MPRI
Abstract Interpretation of Mobile Systems

Jérome Feret

Département d’Informatique de I'Ecole Normale Supérieure
INRIA, ENS, CNRS

http://www.di.ens.fr/~ feret

January 14th, 2015

Overview

. Overview

. Mobile systems

. Non standard semantics

. Abstract Interpretation

. Environment analyses

. Occurrence counting analysis
. Thread partitioning

8. Conclusion

N OO O &~ WO DN =

Jéréme Feret 72 Januar y, 14th 2015

Collecting semantics

(C, Co, —) Is a transition system,
We restrict our study to its collecting semantics:
this is the set of the states that are reachable within a finite transition se-

quence.
S={C|die Cy i—>"C}

It is also given by the least fixpoint of the following U-complete endomorphism

I¥:

p_ ol — el
X = CufC’'|3CeX, C—Ch

This fixpoint is usually not computable automatically.

Jérome Feret 73 January, 14th 2015

Abstract domain

We introduce an abstract domain of properties:
e properties of interest;
e more complex properties used in calculating them.

This domain is often a lattice: (D% C, L, L, M, T) and is related to the concrete
domain p(C) by a monotonic concretization function vy.

VA € D, y(A) is the set of the elements which satisfy the property A.

Jérome Feret 74 January, 14th 2015

Numerical domains

Jérdme Feret

75

sign approximation;
interval approximation;
octagonal approximation;
polyhedra approximation;
concrete domain.

January, 14th 2015

Abstract transition system

Let C} be an abstraction of the initial states and ~ be an abstract transition
relation, which satisfies Cy C y(Cg) and the following diagram:

Then, S C | Jv(F™(CY)),
neN

where Fﬁ(Cﬁ) = Cg L CHy (I_l fjnjte{@ | C s @}) .

Jérome Feret 76 January, 14th 2015

Widening operator

We require a widening operator to ensure the convergence of the analysis:
V : D' x D —» D*
such that:
o vXi, Xie D XA UX, EX VX,
. . N .
e for all increasing sequence (X%) € (Dﬁ) , the sequence (XY) defined

as
Xy =X
XV . =XV VX

n+1 n+1
IS ultimately stationary.

Jéréme Feret 77 January, 14th 2015

Abstract iteration

The abstract iteration (CY) of IF* defined as follows

(Y =c!
¢ v Y if F*(CY) E CY
\ M CY VF(CY) otherwise

is ultimately stationary and its limit CV satisfies /fo,F C y(CV).

Jéréme Feret 78 January, 14th 2015

Example: Interval widening

We consider the complete 7 lattice of the natural number intervals.
7 does not satisfy the increasing chain condition.

Given n a natural number, we use the following widening operator to ensure
the convergence of the analyses based on the use of Z:

la;bll V lc;dll = [I[min{a;c};o0l[if d > max{n; b}
I V.] = U] otherwise

Jéréme Feret 79 January, 14th 2015

Composing two abstractions

Given two abstractions (D%, C, ~, V) and (D%, C, ~, V), and a reduc-
tion p : DF x D — D! x D* which satisfy:

Y(A,A) € D" x D% y(A)Nvy(A) C y(a) Ny(a) where (a,a) = p(A,A).

Then (DY, v, Ci, ~, V) where:

o D! =D x D

e V is pair-wisely defined;

e Y(A,A) =v(A)NY(A);

o Ci=p(Cj,CY);

e (A,A)~ p(C,C)

if B~~ CandB ~» Cand (B,B) =p(A,A)

IS also an abstraction.

Jéréme Feret 80 January, 14th 2015

Overview

. Overview

. Mobile systems

. Non standard semantics

. Abstract Interpretation

. Environment analyses

. Occurrence counting analysis
. Thread partitioning

8. Conclusion

N OO O &~ WO DN =

Jéréme Feret 81 Januar y, 14th 2015

Generic environment analysis

For each subset V of variables, we introduce a generic abstract domain Gy
to describe the markers and the environments which may be associated to a
syntactic component the free name of which is V:

o(ld x (V — (Name x Id))) &<~ Gy.

