o Step 2 fails: e End result:

Null pointer dereference ! o @ list

&y @ data @
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Standard static analysis algorithms  Post-conditions and unfolding

Unfolding and degenerated cases

assume(1l points to a dll) di)

c=1; @ at ® .
@ while(c # NULL && condition)

¢ = ¢ -> next: dli(s) dil(sy)
@ if(c # 0&& c -> prev # 0) e at @: O dii(s;) ?

C = c ->prev — prev,

= non trivial unfolding

dil(3) next —dli(#)

e Materialization of ¢ -> prev: )

tTev

Segment splitting lemma: basis for segment unfolding

@——"—@ describes the same set of stores as G—— —

7
" A% Q@

e Materialization of ¢ -> prev -> prev:
dli(3)

next next d“
@ dil(3" ’i ’ @
@Oscev

o Implementation issue: discover which inductive edge to unfold

verv hard !
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Standard static analysis algorithms  Post-conditions and unfolding

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/

N\

shape
domain

numeric
domain

Xavier Rival (INRIA)

&x
Ipos

&y

N =a; >0A a3 # 0x0

y->d=x+1

Abstract post-condition ?
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Standard static analysis algorithms  Post-conditions and unfolding

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/

N\

shape
domain

numeric
domain

&x
Ipos

&y

N =a; >0A a3 # 0x0

y->d=x+1 = (*az)-d:(*ao)—l—lj

Abstract post-condition ?

Stage 1: environment resolution

o replaces x with %ef(x)

Xavier Rival (INRIA)
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Standard static analysis algorithms  Post-conditions and unfolding

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/

N\

shape
domain

numeric
domain

&x
Ipos

&y

N =a; >0A a3 # 0x0

(xa2) - d = (xag) + 1

Abstract post-condition ?

Stage 2: propagate into the shape + numerics domain
@ only symbolic nodes appear

Xavier Rival (INRIA)
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Standard static analysis algorithms  Post-conditions and unfolding

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/

N\

shape
domain

numeric
domain

&x
Ipos

&y

N =a; >0A a3 # 0x0

(xa2) - d = (xag) + 1

Abstract post-condition ?

Stage 3: resolve cells in the shape graph abstract domain

@ xay evaluates to aq; xap evaluates to a3

@ (*ap) - d fails to evaluate: no points-to out of a3

Xavier Rival (INRIA)
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Standard static analysis algorithms  Post-conditions and unfolding

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/

N\

shape
domain

numeric
domain

&x d

pos

by @ —@3—

N=a3;>0ANa3#0x0Aas >0

(xa2) - d = (xag) + 1

Abstract post-condition ?

Stage 4: unfolding (several steps, skipped here)

@ locally materialize a3 - Ipos; update keys / relations in the numerics

@ |-value a3 - d now evaluates into edge a3 -d — ay

Xavier Rival (INRIA)
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Standard static analysis algorithms  Post-conditions and unfolding

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/

N\

shape
domain

numeric
domain

&x d
by @ ; Ipos

N=a3;>0ANa3#0x0Aas >0

create node ag

&x

Ipos

&y 09—y 09>

N=a3 >0ANa3#0x0ANag >0

Stage 5: create a new node

@ new node ag denotes a new value
will store the new value

Xavier Rival (INRIA)
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Standard static analysis algorithms

Post-conditions and unfolding

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/

\

shape
domain

numeric
domain

&x d

pos

by @ —@3—

N=a3;>0ANa3#0x0Aas >0

Qg < a1 + 1 in numerics

&x

Ipos

by 09—y 09>

N=a3 >0ANaz3 #0x0ANas >0Aas>1

Stage 6: perform numeric assignment

@ numeric assignment completely ignores pointer structures

to the new node

Xavier Rival (INRIA)
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Standard static analysis algorithms  Post-conditions and unfolding

Analysis of an assignment in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/

N\

shape
domain

numeric
domain

mutate (a3 - d) — ag into o J

&x

by @

N=a3 >0ANaz #0x0ANas; >0Aas>1

Stage 7: perform the update in the graph

@ classic strong update in a pointer aware domain

@ symbolic node a4 becomes redundant and can be removed

Xavier Rival (INRIA)
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Standard static analysis algorithms  Folding: widening and inclusion checking

