

ASTRÉE: Abstract Interpretation in Practice

Laurent Mauborgne

Interprétation abstraite, MPRI 2–6, année 2014-2015

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 1 / 48

Analyseur statique de programmes temps-réel
embarqués

Static analysis tool developed at ENS

Starting team
in 2001:

B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, D. Monniaux, A. Miné and
X. Rival.

and then industrialized by AbsInt

Customers
include:

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 2 / 48

History of Development

Birth of ASTRÉE

2001 Airbus plans a new airplane

Plane is big

⇒ more control by software

⇒ much bigger software

Issue: cost of testing

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 3 / 48

History of Development Available tools

2001: Available Tools
to Improve Confidence in Software

Manual inspection
cannot deal with programs of more than 100 lines of code

Rigorous software development methods
programing languages
development processes prescribed by the norms
not enough

Testing
ratio cost/confidence does not scale

Dynamic monitoring
Bug finders
Program provers

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 4 / 48

History of Development Available tools

Bug finders

Natural extensions of testing
But display false positives (false alarms)

have to be inspected
often simple tests are not enough to discharge them

Methods:
pattern matching
machine learning
model checking
many other tools, also described as "unsound"

But what if the software has no bug?

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 5 / 48

History of Development Available tools

Program Provers
using formal methods

Semi-automatic
Require substantial input
form end-user
Theorem provers lacked
support for floating points
Require highly educated
end-users
Scaling issues

Automatic
Undecidability issue

Some tools don’t always
terminate
Some tools use
approximations

False alarms
A number of such tools
existed

exhaustive methods
abstract interpretation

And program provers need a notion of soundness (what is the
expected behavior?)

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 6 / 48

History of Development Available tools

Global Picture for Formal Methods

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 7 / 48

History of Development Available tools

Deductive Methods

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 8 / 48

History of Development Available tools

Exhaustive Methods

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 9 / 48

History of Development Available tools

Abstract Interpretation Based Static Analysis

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 10 / 48

History of Development Available tools

Evaluation of the Existing Tools by Airbus

They had no formal specifications
Implicit specifications worth investigating
Bug finders should be useless
Need tools taking into account floating points (Patriot issue)
Cost issues:

Cannot hire highly educated experts
Cannot investigate too many false alarms

Critical software often share:
Bugs are very costly
So restrictive production rules
and very few bugs (if any)

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 11 / 48

History of Development Astrée Development at ENS

European Project

Daedalus project: Validation of critical software by static analysis
and abstract testing

Participants included: Airbus, academics, AbsInt and Polyspace

Patrick Cousot claimed that

Abstract interpretation allows specializing an analyzer to be more
precise and more efficient for a class of programs.

Project started informally in December 2001.

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 12 / 48

History of Development Astrée Development at ENS

First Developments
Started on a small subset of avionic code (10 000 lines)

Code generated from graphical description language
Mainly global variables
Some floating-point computation
One big loop, but no recursion
No dynamic data structure, no pointer, no string
no goto

Choice of language:
Graphic-based high-level language (similar to SCADE)?
Intermediate language (C)?
Assembly language?

Specifications
First specifications at the design level (not available)
Specifications in code as comments (in french...)
Runtime errors lead to program stop!
Added another implicit specification: integers are natural numbers.

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 13 / 48

History of Development Astrée Development at ENS

Choice of the Iteration Strategy
Show absence of runtime errors:

Compute interval invariant at each position
Then check absence of runtime errors

How to solve the system of equations:
Need to store invariant at each program point?
Each invariant can be computed from at most two

can minimize memory consumption
compute invariant and check on the fly
still need to store invariants for if branches
also loops and widening points

Forward interpreter
store the candidate invariants at head of loops
after one iteration, check if invariant, else widen
if invariant, run one more time in check mode
then forget the candidate invariant and proceed with the rest of the
program
for nested loops, keep a check mode state

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 14 / 48

History of Development Astrée Development at ENS

First abstract domains

Interval domain with fixed set of keys (=variables or array cells)
Development of the data structure for non-relational domains (see
lesson 3)

Array

Modify one value in O(1)

Copy in O(|V |)

Functional tree
"Modify" one value in O(log(|V |))

Copy in O(1)

Sharing

Octagon domain
Ellipsoid domain

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 15 / 48

History of Development Astrée Development at ENS

First Real Case Study

Absence of runtime errors on the subset proven in June 2002
Then started with A340 control-command code (100 000 LOC)

10 000 global variables
much more involved floating point computations
big arrays
pointers and casts
interpolation routines

Motivated new domains
Filter domains (lessons 9 and 10)