The abstract domain C? is then the set:

C' =] [Gmwp

peP

related to p(C) by the concretization y:

y(f) — {C | (P»’d>E) cC — (Id>E) € an(p)(fp)}°

Jéréme Feret 82 January, 14th 2015

Abstract communication
?[yl.(vp)P x![x].(vq@)Q

@ Environment Property

- - -+ Relational Information — Synchronization Constraint

Variable Property

Jérome Feret 83 Januar y, 14th 2015

Extending environments
x!x).(vg)Q

y?lyl.(vp)P

.
.

! \
' \

- Environment Property

‘ Environment Extension

- - -- Relational Information

-
-
-

Variable Property

— Synchronization Constraint

84 Januar y, 14th 2015

Synchronizing environments

y?[g].(yP)P ?Id[?]-(\/g)g

.
.

~I~

Y T
_\ z

¢ Environment Property

‘ Environment Extension

- - - Relational Information

Variable Propert

— Synchronization Constraint

Jérome Feret 85 Januar y, 14th 2015

Propagating information
y?[yl.(vp)P xxl.(vg)Q

. -
. -
- -

-

\

/ \

!' M H “

¢ Environment Property

‘ Environment Extension

- - - Relational Information

Variable Property

————— Information closure

Jérome Feret 86 Januar y, 14th 2015

Generic primitives

We only require abstract primitives to:

extend an environment domain,

gather the description of the linkage of two syntactic agents,
synchronize variables,

separate two descriptions,

o~ b~

restrict an environment domain.

Jéréme Feret 87 January, 14th 2015

About mobile ambients

m n

Jéréme Feret 88 Januar y, 14th 2015

Jérdme Feret

Im

89

in‘o.P

January, 14th 2015

Jéréme Feret 90 January, 14th 2015

Control flow analyses

We abstract for each variable x and each name restriction v y the set of
marker pairs (idy, id,) such that the channel opened by the instance of the
restriction v y tagged with the marker id, may be communicated to the vari-
able x of a thread tagged by the marker id,.

Let /d” be an abstract domain of properties about marker pairs.

Yid2 - /dﬁ — {Q(ldz)
Gy =V x Name — Id*

vv(a®) is the set of marker/environment pairs (id,, E) such that:

x € GE(x) = (y,idy) = (id idy) € vig2(a’(x,y))-

Jéréme Feret 91 January, 14th 2015

Regular approximation

We approximate the shape of the markers which may be associated to chan-
nel names linked to variables, and syntactic components, without relations
among them.
We use the following abstract domain:

P(X) x p(X) x p(X x X) x {true;false}.

v(I,F, T, b) is defined by v (I) Ny2(F) Nys3(T) Nys(b) where:
e vill) ={ue X ||lu[>0=w el
¢ Va(F) ={ue I ul > 0= uyeFh
e V3(T)={ueXl*|Va,beZ* A,puec i, u=aAub= (Au €T}

) ST ifb=0
() —
Y4 >* otherwise.

Domain complexity is O(n.|Z]) and maximum iteration number is O(n*.|Z|).

Jérome Feret 92 January, 14th 2015

Comparison between channel and agent
markers

We capture the difference between the occurrence number of letters in such

two markers.
Id? = (X = (Zu{TH))u{Ll)

Y42 IS defined as follows:

Yig2(L) =10
Yig2(f) ={(u,v) € (Z)? VA, FAN)€Z = |uly — VA = f(n)}.

Domain complexity is O(]X|) and maximum iteration number is O(n3.|Z|).

Jérome Feret 93 January, 14th 2015

Several trade-offs

1. 0-cfa (0-CFA): ld* ={1;T},
Cf [Nielson et al..CONCUR’98], [Hennessy and Riely:HLCL98].
2. Confinement (CONF): /d* ={L,=, T},
Cf [Cardelli et al..CONCUR’00].
3. Algebraic comparisons: we use the product between regular approxi-
mation and relational approximation.
We can tune the complexity:
e by capturing all numerical relations (GLOB;), or only one relation
per literal (LOC;).
e by choosing the set of literals among Label (i = 2)or Label”* (i = 1).

