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Collecting semantics

(C, Co, —) Is a transition system,
We restrict our study to its collecting semantics:
this is the set of the states that are reachable within a finite transition se-

quence.
S={C|die Cy i—>"C}

It is also given by the least fixpoint of the following U-complete endomorphism

I¥:

p_ ol — el
X = CufC’'|3CeX, C—Ch

This fixpoint is usually not computable automatically.
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Abstract domain

We introduce an abstract domain of properties:
e properties of interest;
e more complex properties used in calculating them.

This domain is often a lattice: (D% C, L, L, M, T) and is related to the concrete
domain p(C) by a monotonic concretization function vy.

VA € D, y(A) is the set of the elements which satisfy the property A.
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Numerical domains
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Abstract transition system

Let C} be an abstraction of the initial states and ~ be an abstract transition
relation, which satisfies Cy C y(Cg) and the following diagram:

Then, S C | Jv(F™(CY)),
neN

where Fﬁ(Cﬁ) = Cg L CHy (I_l fjnjte{@ | C s @}) .
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Widening operator

We require a widening operator to ensure the convergence of the analysis:
V : D' x D —» D*
such that:
o vXi, Xie D XA UX, EX VX,
. . N .
e for all increasing sequence (X%) € (Dﬁ) , the sequence (XY) defined

as
Xy =X
XV . =XV VX

n+1 n+1
IS ultimately stationary.
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Abstract iteration

The abstract iteration (CY) of IF* defined as follows

(Y =c!
¢ v Y if F*(CY) E CY
\ M CY VF(CY)  otherwise

is ultimately stationary and its limit CV satisfies /fo,F C y(CV).
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Example: Interval widening

We consider the complete 7 lattice of the natural number intervals.
7 does not satisfy the increasing chain condition.

Given n a natural number, we use the following widening operator to ensure
the convergence of the analyses based on the use of Z:

la;bll V lc;dll = [I[min{a;c};o0l[ if d > max{n; b}
I V. ] = U] otherwise

Jéréme Feret 79 January, 14th 2015



Composing two abstractions

Given two abstractions (D%, C, ~, V) and (D%, C, ~, V), and a reduc-
tion p : DF x D — D! x D* which satisfy:

Y(A,A) € D" x D% y(A)Nvy(A) C y(a) Ny(a) where (a,a) = p(A,A).

Then (DY, v, Ci, ~, V) where:

o D! =D x D

e V is pair-wisely defined;

e Y(A,A) =v(A)NY(A);

o Ci=p(Cj,CY);

e (A,A)~ p(C,C)

if B~~ CandB ~» Cand (B,B) =p(A,A)

IS also an abstraction.
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Generic environment analysis

For each subset V of variables, we introduce a generic abstract domain Gy
to describe the markers and the environments which may be associated to a
syntactic component the free name of which is V:

o(ld x (V — (Name x Id))) &<~ Gy.

The abstract domain C? is then the set:

C' =] [Gmwp

peP

related to p(C) by the concretization y:

y(f) — {C | (P»’d>E) cC — (Id>E) € an(p)(fp)}°
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Abstract communication
?[yl.(vp)P x![x].(vq@)Q

@ Environment Property

- - -+ Relational Information —  Synchronization Constraint

Variable Property
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Extending environments
x!x).(vg)Q

y?lyl.(vp)P

.
.

! \
' \

- Environment Property

‘ Environment Extension

- - -- Relational Information

-
-
-

Variable Property

—  Synchronization Constraint
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Synchronizing environments

y?[g].(yP)P ?Id[?]-(\/g)g

.
.