Boolean state partitioning, trace partitioning (lesson 8)

Linearization and Symbolic manipulations (lesson 6)

and other improvements

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 16 / 48

History of Development Astrée Development at ENS

Packing Relational Domains
Relational domains (even weakly relational) cost more than O(V 2)

On industrial code, can just afford lightly above linear
Use one instance of octagons for different groups of variables
Packs computed during pre-analysis

Syntactically or identify reduction points
Identify expressions were relational information is formed

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 17 / 48

History of Development Astrée Development at ENS

Reduced Products
All domain need to communicate.
Implementation of a partial reduced product (see lessons 4
and 13)
Usage of a Product functor, combining two relational domains
Two phases:

Upward propagation

The lowest domain of the
product is the intervals

when going up, gather
informations for partial
implementations

gather constraints to be
propagated later

Downward propagation

Constraints gathered during
phase 1 are combined

then propagated downwards

allows refinement of intervals

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 18 / 48

History of Development Astrée Development at ENS

Widening

Classical iteration with widening: at each step, apply widening
operator.
Widening can be:

first k iterations, join, then widen
widen one iteration out of k
any strategy will do if for every infinite iteration sequence, an infinite
subsequence uses widening

Now, we have such choice for each key and most abstract
domains (freshness counter)
In addition, widening with threshold (see lesson 4):

ranges for C types
0 and a small finite set of values
dynamic update of the thresholds for each variable (tests,
assignment, modulo)

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 19 / 48

History of Development Astrée Development at ENS

Arrays and Pointers

Added the possibility to smash big arrays

Added a pointer domain
Pointers can be null, invalid or point to a variable or a function
Pointers are associated with an integer key to represent offsets
absolute addresses were needed later

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 20 / 48

History of Development Astrée Development at ENS

Parallel Analysis

Analysis can be faster using multi-processor architectures

Parallelization at the level of tasks (in main reactive loop)

Cost of synchronizing

Not worth it beyond a dozen cores

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 21 / 48

History of Development Astrée Development at ENS

The A380

Autumn 2003: Proof of absence of runtime error for A340 (less
than 1h, 500Mb)
Decision to use ASTRÉE on the A380, under development

700 000 LOC
30 000 global variables, including 12 000 floating point variables
union and struct
break, forward goto, . . .

Added a bit-level precise memory model
Added an environment domain to deal with flows

No false alarm
Analysis time 6h

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 22 / 48

History of Development AbsInt

Industrialization of ASTRÉE

Airbus need industrial support for the tool they use

Planes maintained for over 20 years (regular patches)

In 2008, decision to sell the rights to distribute and develop
ASTRÉE to AbsInt.

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 23 / 48

History of Development AbsInt

AbsInt Angewandte Informatik GmbH

Located in Saarbrücken, Germany (1h50 train distance to Paris)
Provides advanced development tools for embedded systems,
and tools for validation, verification, and certification of
safety-critical software.
Founded in February 1998 by six researchers of Saarland
University, Germany, from the group of programming languages
and compiler construction of Prof. Dr. Dr. hc. mult R. Wilhelm.
Privately held by the founders.

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 24 / 48

History of Development AbsInt

Products developed by AbsInt

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 25 / 48

History of Development AbsInt

The ASTRÉE GUI

Separated from the analysis server

Rational presentation of the hundreds of parameters

Structured presentation of the output

Alarms can be browsed and filtered

Display of unreachable code

Integrated preprocessing

Call graph view

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 26 / 48

History of Development AbsInt

Qualification Support

Qualification Support Kits: demonstrate that the tool works
correctly in the operational context of the user.

Operational Requirements Report: lists all functional requirements
Verification Test Plan: describes one or more test cases to check
each functional requirement.
All test cases listed in the verification test plan report
Scripts to execute all test cases including an evaluation of the
results

Qualification Support Life Cycle Data documenting the tool
development process.
Automatic tool qualification to DO-178B/C, ISO-26262 up to
ASIL-D/TCL3, ...

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 27 / 48

History of Development AbsInt

Annotations

ASTRÉE uses annotations to help setting semantic hypotheses,
provide user assertions or set some parameters of the analysis
For many critical software development process, source code
modification by verification tools is not allowed
AbsInt developed an Annotation Language

Stored in a separate file
Robust to program modifications
Can be generated from software actual positions
Refers to the program structure (loops, tests, types, function calls)

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 28 / 48

History of Development AbsInt

Wrapper Generator

Projects for embedded systems are often huge and written in a
system dependent way
ASTRÉE can automatically discover likely entry points
The wrapper generator generates the reactive loop
Used also to model the environment

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 29 / 48

History of Development AbsInt

Tool Couplings

ASTRÉE can interchange informations in an XML language, XTC
analysis requests (with parameters)
results
additional information

Allows tool coupling with:
aiT/StackAnalyzer + SCADE,
TargetLink,
Symtavision SymTA/S,
BTC Embedded Tester,
Gliwa T1,
CESAR/MBAT Reference Tool Platform RTP,
. . .