Jéréme Feret 94 January, 14th 2015

Abstract semantics hierarchy

@ @ where
\ >
means that there exists o« : A — B,

@ such that for any system S,

Rt

GL

([STA)Ce[ST

@

o

=i

é
o
o
L

Jéréme Feret 95 Januar y, 14th 2015

Example: 0-CFA

v Pi.s.alll : a Pi-calculus Static Analyzer - Mozilla
EEiIe Edit Wiew Go Bookmarks Tools Window Help

(# port)(# gen)

(*port?'[info,add](add!*[info])

| *gen?°[|(# data)(# email)(port!*[data,email] | gen!®[])
| gent°[])

main menu - control flow analysis

Pi-s.a. Version 3.24, last Modified Fri November 19 2004
Pi-s.a. is an experimental prototype for academic use only.

L 4

Jéréme Feret 96 January, 14th 2015

Analysis result

We detect that threads at program point 2 as the following shape:

(2> (3,6)(3,5)"(1,4), <

‘add — (email, (3,6)(3,5)™)
info — (data, (3,6)(3,5)")

Jérbme Feret 97 Januar y, 14th 2015

Example: non-uniform result
vl Pi.s.alll : a Pi-calculus Static Analyzer - Mozilla -
(*port?[info,add](add!*[info])
| *gen?’[](# data)(# email)(port!*[data,email] | gen!”[])
| gent®[])

= .

Start --> (3,6)A
A-->(35A+(1,4)B
B-->END

Start --> (3.6)A
A-->END+ (2 5)A i

(3.6) = (3.,6)
1(35) = (35) L

Jérobme Feret 98 Januar y, 14th 2015

=[] Netscape: Pij[[—| Metscape: Fi-s.a. 3: Pi static analyser |=
| J

(intruder) (intruder) 3
(#a)(#D)(#x) (#a)(#D)(#x) -
(M z]((#Oz!2[t]t!3]z]) (*x P z]((#0)z!2[t]t13[z])
I*make?4[]x!°[a] I*make?4[]x!°[a]

I*make?°[]x!7[b] I*make?°[]x!7[b]

I*a?[i]i?[j]b1O[]) =a?8[i]i?°[j1b!1Of])

main menu — control flow analysis | main menu — control flow analysis

Pi—s.a. Version 3.22, last Modified Tue March 3 Pi-s.a. Version 3.22, last Modified Tue March 5 i
=l =l J =

Jéréme Feret 99 January, 14th 2015

Example: the ring of processes

edge

(v make)(v edge)(v first) e °

(xmake?'[last](vnext)
(edge!”[/ast,next] €998 edge

| make!3*[next])
| «xmake?*[/ast](edge!°[/ast,first]) @ °

| make!°[first])

Jéréme Feret 100 Januar y, 14th 2015

Example: Algebraic properties

((# make)(F# mon)(# left0)

((*make?![left](# right){mon'* [left right]imake® [right] })
|(*make? [left] (mon'3 [left,left0]))

imake!®[left0]))

Start ——> (1,6)A
A—>(13)B
B ——>END +(1,3)B

Start ——> (1,6)A
A—>END+(13)A

(1,6) = (1,6)
(1,3)=(1,3) +1

main menu — control flow analysis — (# right)

Pi—s.a, Version 3.18, last Modified Tue Novermber 27 2001
Pi—z.a. iz an experimental prototype for an academic use only,

=]

Jérome Feret 101 January, 14th 2015

Example

We detect that:

((p'?le], (11,20)™.(11,21), _, [p = (p, (11,20)™.(11,21))])
(answer[e], (3,19).(11,20)™.(11,21), (12, (11,20)".(11,21),)
| ((rep)”, _, (8,(3,19).(11,20)7.(11,21), [rep — (data, (11,20)P.(11,21))]))