Outline

@ Standard static analysis algorithms
@ Overview of the analysis
@ Post-conditions and unfolding
@ Folding: widening and inclusion checking
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Standard static analysis algorithms  Folding: widening and inclusion checking

Need for a folding operation

@ Back to the list traversal example... assulme(l points to a list)
c=1
while(c # NULL){

c = ¢ — next;

}

e First iterates in the loop:
» at iteration 0 (before entering the loop):

1,c
. list
> at iteration 1:
1 c .
Oﬁ‘ list
data

» at iteration 2:

1 [ .
next next list
K & a2 >
@ data’ @

data

@ How to guarantee termination of the analysis 7

@ How to introduce segment edges / perform abstraction ?
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Standard static analysis algorithms  Folding: widening and inclusion checking

Widening

@ The lattice of shape abstract values has infinite height

@ Thus iteration sequences may not terminate

Definition of a widening operator V
@ Over-approximates join:
Xt C y(Xxtvyh
Yi C y(XivYE)

@ Enforces termination: for all sequence (X,E),,GN, the sequence
(Y,g),,eN defined below is ultimately stationary

vi = X
vneN, Y., = Yivxi,
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Standard static analysis algorithms  Folding: widening and inclusion checking

Canonicalization

Upper closure operator

p:Df — Dian C Df is an upper closure operator (uco) iff it is
monotone, extensive and idempotent.

Canonicalization

@ Disjunctive completion: ]D)tiv = finite disjunctions over D?

@ Canonicalization operator p,, defined by py : DE/ — Dﬁanv and
ov(XH) = {p(x*) | x* € X*} where p is an uco and DZan has finite
height

@ Usually more simple to compute
e Canonicalization is used in many shape analysis tools:
TVLA, most separation logic based analysis tools
@ However less powerful than widening: does not exploit history of

computation
Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014
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Standard static analysis algorithms  Folding: widening and inclusion checking

Per region weakening

The weakening principles shown in the following apply both in
canonicalization and widening approaches

We can apply the local reasoning principle to weakening
@ inclusion test (comparison)
@ canonicalization

@ join / widening

Application: inclusion test

@ Operator CF should satisfy XPCHYH — 4(XF) C ~(Y¥)
o If SJCES) eak and ST 51 o
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Standard static analysis algorithms  Folding: widening and inclusion checking

Inductive weakening

Weakening identity
o XACHXH...

@ Trivial, but useful, when a graph region appears in both widening
arguments

Weakening unfolded region

o If 5§25 P 4(SF) C vs(SE)
@ Soundness follows the the soundness of unfolding

@ Application to a simple example:

next list

list
aQ 1 > Eﬁ @
Tane =2
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Standard static analysis algorithms  Folding: widening and inclusion checking

Comparison operator in the shape domain

Algorithm structure
o Based on separation and local reasoning:
15(S§) € 15(SF) = 7s(Sh * §%) S s(S} * S*)
e Algorithm:

applies local rules and “consumes” graph regions proved weaker
keeps discovering new rule applications

o Structural rules such as:
» segment splitting:

L L L
St (O = S % (o) CF (>
L u #
» inductive folding: OSﬁ rot > — 5 } — St ;ﬁ@—k>
£"5

S

Correctness:
Sicts! — 45(Sh) € 1s(SH) J
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Standard static analysis algorithms  Folding: widening and inclusion checking

Comparison operator in the combined domain

We need to tackle the fact nodes names may differ (cofibered domain)

@ @ next Ieven @9
data @

«ap is even

Instrumented comparison in the shape domain

e Comparison Sg;ﬁSf: rules should compute a physical mapping
V : nodes; — nodesg

@ Soundness condition: (o,v) € 'ys(Sg) = (o,voV¥) e 'ys(Sg)

Comparison in the cofibered domain

o Lift function for numerical abstract values: [1.; 5j(Ng) = Ng oWV
0~1

@ Thus, we simply need to compare Ng oV and Nf
Xavier Rival (INRIA)
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Standard static analysis algorithms  Folding: widening and inclusion checking

