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Motivating program verification
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The cost of software failure

Patriot MIM-104 failure, 25 February 1991
(death of 28 soldiers1)

Ariane 5 failure, 4 June 1996
(cost estimated at more than 370 000 000 US$2)

Toyota electronic throttle control system failure, 2005
(at least 89 death3)

Heartbleed bug in OpenSSL, April 2014

Stagefright bug in Android, Summer 2015
(multiple array overflows in 900 million devices, some exploitable)

economic cost of software bugs is tremendous4

1
R. Skeel. ”Roundoff Error and the Patriot Missile”. SIAM News, volume 25, nr 4.

2
M. Dowson. ”The Ariane 5 Software Failure”. Software Engineering Notes 22 (2): 84, March 1997.

3
CBSNews. Toyota ”Unintended Acceleration” Has Killed 89. 20 March 2014.

4
NIST. Software errors cost U.S. economy $59.5 billion annually. Tech. report, NIST Planning Report, 2002.
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Zoom on: Ariane 5, Flight 501

Maiden flight of the Ariane 5 Launcher, 4 June 1996.
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Zoom on: Ariane 5, Flight 501

40s after launch. . .
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Zoom on: Ariane 5, Flight 501

Cause: software error5

arithmetic overflow in unprotected data conversion
from 64-bit float to 16-bit integer types6

P M DERIVE(T ALG.E BH) :=

UC 16S EN 16NS (TDB.T ENTIER 16S

((1.0/C M LSB BH) * G M INFO DERIVE(T ALG.E BH)));

software exception not caught
=⇒ computer switched off

all backup computers run the same software
=⇒ all computers switched off, no guidance
=⇒ rocket self-destructs

5
J.-L. Lions et al., Ariane 501 Inquiry Board report.

6
J.-J. Levy. Un petit bogue, un grand boum. Séminaire du Département d’informatique de l’ENS, 2010.
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How can we avoid such failures?

Choose a safe programming language.
C (low level) / Ada, Java (high level)

yet, Ariane 5 software is written in Ada

Carefully design the software.
many software development methods exist

yet, critical embedded software follow strict development processes

Test the software extensively.

yet, the erroneous code was well tested. . . on Ariane 4

=⇒ not sufficient!

We should use formal methods.
provide rigorous, mathematical insurance
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Proving program properties
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Invariants and programs

assume X in [0,1000];

I := 0;

while I < X do

I := I + 2;

assert I in [0,?]

Robert Floyd7

Goal: find a bound property, sufficient to express the absence of overflow

7
R. W. Floyd. ”Assigning meanings to programs”. In Proc. Amer. Math. Soc. Symposia in Applied

Mathematics, vol. 19, pp. 19–31, 1967.
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Invariants and programs

assume X in [0,1000];

{X ∈ [0, 1000]}
I := 0;

{X ∈ [0, 1000], I = 0}
while I < X do

{X ∈ [0, 1000], I ∈ [0, 998]}
I := I + 2;

{X ∈ [0, 1000], I ∈ [2, 1000]}
{X ∈ [0, 1000], I ∈ [0, 1000]}
assert I in [0,1000]

Robert Floyd7

invariant: property true of all the executions of the program

7
R. W. Floyd. ”Assigning meanings to programs”. In Proc. Amer. Math. Soc. Symposia in Applied

Mathematics, vol. 19, pp. 19–31, 1967.
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invariant: property true of all the executions of the program
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7
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Invariants and programs

assume X in [0,1000];

{X ∈ [0, 1000]}
I := 0;

{X ∈ [0, 1000], I = 0}
while I < X do

{X ∈ [0, 1000], I ∈ {0, 2, . . . , 996, 998}}
I := I + 2;

{X ∈ [0, 1000], I ∈ {2, 4, . . . , 998, 1000}}
{X ∈ [0, 1000], I ∈ {0, 2, . . . , 998, 1000}}
assert I in [0,1000]

Robert Floyd7

inductive invariant: invariant that can be proved to hold by
induction on loop iterates
(if I ∈ S at a loop iteration, then I ∈ S at the next loop iteration)

7
R. W. Floyd. ”Assigning meanings to programs”. In Proc. Amer. Math. Soc. Symposia in Applied

Mathematics, vol. 19, pp. 19–31, 1967.
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Logics and programs

{P[e/X ]} X := e {P}
{P} C1 {R} {R} C2 {Q}

{P} C1; C2 {Q}

{P & b} C {P}
{P} while b do C {P &¬b}

. . .