7\

We deduce that each packet exiting the server has the following structure:

(p.(11,20)™.(11,21))
answer
(data, (11,20)™.(11,21)

(11,20)™.(11,21)

(3,19).(11,20)™.(11,21)

Jéréme Feret 102 January, 14th 2015

Limitations

Two main drawbacks:

1. we only prove equalities between Parrikh’s vectors, some more work is
needed in order to prove equalities of words;

2. we only capture properties involving comparison between channel name
and agent markers:
(v make)(v edge)(v first)(v first)

(xmake?'[last](vnext)
(edge!?[last,next]
| make!3*[next])

| +*make?°[/ast](edge!’[/ast,first])

| make!®[first])

| edge?[x,y][x =" y][x #'first]Ok!''[]

we cannot infer that 11 is unreachable.

Jéréme Feret 103 January, 14th 2015

Dependency analysis between names

We describe equality and inequality relations between the names linked to
variables.

R is a symetric anti-reflexive relation on A

gV — {(A> R)

A IS a partition of V }

Gy is related to p(/d x (V — (Name x Id))) by the following concretization
function:

Yv((A,R)) = {(id>E) (X, V) eR = YxeX,ye), E(x)#E(y)

VX e A, {x,yC X = E(x)=E(y) }

—> implicit closure of relations and information propagation.

Jérome Feret 104 January, 14th 2015

Dependency analysis between markers

We describe equality and inequality relations between the markers of threads
and the names linked to variables.

A is a partition of V W {id,}
R is a symetric anti-reflexive relation on A (-

gV — {(A>R)

Gy is related to p(/d x (V — (Name x Id))) by the following concretization
function:

(VX € A, x € V, {id,,x} C X = id = snd(E(x))
VX €A, x,yeV {x,yl C X = snd(E(x)) = snd(E(y))
V(X,YV)eR, yey,
id, ¢ X andy € Y = id# snd(E(y))
V(X,)) €R, x,y €V,
\ x € X andy €)Y — snd(E(x)) # snd(E(y))

—> implicit closure of relations and information propagation.

Jérome Feret 105 January, 14th 2015

Global numerical analysis

We abstract relations between all the name markers and all the names linked
to variables, and the thread markers:
For each V C Name, we introduce the set

Xy ={p* | AeZju{c™ |AeXZuName, v eV}

The domain Gy is then the set of the affine relations system among Ay, related
to the concrete domain by the following concretization:

P)\ — |id)
vv(K) = < (id, E) xWv) — (y = first(E(v))) | satisfies K
xMV) — [snd(E(v))],

Jéréme Feret 106 January, 14th 2015

Pair-wise numerical analysis

We compare pair-wisely markers, having partitioned in accordance with the
name creations having created the names.

Let @ be a linear form defined on R*, for each V C Name, the domain Gy is
a pair of function (f, g):

f . VU Name — { Affine subspace of R?},
g : (VU Name)* — { Affine subspace of R*},

the concretization yv(f, g) is given by:

/

E(x) = (y,idy) = (D((lid\)res), @((lidyla)acx)) € f(x,y))
dE) | [Ex) = (y,id | » o
(id, E) {Eg?) ((”y,’,;gyf) — (@ ((lidyhres), D (110 W res) € 9((x,y), (¢ y")

/

7\

\

Jérome Feret 107 January, 14th 2015

Jérdme Feret

Reduction

Dependency

@3

Global

P

Shape

Pair—-wise j

108

January, 14th 2015

Example

(v make)(v edge)(v first)
(xmake?'[last](vnext) (edge!’[last,next] | make!*[next])
| +*make?®[/ast](edge!’[/astfirst])
| make!®[first])
| edge?[x,y][x="y][x #'first]Ok!''[]

we first prove in global abstraction that:

(1,3),next _ ~(1,3),last next,last
e c' b = Cc' 7 ¢

cfirst,/ast i chextlast _ q

cnextlast i cfirstjast _ 1

first,first _ 1§

f(7) satisfies {
C

Jérdme Feret 109

January, 14th 2015

Example

We then prove in pair-wise analysis that in process 9, x and y are respectively
linked to names created by some instance of the restrictions :
. (v first) and (v first),
2. (v first) and (v nexi),
3. (v next) and (v next) but distinct instances,
4. (v next) and (v first).
so, the matching pattern [x = y] is satisfiable only in the first case !!!