Join operator

o Similar iterative scheme, based on local rules

@ But needs to reason locally on two graphs in the same time:
each rule maps two regions into a common over-approximation

Graph partitioning and mapping
e Inputs: 5§,5§1
@ Performed by a function W : nodesy x nodes; — nodes

@ V is computed at the same time as the join

If vi € {0,1}, Vs € {Ift,rgh}, SF C*SE,

1 bl
ENEN

v v v
Y

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014
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Standard static analysis algorithms  Folding: widening and inclusion checking

Segment introduction

Rule
st @ Slgft ._'®

if v v then (a, o) <l> "

Srjgh @ = ._”/ 3
- & (o, 1) AN

Application to list traversal, at the end of iteration 1:
e before iteration 0:

list
o
e end of iteration 0:
donext 5 list
.
data @
@ join, before iteration 1:
(1Unext ‘361 list \U(Oéo, ,80) — ’YO
data \U(OCO, /81) = 71
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Standard static analysis algorithms  Folding: widening and inclusion checking

Segment extension

Rule

st, GCO——>@) shv srﬁgh _

if v v

Go Skn Gy & @

then (0, Bo) “= o

(a1, 1) AN

Application to list traversal, at the end of iteration 1:
@ previous invariant before iteration 1:

list list
Q)

1 list <

o end of iteration 1:
@ list dlnexc % list

1 list a
data

@ join, before iteration 1:

o, list st {W(O&o,ﬂo) = 0
L list V(ag,f2) = m
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Standard static analysis algorithms  Folding: widening and inclusion checking

Rewrite system properties

@ Comparison, canonicalization and widening algorithms can be
considered rewriting systems over tuples of graphs

@ Each step applies a rule / computation step

Termination
@ The systems are terminating

@ This ensures comparison, canonicalization, widening are computable

Non confluence !
@ The results depends on the order of application of the rules

@ Implementation requires the choice of an adequate strategy
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Standard static analysis algorithms  Folding: widening and inclusion checking

Properties

Inclusion checking is sound

If S5, then 4(S§) € 7(S})

Canonicalization is sound
Y(5*) € Y(pcan(SY))

Widening is sound and terminating
Y(S§) € (S5 SS)

7(S}) € (S5 SE)
V ensures termination of abstract iterates

@ Soundness of local reasoning and of local rules
e Termination of widening: V can introduce only segments, and may
not introduce infintely many of them
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Standard static analysis algorithms

Widening / join in the combined domain

environment layer
shape + num + env

cofibered layer
shape + num

/

\

shape
domain

numeric
domain

Xavier Rival (INRIA)

d
Ipos

ox 0O—0)—>03)
&y

N=oar>a5>2

Shape analysis based on separation logic

Folding: widening and inclusion checking

Ipos

&x
2y G—@)

N =p3>1
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Standard static analysis algorithms  Folding: widening and inclusion checking

Widening / join in the combined domain

d

environment layer
Ipos Ipos

@)
shape + num + env ix (Q0—(@)—(3) &x
&y 2y G)—@)

cofibered layer N=oay>as>2 N'=p3>1
shape + num

&X do = (ao,fo)
&y 01 = (ou,B2)
shape numeric
domain domain

Stage 1: abstract environment

@ compute new abstract environment and initial node relation
e.g., ap, fo both denote &x
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Standard static analysis algorithms  Folding: widening and inclusion checking

Widening / join in the combined domain

environment layer ° |pos Ipos
shape + num + env wx (Qg—)—>(3) wx Bo—>(@v—>
&y &y @:) ’@

cofibered layer N=oay>as>2 N'=p3>1
shape + num

&X do = (ao,fo)
&y 01 = (o, f2)
shape numeric
domain domain

Stage 2: join in the “cofibered” layer
operations to perform:
© compute the join in the graph

@ convert value abstractions, and join the resulting lattice
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Standard static analysis algorithms  Folding: widening and inclusion checking

Widening / join in the combined domain

: 4 @)
environment layer Ipos
shape + num + env &x @) o p
&y

cofibered layer N=a>as=>2

shape + num

/o \ e
&y

shape numeric

domain domain

S o o
NS
11

Stage 2: graph join

@ apply local join rules

ex: points-to matching, weakening to inductive...