~I~

Y T
_\ z

¢ Environment Property

‘ Environment Extension

- - - Relational Information

Variable Propert

—  Synchronization Constraint
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Propagating information
y?[yl.(vp)P xxl.(vg)Q

. -
. -
- -

-

\

/ \

!' M H “

¢ Environment Property

‘ Environment Extension

- - - Relational Information

Variable Property

————— Information closure
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Generic primitives

We only require abstract primitives to:

extend an environment domain,

gather the description of the linkage of two syntactic agents,
synchronize variables,

separate two descriptions,

o~ b~

restrict an environment domain.
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About mobile ambients

m n
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Control flow analyses

We abstract for each variable x and each name restriction v y the set of
marker pairs (idy, id,) such that the channel opened by the instance of the
restriction v y tagged with the marker id, may be communicated to the vari-
able x of a thread tagged by the marker id,.

Let /d” be an abstract domain of properties about marker pairs.

Yid2 - /dﬁ — {Q(ldz)
Gy =V x Name — Id*

vv(a®) is the set of marker/environment pairs (id,, E) such that:

x € GE(x) = (y,idy) = (id idy) € vig2(a’(x,y))-
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Regular approximation

We approximate the shape of the markers which may be associated to chan-
nel names linked to variables, and syntactic components, without relations
among them.
We use the following abstract domain:

P(X) x p(X) x p(X x X) x {true;false}.

v(I,F, T, b) is defined by v (I) Ny2(F) Nys3(T) Nys(b) where:
e vill) ={ue X ||lu[>0=w el
¢ Va(F) ={ue I ul > 0= uyeFh
e V3(T)={ueXl*|Va,beZ*  A,puec i, u=aAub= (Au €T}

) ST ifb=0
() —
Y4 >* otherwise.

Domain complexity is O(n.|Z]) and maximum iteration number is O(n*.|Z|).
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Comparison between channel and agent
markers

We capture the difference between the occurrence number of letters in such

two markers.
Id? = (X = (Zu{TH))u{Ll)

Y42 IS defined as follows:

Yig2(L) =10
Yig2(f) ={(u,v) € (Z)? VA, FAN)€Z = |uly — VA = f(n)}.

Domain complexity is O(]X|) and maximum iteration number is O(n3.|Z|).
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Several trade-offs

1. 0-cfa (0-CFA): ld* ={1;T},
Cf [Nielson et al..CONCUR’98], [Hennessy and Riely:HLCL98].
2. Confinement (CONF): /d* ={L,=, T},
Cf [Cardelli et al..CONCUR’00].
3. Algebraic comparisons: we use the product between regular approxi-
mation and relational approximation.
We can tune the complexity:
e by capturing all numerical relations (GLOB;), or only one relation
per literal (LOC;).
e by choosing the set of literals among Label (i = 2)or Label”* (i = 1).
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Abstract semantics hierarchy

@ @ where
\ >
means that there exists o« : A — B,

@ such that for any system S,

Rt

GL

([STA)Ce[ ST

@

o

=i

é
o
o
L
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Example: 0-CFA

v Pi.s.alll : a Pi-calculus Static Analyzer - Mozilla
EEiIe Edit Wiew Go  Bookmarks  Tools  Window  Help

(# port)(# gen)

( *port?'[info,add](add!*[info])

| *gen?°[|(# data)(# email)(port!*[data,email] | gen!®[])
| gent°[])

main menu - control flow analysis

Pi-s.a. Version 3.24, last Modified Fri November 19 2004
Pi-s.a. is an experimental prototype for academic use only.

L 4
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Analysis result

We detect that threads at program point 2 as the following shape:

(2> (3,6)(3,5)"(1,4), <

‘add — (email, (3,6)(3,5)™)
info — (data, (3,6)(3,5)")
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Example: non-uniform result
vl Pi.s.alll : a Pi-calculus Static Analyzer - Mozilla -
( *port?[info,add](add!*[info])
| *gen?’[](# data)(# email)(port!*[data,email] | gen!”[])
| gent®[])

= .