Jéréme Feret 110 January, 14th 2015

Overview

. Overview

. Mobile systems

. Non standard semantics

. Abstract Interpretation

. Environment analyses

. Occurrence counting analysis
. Thread partitioning

8. Conclusion

N OO O &~ WO DN =

Jéréme Feret 111 Januar y, 14th 2015

Intuition

(1,5, port H(port,s))
3, gen — (gen,e)
port — (port,¢)

. (z,/dh add +— (email, /d1))

/nfo — (data, id)

2, /dz,

(
add — (email, iad,)
/nfo — (data, id,)

5 /dz, gen — (gen, e))

Jérome Feret 112 January, 14th 2015

Abstract transition

Jéréme Feret 113 Januar y, 14th 2015

Abstract domains

We design a domain for representing numerical constrains between

e the number of occurrences of processes fi(i);
e the number of performed transitions (i,)).

We use the product of

e a non-relational domain:
— the interval lattice:

e a relational domain:
—> the lattice of affine relationships.

Jéréme Feret 114 January, 14th 2015

Interval narrowing

An exact reduction is exponential.

We use:

X+ty+z=1 x+y+z=1

e Gaus reduction: { Y — { Y
(x+y+z=3 (x+y+z=3

: 0: :

e Interval propagation: { * [0; ool _ € [1053]]
y € [|0; ool y € [|0; 00|l
|z € [10; 00|l z € [[0; 00l

7\

. _3 (x+y—2z=3
, hedundancy intro- {X+y —z= N

duction: x € [|1:2]] Yy—zc [[T; 2]]
L x € [[T;2]]

to get a cubic approximated reduction.

Jéréme Feret 115 January, 14th 2015

Example: non-exhaustion of resources

((# make)(# server)(# port)
((*make?%1[|(# address){# request)
(

(*address?2:[0:+o0ll [Jserver!3:[0i+ 00l [address,request])
|

addresst*:[10+o0ll]]
|

make!>: [10:11] I]))
|
(*server7%'1[email data]
(port??’[":]i”“'[l](# deal)(
deal'®[0:31 [data]
|
deal 7?1030 rep](cmailt 'O 10+l [rep] | portiLI031y)
+
email!l:i:[l[];mul[n])
| port 13011 | port 141011 | port 51011
| make!16:[10;11])

main menhu

=]

Jérome Feret 116 January, 14th 2015

Example: exhaustion of resources

((# make)(F# server)(# port)(3# deal)
((*make?% 1 [|(# address)(# request)
(

(*addrms?z’ [10;+ 00l []sepver Z:[0:+o0l] [addressrequest])
|

addresst*:[10+o0ll]]
|

make!>: [10:11] I]))
|
(*server %1 [email request]
(Pﬂrt??:[lli];wnl[l](pﬂrt!ﬂ:[ID;BI]n | deal!g:[lm"'ml[[l‘equ&ﬁt] Ideal?m:[mi”“'[[rep]email!ll:[":]i”“'[[rep])
+
e:mail!lii:[III];+::|r:|I[[|

|p0rt!13:[ID;1I][I |p0rt!14:[ID;1I][I |p0rt!15:[ID;1I][I |make!16:[lﬂ;ll]|]n

main menhu

Pi—s.a, Version 3.18, last Modified Tue Novermber 27 2001
Pi—z.a. iz an experimental prototype for an academic use only,

=]

Jérome Feret 117 January, 14th 2015

Example: mutual exclusion

(#a)# b))
(a?l:[ll{]; 11 I]b?z:[lﬂjll] [I

|

q74:[10;11] [Ib!S:[ID; 11] 1
|

a!é:[lﬂjll]n)

main menhu

Pi—sz.a Version 3.14, last Modified Tue November 27 2001
Pi-z.5. iz an experimental prototype for an academic use only,