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 30 / 48

History of Development AbsInt

Development Process Integration

Runtime Error
Analysis

Code
Generator

C-Code

AAL-Annotations &
Analysis Wrapper

Executable
Code

Target
Compiler

WCET & Stack
Analysis

AIS-Annotations &
Analysis Wrapper

Analysis Results
(XML)

Analysis Results
(XML)

Annotation
Generator

Annotation
Generator

Model-based
Development Tool

TargetLink

Esterel

aiT
StackAnalyzer

Astrée

EmbeddedTester

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 31 / 48

History of Development AbsInt

Integration of the model

Tool couplings with model-based code generators and
model-based testing tools are beneficial. Available for dSPACE
TargetLink and BTC EmbeddedTester.
Automatic transfer of model-level information to
implementation-level static analyzers:

reduced setup effort for testing and analysis
improved analysis precision

Seamless launching of tests and analyses and unified result view
Implementation-level errors can be traced back to modeling level
(and from there to requirements) and can be investigated both at
the model and the implementation level.

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 32 / 48

History of Development AbsInt

Rule Checking

Checks for compliance with coding rules.
Coding rules restrict the admissible features of C.
MISRA-C 2004

Determines code metrics and checks for threshold violations.
Subset of HIS metrics with compliant default thresholds.
E.g.: comment density, cyclomatic complexity, . . .

Extensible architecture

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 33 / 48

Internal Structure Main Characteristics

Main Characteristics of ASTRÉE

ASTRÉE is a static analyzer designed to prove the absence of
runtime errors
ASTRÉE analyzes C99 code, except for

recursive function calls
long jumps
some C library features, such as complexes

ASTRÉE is quite efficient on
floating points
dealing with lots of global variables
pointers, arrays, structures
complex loop nesting

ASTRÉE is highly parametric (to finesse undecidability of the
underlying problem)
ASTRÉE does not require code modification and is fully automatic
ASTRÉE provides invariants helping the inspection of alarms

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 34 / 48

Internal Structure Main Characteristics

Errors Found by ASTRÉE

Unwanted interrupts caused by exceptions
Floating operations IEE exceptions

invalid operations (0/0,
√
−1)

overflows
usage of NaN

Potential exceptions cause by incorrect memory access
out of bound array access or pointer dereference
null pointers
attempt to modify string literals

Behaviors forbidden by end-user
Integer wrap-around (customizable)
Violation of user-specified assertions
Violation of structure element bounds
Usage of uninitialized variables

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 35 / 48

Internal Structure Main Characteristics

Classification of Alarms
Type A alarms

Runtime Errors causing undefined behavior (with unpredictable
results)

Modifications through out-of-bounds array accesses, dangling
pointers, . . .
Integer divisions by zero, floating-point exceptions, . . .

Example
int main() {
int n, T[1];
n = 2147483647;
printf("n = %i, T[n] = %i\n", n, T[n]); }

PPC MAC: n=2147483647,T[n]=2147483647
Intel MAC: n=2147483647,T[n]=-1208492044

32-bit Intel: n=2147483647,T[n]=-135294988
64-bit Intel: Bus error

Astrée reaction:
reports alarm (type A) in order to signal a potential runtime error,
continues analysis for scenarios where the runtime error did not
occur.
Alarm type A: contexts without continuation are pruned ⇒ ASTRÉE
reports an error and reports: Analysis stopped for this
context

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 36 / 48

Internal Structure Main Characteristics

Classification of Alarms
Type C alarms

Runtime Errors causing unspecified, but predictable behavior:
Integer overflow
Invalid shifts, or casts, . . .

Astrée reaction:
reports alarm (type C) in order to signal potential runtime error and
continues analysis with an overapproximation of all possible results.

No artificial restrictions on value ranges, so results are always
safe.

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 37 / 48

Internal Structure Main Characteristics

The Zero Alarm Goal
Each alarm which is not reported as definitive error has to be
manually investigated to determine whether there is an error
which has to be corrected, or whether it was just a false alarm.
Absence of runtime errors proven only if all alarms are proven to
be false alarms.
Human alarm analysis is error-prone and time consuming.