Start --> (3,6)A
A-->(35A+(1,4)B
B-->END

Start --> (3.6)A
A-->END+ (2 5)A i

(3.6) = (3.,6)
1(35) = (35) L
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=[] Netscape: Pij[ [ —| Metscape: Fi-s.a. 3: Pi static analyser |=
| J

(intruder) (intruder) 3
(#a)(#D)(#x) (#a)(#D)(#x) -
(M z]((#Oz!2[t]t!3]z]) (*x P z]((#0)z!2[t]t13[z])
I*make?4[]x!°[a] I*make?4[]x!°[a]

I*make?°[]x!7[b] I*make?°[]x!7[b]

I*a?[i]i?[j]b1O[]) =a?8[i]i?°[j1b!1Of])

main menu — control flow analysis | main menu — control flow analysis

Pi—s.a. Version 3.22, last Modified Tue March 3  Pi-s.a. Version 3.22, last Modified Tue March 5 i
=l =l J =
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Example: the ring of processes

edge

(v make)(v edge)(v first) e °

(xmake?'[last](vnext)
(edge!”[/ast,next] €998 edge

| make!3*[next])
| «xmake?*[/ast](edge!°[/ast,first]) @ °

| make!°[first])
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Example: Algebraic properties

((# make)(F# mon )(# left0)

((*make?![left](# right){mon'* [left right]imake® [right] })
|(*make? [left] (mon'3 [left,left0]))

imake!®[left0]))

Start ——> (1,6)A
A—>(13)B
B ——>END +(1,3)B

Start ——> (1,6)A
A—>END+(13)A

(1,6) = (1,6)
(1,3)=(1,3) +1

main menu — control flow analysis — (# right)

Pi—s.a, Version 3.18, last Modified Tue Novermber 27 2001
Pi—z.a. iz an experimental prototype for an academic use only,

=]
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Example

We detect that:

((p'?le], (11,20)™.(11,21), _, [p = (p, (11,20)™.(11,21))])
(answer[e], (3,19).(11,20)™.(11,21), (12, (11,20)".(11,21), )
| ((rep)”, _, (8,(3,19).(11,20)7.(11,21), [rep — (data, (11,20)P.(11,21))]))

7\

We deduce that each packet exiting the server has the following structure:

(p.(11,20)™.(11,21))
answer
(data, (11,20)™.(11,21)

(11,20)™.(11,21)

(3,19).(11,20)™.(11,21)
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Limitations

Two main drawbacks:

1. we only prove equalities between Parrikh’s vectors, some more work is
needed in order to prove equalities of words;

2. we only capture properties involving comparison between channel name
and agent markers:
(v make)(v edge)(v first)(v first)

(xmake?'[last](vnext)
(edge!?[last,next]
| make!3*[next])

| +*make?°[/ast](edge!’[/ast,first])

| make!®[first])

| edge?[x,y][x =" y][x #'first]Ok!''[]

we cannot infer that 11 is unreachable.
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Dependency analysis between names

We describe equality and inequality relations between the names linked to
variables.

R is a symetric anti-reflexive relation on A

gV — {(A> R)

A IS a partition of V }

Gy is related to p(/d x (V — (Name x Id))) by the following concretization
function:

Yv((A,R)) = {(id>E) (X, V) eR = YxeX,ye), E(x)#E(y)

VX e A, {x,yC X = E(x)=E(y) }

—> implicit closure of relations and information propagation.
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Dependency analysis between markers

We describe equality and inequality relations between the markers of threads
and the names linked to variables.

A is a partition of V W {id,}
R is a symetric anti-reflexive relation on A (-

gV — {(A>R)

Gy is related to p(/d x (V — (Name x Id))) by the following concretization
function:

( VX € A, x € V, {id,,x} C X = id = snd(E(x))
VX €A, x,yeV {x,yl C X = snd(E(x)) = snd(E(y))
V(X,YV)eR, yey,
id, ¢ X andy € Y = id# snd(E(y))
V(X,)) €R, x,y €V,
\ x € X andy €)Y — snd(E(x)) # snd(E(y))

—> implicit closure of relations and information propagation.
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Global numerical analysis

We abstract relations between all the name markers and all the names linked
to variables, and the thread markers:
For each V C Name, we introduce the set

Xy ={p* | AeZju{c™ |AeXZuName, v eV}

The domain Gy is then the set of the affine relations system among Ay, related
to the concrete domain by the following concretization:

P)\ — |id)
vv(K) = < (id, E) xWv) — (y = first(E(v))) | satisfies K
xMV) — [snd(E(v)) ],
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Pair-wise numerical analysis

We compare pair-wisely markers, having partitioned in accordance with the
name creations having created the names.