Tony Hoare8

sound logic to prove program properties, (rel.) complete

proofs can be partially automated (at least proof checking)

(e.g., using proof assistants: Coq, PVS, Isabelle, HOL, etc.)

requires annotations and interaction with a prover
even manual annotation is not practical for large programs

8
C. A. R. Hoare. ”An Axiomatic Basis for Computer Programming”. Commun. ACM 12(10): 576–580

(1969).
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A calculs of program properties

wlp(X := e,P)
def
= P[e/X ]

wlp(C1; C2,P)
def
= wlp(C1,wlp(C2,P))

wlp(while e do C,P)
def
=

I ∧ ((e ∧ I ) =⇒ wlp(C, I )) ∧ ((¬e ∧ I ) =⇒ P)

Edsger W. Dijkstra9

predicate transformer semantics
propagate predicates on states through the program

weakest (liberal) precondition
backwards, from property to prove to condition for program correctness

calculs that can be mostly automated

, except for:
user annotations for inductive loop invariants
function annotations (modular inference)

academic success: complex (functional) but local properties

industry success: simple and local properties

9
E. W. Dijkstra. ”Guarded commands, nondeterminacy and formal derivation of programs”. EWD472.

Commun. ACM 18(8): 453-457 (1975).
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Limit to automation
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Computers, programs, data

O(P,D) ∈ {yes, no,⊥}

O P D

The computer O runs the program P on the data D
and answers (yes,no). . . or does not answer (⊥).
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Computers, programs, data

O(P,D) ∈ {yes, no,⊥}

O P P ′

Note that programs are also a kind of data!
They can be fed to other programs. (e.g., to compilers)
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Static analysis

Static analyzer A.
Given a program P:

O(A,P) = yes ⇐⇒ ∀D, O(P,D) is safe

O(A,P) 6= ⊥ (the static analysis always terminates)

=⇒ P is proved safe even before it is run!
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Fundamental undecidability

There cannot exist a static analyzer A proving the termination of
every terminating program P.

Proof sketch:

A(P · D) : O(A,P · D) =
yes if O(P,D) 6= ⊥
no otherwise

A′(X ) : while A(X·X) do nothing; no

do we have O(A′,A′) = ⊥ or 6= ⊥? neither!
=⇒ A cannot exist

Alan Turing10

All “interesting” properties are undecidable!11

10
A. M. Turing. ”Computability and definability”. The Journal of Symbolic Logic, vol. 2, pp. 153–163, (1937).

11
H. G. Rice. ”Classes of Recursively Enumerable Sets and Their Decision Problems.” Trans. Amer. Math.

Soc. 74, 358-366, 1953.
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Approximation
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Approximate static analysis

An approximate static analyzer A always answers in finite time
( 6= ⊥):

either yes: the program P is definitely safe (soundness)

either no: I don’t know (incompleteness)

Sufficient to prove the safety of (some) programs.
Fails on infinitely many programs. . .

=⇒ We should adapt the analyzer A to

a class of programs to verify, and

a class of safety properties to check.
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Abstract interpretation

Patrick Cousot12

General theory of the approximation and comparison
of program semantics:

unifies many existing semantics

allows the definition of new static analyses
that are correct by construction

12
P. Cousot. ”Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones

sur un treillis, analyse sémantique des programmes.” Thèse És Sciences Mathématiques, 1978.
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Abstract interpretation

(S0)
assume X in [0,1000];

(S1)
I := 0;

(S2)
while (S3) I < X do

(S4)
I := I + 2;

(S5)
(S6)

program
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Abstract interpretation

(S0)
assume X in [0,1000];

(S1)
I := 0;

(S2)
while (S3) I < X do

(S4)
I := I + 2;

(S5)
(S6)

Si ∈ D = P({I, X} → Z)

S0 = { (i , x) | i , x ∈ Z } = >
S1 = { (i , x) ∈ S0 | x ∈ [0, 1000] } = F1(S0)
S2 = { (0, x) | ∃i , (i , x) ∈ S1 } = F2(S1)
S3 = S2 ∪ S5

S4 = { (i , x) ∈ S3 | i < x } = F4(S3)
S5 = { (i + 2, x) | (i , x) ∈ S4 } = F5(S4)
S6 = { (i , x) ∈ S3 | i ≥ x } = F6(S3)

program semantics

Concrete semantics Si ∈ D = P({I, X} → Z):

strongest invariant (and an inductive invariant)

not computable in general

smallest solution of a system of equations
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Abstract interpretation

(S0)
assume X in [0,1000];

(S1)
I := 0;

(S2)
while (S3) I < X do

(S4)
I := I + 2;

(S5)
(S6)

S]i ∈ D]

S]0 = >]

S]1 = F ]
1 (S]0)

S]2 = F ]
2 (S]1)

S]3 = S]
2 ∪] S

]
5

S]4 = F ]
4 (S]3)

S]5 = F ]
5 (S]4)

S]6 = F ]
6 (S]3)

program semantics

Abstract semantics S]i ∈ D]:

D] is a subset of properties of interest (approximation)

with a machine representation

F ] : D] → D] over-approximates the effect of F : D → D in D]