=]

Jérome Feret 118 January, 14th 2015

I

Jérdme Feret

Example: token ring

K4 Pi.s.alll : a Pi-calculus Static Analyzer -

| B S

Mozilla

(# make)(# mon)(# leftO)
((*make?" [left](# right)(

| (*make?* [left](mon!®H%Mleft lefto]))

| make!*H%efto]

| (*mon?”[prev,next]

(# crit)

| make!* 1% Mright))

(crit!g:“u;”][] | (crit?m:“u;”][]nextﬂ1:““;1”[]))))

| leftor 2%y

119

January, 14th 2015

Comparison

e Non relational analyses.
[Levi and Maffeis: SAS’2001]

e Syntactic criteria.
[Nielson et al.:.SAS2004]

e Abstract multisets.
[Nielson et al..SAS’1999,POPL2000]

e Finite control systems.
[Dam:IC’96],[Charatonik et al..ESOP’02]

Jérdme Feret 120

January, 14th 2015

Overview

. Overview

. Mobile systems

. Non standard semantics

. Abstract Interpretation

. Environment analyses

. Occurrence counting analysis
. Thread partitioning

8. Conclusion

N OO O &~ WO DN =

Jéréme Feret 121 Januar y, 14th 2015

Computation unit

Gather threads inside an unbounded number of dynamically created compu-
tation units.
Then detect mutual exclusion inside each computation unit.

Each thread is associated with a computation unit, which is left as a parame-
ter of:

e the model
e and the properties of interest.

For instance:

e In the mt-calculus, the channel on which the input/output action is per-
formed;

e in ambients, agent location and the location of its location
[Nielson:POPL2000].

Jéréme Feret 122 January, 14th 2015

Thread partitioning

O

Jérome Feret 123 Januar y, 14th 2015

Thread partitioning

We gather threads according to their computation unit.
We count the occurrence number of threads inside each computation unit.

To simulate a computation step, we require:
e to relate the computation units of:

1. the threads that are consumed:;
2. the threads that are spawned.

This may rely on the model structure (ambients) or on a precise envi-
ronment analysis (other models).

e an occurrence counting analysis:
to count occurrence of threads inside each computation unit.

Jérbme Feret 124 January, 14th 2015

Concrete partitioning

B: a finite set of indice.
We define the set of computation units as:

unit2 B — Label x Id.

give-index maps each program point p to a function give-index(p) € B — fn(p).

Given a thread t = (p, id, E), we define its computation unit give-unit(t) as:

give-unit(t) = [b € B — E(give-index(p)(b))].

Jéréme Feret 125 January, 14th 2015

Abstract computation unit

There may be an unbounded number of computation units.

To get a decidable abstraction, we merge the description of the computation
units that have the same labels.

We define:
UNIT! 2 B — Label.

The abstraction function:

unit — UNIT?
ﬂunit S
beB— (l,)] — b=l

maps each computation unit to an abstract one.

Jéréme Feret 126 January, 14th 2015

Abstract domain

Our main domain is a Cartesian product:

Ciart = (Thhes, Gngp) % (UNITF = AT,).

The set vpar(ENV, CU) contains any configuration (v, C) € X* x § that satis-
fies:

1. (v, C) € Yenv(ENV);
2. for any computation unit u € unit, there exists a function

t € {(0) € N} U (v, (CU(TTumie(1))))
such that:

t(p) = Card({(p, id, E) € C | give-unit(p, id, E) = u}).

Jéréme Feret 127 January, 14th 2015

Balance molecule

To simulate an abstract computation step,

we compute an abstract molecule that describes:
e both the n threads that are interacting;
e and the m threads that are launched;

we also collect any information about the values in computation units:

e each thread is launched in a computation unit. Each value occurring in
this computation unit may either be fresh, or may come from interacting
threads;

(we take into account these constraints in the abstract molecule).