Let @ be a linear form defined on R*, for each V C Name, the domain Gy is
a pair of function (f, g):

f . VU Name — { Affine subspace of R?},
g : (VU Name)* — { Affine subspace of R*},

the concretization yv(f, g) is given by:

/

E(x) = (y,idy) = (D((lid\)res), @((lidyla)acx)) € f(x,y) )
dE) | [Ex) = (y,id | » o
(id, E) {Eg?) ((”y,’,;gyf) — (@ ((lidyhres), D (110 W res) € 9((x,y), (¢ y")

/

7\

\
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Example

(v make)(v edge)(v first)
(xmake?'[last](vnext) (edge!’[last,next] | make!*[next])
| +*make?®[/ast](edge!’[/astfirst])
| make!®[first])
| edge?[x,y][x="y][x #'first]Ok!''[]

we first prove in global abstraction that:

(1,3),next _ ~(1,3),last next,last
e c' b = Cc' 7 ¢

cfirst,/ast i chextlast _ q

cnextlast i cfirstjast _ 1

first,first _ 1§

f(7) satisfies {
C
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Example

We then prove in pair-wise analysis that in process 9, x and y are respectively
linked to names created by some instance of the restrictions :
. (v first) and (v first),
2. (v first) and (v nexi),
3. (v next) and (v next) but distinct instances,
4. (v next) and (v first).
so, the matching pattern [x = y] is satisfiable only in the first case !!!
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Intuition

(1,5, port H(port,s))
3, gen — (gen,e)
port — (port,¢)

. (z,/dh add +— (email, /d1))

/nfo — (data, id)

2, /dz,

(
add — (email, iad,)
/nfo — (data, id,)

5 /dz, gen — (gen, e))
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Abstract transition

Jéréme Feret 113 Januar y, 14th 2015



Abstract domains

We design a domain for representing numerical constrains between

e the number of occurrences of processes fi(i);
e the number of performed transitions (i,)).

We use the product of

e a non-relational domain:
— the interval lattice:

e a relational domain:
—> the lattice of affine relationships.
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Interval narrowing

An exact reduction is exponential.

We use:

X+ty+z=1 x+y+z=1

e Gaus reduction: { Y — { Y
(x+y+z=3 (x+y+z=3

: 0: :

e Interval propagation: { * [0; ool _ € [1053]]
y € [|0; ool y € [|0; 00|l
|z € [10; 00|l z € [[0; 00l

7\

. _3 (x+y—2z=3
, hedundancy  intro- {X+y —z= N

duction: x € [|1:2]] Yy—zc [[T; 2]]
L x € [[T;2]]

to get a cubic approximated reduction.
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Example: non-exhaustion of resources

((# make)(# server)(# port)
((*make?%1[|(# address){# request)
(

(*address?2:[0:+o0ll [Jserver!3:[0i+ 00l [address,request] )
|

addresst*:[10+o0ll]]
|

make!>: [10:11] I]))
|
(*server7%'1[email data]
(port??’[":]i”“'[l](# deal)(
deal'®[0:31 [data]
|
deal 7?1030 rep](cmailt 'O 10+l [rep] | portiLI031y)
+
email!l:i:[l[];mul[n])
| port 13011 | port 141011 | port 51011
| make!16:[10;11] )

main menhu

=]
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Example: exhaustion of resources