Interdependencies between alarms.
Alarms can shadow other alarms.
Intentional deviations from the C standard.

Example:
int main() {
int j, unsigned i=0;
f(&i);
j=i;
i=i/0;
if (j<0) j=j/0;

}
Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 38 / 48

Internal Structure Main Characteristics

The Zero Alarm Goal

With zero alarms, the absence of runtime errors is automatically
proven by the analysis run, without additional reasoning.
Design features of Astrée:

Precise and extensible analysis engine, combining powerful
abstract domains (intervals, octagons, filters, decision trees, . . .)
Support for precise alarm investigation

Source code views/editors for original/preprocessed code
Alarms and error messages are linked: jump to location per click.
Detailed alarm reporting: precise location and context, call stack, etc.
Understanding alarms ⇒ Fixing true runtime errors + Eliminating
false alarms

The more precise the analysis is, the fewer false alarms there are.
Astrée supports improving precision by

parametrization: local tuning of analysis precision
making external knowledge available to Astrée
specialization: adaptation to software class and target hardware

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 39 / 48

Internal Structure Inside ASTRÉE

Client-Server Architecture

Local

files

Server

files

Sources

Client Server

Project

copy / sync

Pre-
process

run analysis

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 40 / 48

Internal Structure Inside ASTRÉE

Client-Server Model

Decouples the user interface from the analysis process
GUI and server may run on different computers
Analysis can run on powerful server hardware
GUI may run on a small computer (laptop)

User management

Analysis results can be shared with other users

GUI can detach from and attach to running analyses

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 41 / 48

Internal Structure Inside ASTRÉE

Structure of the Forward Interpreter

Parser // Identifier resolution // Packing

��
Interpreter

		

Side-effect resolutionoo Partitioning directivesoo

Abstract Domains

II

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 42 / 48

Internal Structure Inside ASTRÉE

Structure of the Abstract Domains
All non-relational domains are combined in a product (for one key)
⇒ Float_domain and Integer_domain
Then lifted to a domain mapping keys to non-relational values
⇒ Non_relational_domain
All other relational domains are combined with this one to form
one complex relational domain (reduced product)

Communication use the basic non-relational domains
Some domains are parametric with respect to other relational
domains

The complex relational domain is used by the pointer domain
Pointer domain is an element of the memory domain (bit-level
precision)
Trace domain (to analyze automaton-based control flow)
Parallelism domain (to analyze asynchronous code or separate
functions)
Environment domain (for flows)
Partitioning domain
Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 43 / 48

Internal Structure Inside ASTRÉE

A Question of Specifications

Common practice: compute through overflows
Cast signed values to unsigned
compute results on unsigned
then cast back to signed

⇒ unwanted warnings
To be more precise:

Modulo intervals
Triggered by casts
Can be less precise than intervals, but in general gain on CTO

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 44 / 48

Internal Structure Inside ASTRÉE

Non-standard Semantics

Some alarms are left unwanted
Need to define the semantics of unwanted alarms:

In the concrete, keep a tag when explicit cast from unsigned to
signed
When evaluating an expression, if some subexpression is tagged,
evaluate it also without the cast (as if signed)
remove all alarms that are not raised by both evaluations

What is the correct way to abstract that?

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 45 / 48

Internal Structure Inside ASTRÉE

Adapting ASTRÉE
Target configuration and analysis options:

ABI: endianness, alignment, data type sizes,
Auto-initialization of global variables,
Automatic stub generation for external functions,
Handling of div by zero,
Handling of volatile variables, etc.

Semantical Hypotheses: Provide external knowledge to ASTRÉE
__ASTREE_volatile_input((V, [0,9]));
__ASTREE_known_fact((B));
__ASTREE_initialize((V));
__ASTREE_assert((B));
__ASTREE_global_assert((V, [l,h]));

Specialization:
select appropriate set of abstract domains

Parameterization: higher precision for important code, greater
speed on less significant parts

Semantic loop unrolling, array smashing, partitioning, . . .

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 46 / 48

Usage and Demo

Setting up an Analysis Project

1 Create new project using the Project Wizard
2 Preprocess the source code

either by external preprocessor
or by internal Astrée preprocessor

3 Specify/check basic settings
ABI
source code mapping

location of original source code
only required, if external preprocessor is used

analysis entry
(further options)

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 47 / 48

Usage and Demo

Demo

Laurent Mauborgne ASTRÉE: Abstract Interpretation in Practice 48 / 48

	History of Development
	Available tools
	Astrée Development at ENS
	AbsInt

	Internal Structure
	Main Characteristics
	Inside Astrée

	Usage and Demo