Jéréme Feret 128 January, 14th 2015

Admissible relations

Then, we consider any potential choice for:

1. the equivalence relation among the computation unit of the (n + m)
threads involved in the computation step;

2. abstract computation units associated to each thread.
Each choice induces some constraints about:

e the control flow;

e the number of threads inside computation units;
We use these constraints to:

1. check that this choice is possible;

2. refine control flow and occurrence counting information;
Then, we simulate the computation step.

Jéréme Feret 129 January, 14th 2015

Shared-memory example

A memory cell will be denoted by three channel names, cell, read, write:

e the channel name cell describes the content of the cell:
the process cell![data] means that the cell cell contains the information
data, this name is internal to the memory (not visible by the user).

e the channel name read allows reading requests:
the process read![port is a request to read the content of the cell, and
send it to the port port,

e the channel name write allows writing requests:

the process write!|datal is a request to write the information data inside
the cell.

Jéréme Feret 130 January, 14th 2015

Implementation

System := (v create)(v null)(«xcreate?[d].Allocate(d))
Allocate(d) :=

(v cell)(v write)(v read)
init(cell) | read(read,cell) | write(write,cell) | d![read;write]

where

e init(cell) := cell'[null]
e read(read,cell) .= xread?[port].cell’[u](cell'[u] | port'[u])
o write(write,cell) .= xwrite?[data,ack].cell’[u].(cell![data] | ack![])

Jéréme Feret 131 January, 14th 2015

Absence of race conditions

The computation unit of a thread is the name of the channel on which it per-
forms its i/0 action.

We detect that there is never two simultaneous outputs on a channel opened
by an instance of a (v cell) restriction.

Jéréme Feret 132 January, 14th 2015

Other Applications

By choosing appropriate settings for the computation unit, it can be used to
infer the following causality properties:

e authentication in cryptographic protocols;
e absence of race conditions in dynamically allocated memories;
e Update integrity in reconfigurable systems.

Jérome Feret 133 January, 14th 2015

0 N O O b WO DN —

Overview

. Overview

. Mobile systems

. Non standard semantics
. Abstract Interpretation

. Environment analyses

. Occurrence counting analysis
. Thread partitioning
. Conclusion

e Feret 134

m

Januar y, 14th 2015

Conclusion

We have designed generic analyses:
e automatic, sound, terminating, approximate,
e model independent (META-language),
e context independent.

We have captured:

e dynamic topology properties:
absence of communication leak between recursive agents,

e concurrency properties:
mutual exclusion, non-exhaustion of resources,

e combined properties:
absence of race conditions, authentication (non-injective agreement).

Jéréme Feret 135 January, 14th 2015

Future Work |
Enriching the META-language

e term defined up to an equational theory (applied pi),
—> analyzing cryptographic protocols with XOR;

e higher order communication;
—> agents may communicate running programs;
—> agents may duplicate running programs;

e Using our framework to describe and analyze mobility in industrial ap-
plications (ERLANG).

Jérome Feret 136 January, 14th 2015

Future works Il
High level properties

Fill the gap between:
e |low level properties captured by our analyses;
e high level properties specified by end-users.

Our goal:
e check some formula in a logic [Caires and Cardelli:IC’2003/TCS’2004]

e still distinguishing recursive instances
+ [Kobayashi:POPL2001]

Jéréme Feret 137 January, 14th 2015

Future works lil
Analyzing probabilistic semantics

In a biological system, a cell may die or duplicate itself. The choice between
these two opposite behaviors is controlled by the concentration of compo-
nents in the system.

—> a reachabillity analysis is useless.

e Using a semantics where the transitions are chosen according to prob-
abilistic distributions:

— (e.g token-based abstract machines [Palamidessi:FOSSACS’'00])

e EXxisting analyses consider finite control systems
[Logozzo:SAVE'2001,Degano et al.:.TSE’2001]

e We want to design an analysis for capturing the probabilistic behavior
of unbounded systems.

Jéréme Feret 138 January, 14th 2015