((# make)(F# server )(# port)(3# deal)
((*make?% 1 [|(# address)(# request)
(

(*addrms?z’ [10;+ 00l []sepver Z:[0:+o0l] [addressrequest])
|

addresst*:[10+o0ll]]
|

make!>: [10:11] I]))
|
(*server %1 [email request]
(Pﬂrt??:[lli];wnl[l]( pﬂrt!ﬂ:[ID;BI]n | deal!g:[lm"'ml[[l‘equ&ﬁt] Ideal?m:[mi”“'[[rep]email!ll:[":]i”“'[[rep])
+
e:mail!lii:[III];+::|r:|I[[|

|p0rt!13:[ID;1I][I |p0rt!14:[ID;1I][I |p0rt!15:[ID;1I][I |make!16:[lﬂ;ll]|]n

main menhu

Pi—s.a, Version 3.18, last Modified Tue Novermber 27 2001
Pi—z.a. iz an experimental prototype for an academic use only,

=]
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Example: mutual exclusion

(#a)# b))
(a?l:[ll{]; 11 I]b?z:[lﬂjll] [I

|

q74:[10;11] [Ib!S:[ID; 11] 1
|

a!é:[lﬂjll]n)

main menhu

Pi—sz.a Version 3.14, last Modified Tue November 27 2001
Pi-z.5. iz an experimental prototype for an academic use only,

=]
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Example: token ring

K4 Pi.s.alll : a Pi-calculus Static Analyzer -

| B S

Mozilla

(# make)(# mon)(# leftO)
( (*make?" [left](# right)(

| (*make?* [left](mon!®H%Mleft lefto]))

| make!*H%efto]

| (*mon?”[prev,next]

(# crit)

| make!* 1% Mright))

(crit!g:“u;”][] | (crit?m:“u;”][]nextﬂ1:““;1”[]))))

| leftor 2%y

119
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Comparison

e Non relational analyses.
[Levi and Maffeis: SAS’2001]

e Syntactic criteria.
[Nielson et al.:.SAS2004]

e Abstract multisets.
[Nielson et al..SAS’1999,POPL2000]

e Finite control systems.
[Dam:IC’96],[Charatonik et al..ESOP’02]
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Computation unit

Gather threads inside an unbounded number of dynamically created compu-
tation units.
Then detect mutual exclusion inside each computation unit.

Each thread is associated with a computation unit, which is left as a parame-
ter of:

e the model
e and the properties of interest.

For instance:

e In the mt-calculus, the channel on which the input/output action is per-
formed;

e in ambients, agent location and the location of its location
[Nielson:POPL2000].

Jéréme Feret 122 January, 14th 2015



Thread partitioning

O
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Thread partitioning

We gather threads according to their computation unit.
We count the occurrence number of threads inside each computation unit.

To simulate a computation step, we require:
e to relate the computation units of:

1. the threads that are consumed:;
2. the threads that are spawned.

This may rely on the model structure (ambients) or on a precise envi-
ronment analysis (other models).

e an occurrence counting analysis:
to count occurrence of threads inside each computation unit.
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Concrete partitioning

B: a finite set of indice.
We define the set of computation units as:

unit2 B — Label x Id.

give-index maps each program point p to a function give-index(p) € B — fn(p).

Given a thread t = (p, id, E), we define its computation unit give-unit(t) as:

give-unit(t) = [b € B — E(give-index(p)(b))].
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Abstract computation unit

There may be an unbounded number of computation units.

To get a decidable abstraction, we merge the description of the computation
units that have the same labels.

We define:
UNIT! 2 B — Label.

The abstraction function:

unit — UNIT?
ﬂunit S
beB— (l, )] — b=l

maps each computation unit to an abstract one.
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Abstract domain

Our main domain is a Cartesian product:

Ciart = (Thhes, Gngp ) % (UNITF = AT, ).