@ incremental algorithm

Xavier Rival (INRIA) Shape analysis based on separation logic
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Standard static analysis algorithms  Folding: widening and inclusion checking

Widening / join in the combined domain

d
environment layer @)
hape 4+ num + env & Ipos

shap x -

cofibered layer N=a,>as>2
shape + num

/ \ i (39— -

6 =
shape numeric by 5 =
domain domain

Stage 2: graph join

@ apply local join rules

ex: points-to matching, weakening to inductive.

@ incremental algorithm

Ipos
&x By—>
&y @

N =p3=>1
(@0, Bo)
(s, B2)
(a1, 1)
(as, B3)

Xavier Rival (INRIA) Shape analysis based on separation logic
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Standard static analysis algorithms  Folding: widening and inclusion checking

Widening / join in the combined domain

environment layer
shape + num + env ux

&y

cofibered layer N=a,>as>2
shape + num

c® G
shaé r:}meric zy K

domain domain

Stage 2: graph join

@ apply local join rules

&x

N =p3>1

ex: points-to matching, weakening to inductive...

@ incremental algorithm
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Standard static analysis algorithms

Widening / join in the combined domain

environment layer

Folding: widening and inclusion checking

shape + num + env ux &x
&y &y
cofibered layer N=oay>as>2 N'=p3>1
shape + num
IPOS & = (ao,0)
/N SCSCE N
. & = (a1,b1)
shape numeric &y (G)— b5 = (a5 fs)
domain domain NY = [65 > 2] U85 > 1]
Stage 3: conversion function application in numerics
@ remove nodes that were abstracted away
@ rename other nodes
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Standard static analysis algorithms  Folding: widening and inclusion checking

Widening / join in the combined domain

environment layer

shape + num + env ux &x
&y &y
cofibered layer N=oay>as>2 N'=p3>1
shape + num
/N o vy
= (on/
shape numeric &y gz - 53;23
domain domain NY = [55 > 1]
Stage 4: join in the numeric domain
@ apply LI for regular join, V for a widening
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Inference of inductive definitions / call-stack summarization

Outline

© Inference of inductive definitions / call-stack summarization
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Inference of inductive definitions / call-stack summarization

Interprocedural analysis

@ Analysis of programs that consist in several functions (or procedures)

e Difficulty: how to cope with multiple (possibly recursive) calls

Relational approach
@ analyze each function once

@ compute function summaries
abstraction of input-output
relations

@ analysis of a function call:
instantiate the function
summary (hard)

Inlining approach

@ inline functions at function
calls

@ just an extension of
intraprocedural analysis

@ In this section, we study the inlining approach for recursion

@ Side result: a widening for inductive definitions
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Inference of inductive definitions / call-stack summarization

Approaches to interprocedural analysis

“relational” approach | “inlining” approach
analyze each definition analyze each call
abstracts P(S — S) abstracts P(S)
+ modularity - not modular
+ reuse of invariants - re-analysis in # contexts
- deals with state relations + deals with states
- complex higher order + straightforward iteration
iteration strategy
challenge: |frame problem challenge: ’unbounded calls

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 71 / 82



Inference of inductive definitions / call-stack summarization

Challenges in interprocedural analysis

voidmain(){ turns a linked list into a doubly linked list
dll  /; //assume [ points to a sll removes some elements
| = £ix(/,NULL);
dll x £ix(dll x c,dll x p){ p — p —
dll « ret;
. . fix[c  e—1¢[0]3] fix[c  e——[+[0]3]
if(c '=NULL){
¢ ->prev = p; e ret ? e ret ?
@c ->next = fix(c ->next, c); P P
if(check(c ->data)){ fix[c  ——Iy i8] fix[c  ——]»[!]8]
ret = ¢ ->next,; ret ? ret
remove(c); fp — fp —
. @} else ret = c; fixle i fixle |
t 7 t
return ret; = TN
}
0 [o]4]2]