(with effective algorithms)
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Numeric abstract domain examples

concrete sets D: {(0, 3), (5.5, 0), (12, 7), . . .}

not computable
abstract polyhedra D]

p: 6X + 11Y ≥ 33 ∧ · · · exponential cost
abstract octagons D]

o : X + Y ≥ 3 ∧ Y ≥ 0 ∧ · · · cubic cost

abstract intervals D]
i : X ∈ [0, 12] ∧ Y ∈ [0, 8] linear cost

Trade-off between cost and expressiveness / precision
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Numeric abstract domain examples

concrete sets D: {(0, 3), (5.5, 0), (12, 7), . . .}

not computable

abstract polyhedra D]
p: 6X + 11Y ≥ 33 ∧ · · ·

exponential cost
abstract octagons D]

o : X + Y ≥ 3 ∧ Y ≥ 0 ∧ · · · cubic cost

abstract intervals D]
i : X ∈ [0, 12] ∧ Y ∈ [0, 8] linear cost

Trade-off between cost and expressiveness / precision

course 01 Introduction Antoine Miné p. 19 / 32
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Correctness proof and false alarms

The program is correct (blue ∩ red = ∅).

The polyhedra domain can prove the correctness (cyan ∩ red = ∅).
The interval domain cannot (green ∩ red 6= ∅, false alarm).
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Numeric abstract domain examples (cont.)

abstract semantics F ] in the interval domain D]
i

I ∈ D]
i is a pair of bounds (`, h) ∈ Z2 (for each variable)

representing an interval [`, h] ⊆ Z

I:=I+2: (`, h) 7→ (`+2, h+2)

∪]: (`1, h1) ∪] (`2, h2) = (min(`1, `2),max(h1, h2))

. . .
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Resolution by iteration and extrapolation

Challenge: the equation system is recursive: ~S] = ~F ]( ~S]).

Solution: resolution by iteration: ~S] 0 = ∅], ~S] i+1 = ~F ]( ~S] i ).

e.g., S]3 : I ∈ ∅, I = 0, I ∈ [0, 2], I ∈ [0, 4], . . . , I ∈ [0, 1000]

Challenge: infinite or very long sequence of iterates in D]

Solution: extrapolation operator O

e.g., [0, 2] O [0, 4] = [0,+∞[

remove unstable bounds and constraints

ensures the convergence in finite time

inductive reasoning (through generalisation)

=⇒ effective solving method −→ static analyzer!

course 01 Introduction Antoine Miné p. 22 / 32
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Other uses of abstract interpretation

Analysis of dynamic memory data-structures (shape analysis).

Analysis of parallel, distributed, and multi-thread programs.

Analysis of probabilistic programs.

Analysis of biological systems.

Security analysis (information flow).

Termination analysis.

Cost analysis.

Analyses to enable compiler optimisations.

. . .
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Some static analysis tools
based on Abstract Interpretation
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The Astrée static analyzer
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The Astrée static analyzer

Analyseur statique de programmes temps-réels embarqués
(static analyzer for real-time embedded software)

developed at ENS
B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, D. Monniaux, A. Miné, X. Rival

industrialized and made commercially available by AbsInt

Astrée
www.astree.ens.fr

AbsInt
www.absint.com
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The Astrée static analyzer

Specialized:

for the analysis of run-time errors
(arithmetic overflows, array overflows, divisions by 0, etc.)

on embedded critical C software
(no dynamic memory allocation, no recursivity)

in particular on control / command software
(reactive programs, intensive floating-point computations)

intended for validation
(analysis does not miss any error and tries to minimise false alarms)

Approximately 40 abstract domains are used at the same time:

numeric domains (intervals, octagons, ellipsoids, etc.)

boolean domains

domains expressing properties on the history of computations
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Astrée applications

Airbus A340-300 (2003) Airbus A380 (2004)

size: from 70 000 to 860 000 lines of C

analysis time: from 45mn to '40h

0 alarm: proof of absence of run-time error
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Fluctuat
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Fluctuat

Static analysis of the accuracy of floating-point computations:

bound the range of variables

bound the rounding errors wrt. real computation

track the origin of rounding errors
(which operation contributes to most error,

target for improvements)

uses specific abstract domains
(affine arithmetic, zonotopes)

developed at CEA-LIST (E. Goubault, S. Putot)

industrial use (Airbus)
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Clousot: CodeContract static checker
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Clousot: CodeContract static checker

CodeContracts:

assertion language for .NET (C#, VB, etc.)
(pre-conditions, post-conditions, invariants)

dynamic checking
(insert run-time checks)

static checking
(modular abstract interpretation)

automatic inference
(abstract interpretation to infer necessary preconditions backwards)

developed at Microsoft Research (M. Fahndrich, F. Logozzo)

part of .NET Framework 4.0

integrated to Visual Studio
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