The set vpar(ENV, CU) contains any configuration (v, C) € X* x § that satis-
fies:

1. (v, C) € Yenv(ENV);
2. for any computation unit u € unit, there exists a function

t € {(0) € N} U (v, (CU(TTumie(1))) )
such that:

t(p) = Card({(p, id, E) € C | give-unit(p, id, E) = u}).
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Balance molecule

To simulate an abstract computation step,

we compute an abstract molecule that describes:
e both the n threads that are interacting;
e and the m threads that are launched;

we also collect any information about the values in computation units:

e each thread is launched in a computation unit. Each value occurring in
this computation unit may either be fresh, or may come from interacting
threads;

(we take into account these constraints in the abstract molecule).
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Admissible relations

Then, we consider any potential choice for:

1. the equivalence relation among the computation unit of the (n + m)
threads involved in the computation step;

2. abstract computation units associated to each thread.
Each choice induces some constraints about:

e the control flow;

e the number of threads inside computation units;
We use these constraints to:

1. check that this choice is possible;

2. refine control flow and occurrence counting information;
Then, we simulate the computation step.
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Shared-memory example

A memory cell will be denoted by three channel names, cell, read, write:

e the channel name cell describes the content of the cell:
the process cell![data] means that the cell cell contains the information
data, this name is internal to the memory (not visible by the user).

e the channel name read allows reading requests:
the process read![port is a request to read the content of the cell, and
send it to the port port,

e the channel name write allows writing requests:

the process write!|datal is a request to write the information data inside
the cell.

Jéréme Feret 130 January, 14th 2015



Implementation

System := (v create)(v null)(«xcreate?[d].Allocate(d))
Allocate(d) :=

(v cell)(v write)(v read)
init(cell) | read(read,cell) | write(write,cell) | d![read;write]

where

e init(cell) := cell'[null]
e read(read,cell) .= xread?[port].cell’[u](cell'[u] | port'[u])
o write(write,cell) .= xwrite?[data,ack].cell’[u].(cell![data] | ack![])
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Absence of race conditions

The computation unit of a thread is the name of the channel on which it per-
forms its i/0 action.

We detect that there is never two simultaneous outputs on a channel opened
by an instance of a (v cell) restriction.
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Other Applications

By choosing appropriate settings for the computation unit, it can be used to
infer the following causality properties:

e authentication in cryptographic protocols;
e absence of race conditions in dynamically allocated memories;
e Update integrity in reconfigurable systems.
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Conclusion

We have designed generic analyses:
e automatic, sound, terminating, approximate,
e model independent (META-language),
e context independent.

We have captured:

e dynamic topology properties:
absence of communication leak between recursive agents,

e concurrency properties:
mutual exclusion, non-exhaustion of resources,

e combined properties:
absence of race conditions, authentication (non-injective agreement).
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Future Work |
Enriching the META-language

e term defined up to an equational theory (applied pi),
—> analyzing cryptographic protocols with XOR;

e higher order communication;
—> agents may communicate running programs;
—> agents may duplicate running programs;

e Using our framework to describe and analyze mobility in industrial ap-
plications (ERLANG).
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Future works Il
High level properties

Fill the gap between:
e |low level properties captured by our analyses;
e high level properties specified by end-users.

Our goal:
e check some formula in a logic [Caires and Cardelli:IC’2003/TCS’2004]

e still distinguishing recursive instances
+ [Kobayashi:POPL2001]
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Future works lil
Analyzing probabilistic semantics

In a biological system, a cell may die or duplicate itself. The choice between
these two opposite behaviors is controlled by the concentration of compo-
nents in the system.

—> a reachabillity analysis is useless.

e Using a semantics where the transitions are chosen according to prob-
abilistic distributions:

— (e.g token-based abstract machines [Palamidessi:FOSSACS’'00])

e EXxisting analyses consider finite control systems
[Logozzo:SAVE'2001,Degano et al.:.TSE’2001]

e We want to design an analysis for capturing the probabilistic behavior
of unbounded systems.
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