@ Heap is unbounded, needs abstraction (shape analysis)
@ But stack may also grow unbounded, needs abstraction

@ Complex relations between both stack and heap
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Inference of inductive definitions / call-stack summarization

Calling contexts as shape graphs

f":m stack heap
P9
tix[c  o—]4[0]3]
ret ?
fp
P <
fix[e 1 [Ti8]
ret 7?7
fp
P '

Hh
)
]
(e}
=1
=]

@ Concrete assembly call stack modelled in a separating shape
graph together with the heap
» one node per activation record address

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014

73 / 82



Inference of inductive definitions / call-stack summarization

Calling contexts as shape graphs

main[1 o] stack heap

tix[c  o—]4[0]3]

ret ?
fp fixO
P P’q
tix[c_ol——i]e]
ret 7?7 leO
fp
P “ )
fix[c o LT £ix O

@ Concrete assembly call stack modelled in a separating shape
graph together with the heap
» one node per activation record address
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Inference of inductive definitions / call-stack summarization

Calling contexts as shape graphs

f";ainr-l stack heap
p ] main ()
tix[c  o—]4[0]3] fpi
ret ?
fp fixyo
p < fp :
N Sy
ret 7?7 flxyo
fp fp:
p ] L
fix[c o LT £ix O
ret 7?7

@ Concrete assembly call stack modelled in a separating shape
graph together with the heap
» one node per activation record address
» explicit edges for frame pointers
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Inference of inductive definitions / call-stack summarization

Calling contexts as shape graphs

main

fp
p 0

tix[c  o—]4[0]3]
ret ?

fp
P <

tix|c o [+]8]
ret 7?7

fp
P '

Hh
)
]
(e}
=1
=]

e Concrete assembly call stack modelled in a separating shape
graph together with the heap
» one node per activation record address
» explicit edges for frame pointers
» local variables turn into activation record fields
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Inference of inductive definitions / call-stack summarization

Calling contexts as shape graphs

main stack heap

tix[c  o—]4[0]3]

ret ? ev
fp
P <
fix|c F*j ‘ ‘ 8 ‘ n v
ret 7?7
f
p . — n .

Hh
)
]
(e}
=1
=]

DT |ist

e Concrete assembly call stack modelled in a separating shape
graph together with the heap
» one node per activation record address
» explicit edges for frame pointers
» local variables turn into activation record fields
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Inference of inductive definitions / call-stack summarization

Calling contexts as shape graphs

main

fp
p 0

tix[c  o—]4[0]3]
ret ?

fp
P <

tix|c o [+]8]
ret 7?7

fp
P '

Hh
)
]
(e}
=1
=]

@ Concrete assembly call stack modelled in a separating shape
graph together with the heap
» one node per activation record address
» explicit edges for frame pointers
» local variables turn into activation record fields
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Inference of inductive definitions / call-stack summarization

Inference of a call-stack inductive structure

@ Second and third iterates: a repeating pattern
Q

@ Computing an inductive rule for summarization: subtraction
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Inference of inductive definitions / call-stack summarization

Inference of a call-stack inductive structure

@ Second and third iterates: a repeating pattern

e Computing an inductive rule for summarization: subtraction

» subtract top-most activation record
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Inference of inductive definitions / call-stack summarization

Inference of a call-stack inductive structure

@ Second and third iterates: a repeating pattern

e Computing an inductive rule for summarization: subtraction

» subtract top-most activation record

» subtract common stack region
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Inference of inductive definitions / call-stack summarization

Inference of a call-stack inductive structure

@ Second and third iterates: a repeating pattern

e Computing an inductive rule for summarization: subtraction

» subtract top-most activation record
» subtract common stack region
» gather relations with next activation records: additional parameters

» collect numerical constraints
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Inference of inductive definitions / call-stack summarization

Inference of a call-stack inductive structure

@ Second and third iterates: a repeating pattern

@ Computing an inductive rule for summarization: subtraction

Inferred inductive rule

stk(fo, 51)
ctx
‘ u q
owE ol
fix
® ® next
@
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Inference of inductive definitions / call-stack summarization

Inference of a call-stack summary:

e Fixpoint at function entry:

. second iterate:
first iterate:

fp /p/ nelghs,
tix O——C)
neKE Jist
O

Fixpoint reached

widening iterates

widened iterate:

mai]f'l
fp!
fix* R
7 stk(B2, f3)stk( 30, 1)
3/ C f:«,
 list

@ Fixpoint upon function return:

» function return involves unfolding of stack summaries
» simpler widening sequence: no rule to infer

Xavier Rival (INRIA)
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Inference of inductive definitions / call-stack summarization

Widening over inductive definitions

Domain structure

An abstract value should comprise:
@ a set S of unfolding rules for the stack inductive
@ a shape graph G
@ a numeric abstract value N

Shape graph G is defined in a lattice specified by S,
thus, this is an instance of the cofibered abstraction

@ Lift functions are trivial:
» adding rules simply weakens shape graphs
> i.e., no need to change them syntactically, their concretization just gets

weaker
@ Termination in the lattice of rules:
limiting of the number of rules that can be generated to some given

bound
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@ An introduction to separation logic

e A shape abstract domain relying on separation

© Combination with a numerical domain

@ Standard static analysis algorithms

© Inference of inductive definitions / call-stack summarization

@ Conclusion



Conclusion

Abstraction choices

Many families of symbolic abstractions including TVLA and separation
logic based approaches

@ Variants: region logic, ownership, fractional permissions

Common ingredients
e Splitting of the heap in regions

TVLA: covering, via embedding
Separation logic: partitioning, enforced at the concrete level

@ Use of induction in order to summarize large regions

@ More limited pointer analyses: no inductives, no summarization...
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Conclusion

Algorithms

Rather different process, compared to numerical domains ]

From abstract to concrete (locally)
@ Unfold abstract properties in a local maner

e Allows quasi-exact analysis of usual operations (assignment,
condition test...)

From concrete to abstract (globally)
o Guarantees termination
@ Allows to infer pieces of code build complex structures

@ Intuition:

static analysis involves post-fixpoint computations (over program
traces)
widening produces a fixpoint over memory cells

v
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Open problems

Many opportunities for research:
@ Improving expressiveness
e.g., sharing in data-structures
» new abstractions
» combining several abstractions into more powerful ones
@ Improving scalability

» shape analyses remain expensive analyses, with few “cheap” and useful

abstractions
» cut down the cost of complex algorithms
isolate smaller families of predicates
o Applications, beyond software safety:
> security
» verification of functional properties
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Internships

Several topics possible, soon to be announced on the lecture webpage:

Internal reduction operator
@ inductive definitions are very expressive thus tricky to reason about

@ design of an internal reduction operator on abstract elements with
inductive definitions

Modular inter-procedural analysis

@ a relation between pre-conditions and post-conditions can be
formalized in a single shape graph

@ design of an abstract domain for relations between states

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 81 / 82



Conclusion
Bibliography

e [SRW]: Parametric Shape Analysis via 3-Valued Logic.
Shmuel Sagiv, Thomas W. Reps et Reinhard Wilhelm.
In POPL'99, pages 105-118, 1999.

e [JR]: Separation Logic: A Logic for Shared Mutable Data
Structures.
John C. Reynolds. In LICS'02, pages 55-74, 2002.

e [DHY]: A Local Shape Analysis Based on Separation Logic.
Dino Distefano, Peter W. O’'Hearn et Hongseok Yang.
In TACAS'06, pages 287-302.

e [AV]: Abstract Cofibered Domains: Application to the Alias
Analysis of Untyped Programs.
Arnaud Venet. In SAS'96, pages 366—382.

e [CR]: Relational inductive shape analysis.
Bor-Yuh Evan Chang et Xavier Rival.
In POPL'08, pages 247-260, 2008.

Xavier Rival (INRIA) Shape analysis based on separation logic Dec, 17th, 2014 82 / 82



	An introduction to separation logic
	A shape abstract domain relying on separation
	Combination with a numerical domain

