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Shortcomings of non-relational domains

Accumulated loss of precision

Non-relation domains cannot represent variable relationships

Rate limiter

Y:=0; while • 1=1 do

X:=[-128,128]; D:=[0,16];

S:=Y; Y:=X; R:=X-S;

if R<=-D then Y:=S-D fi;

if R>=D then Y:=S+D fi

done

X: input signal
Y: output signal
S: last output
R: delta Y-S

D: max. allowed for |R|

X

Y
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Shortcomings of non-relational domains

Accumulated loss of precision

Non-relation domains cannot represent variable relationships

Rate limiter

Y:=0; while • 1=1 do

X:=[-128,128]; D:=[0,16];

S:=Y; Y:=X; R:=X-S;

if R<=-D then Y:=S-D fi;

if R>=D then Y:=S+D fi

done

X: input signal
Y: output signal
S: last output
R: delta Y-S

D: max. allowed for |R|

Iterations in the interval domain (without widening):

X ]0• X ]1• X ]2• . . . X ]n•
Y = 0 |Y| ≤ 144 |Y| ≤ 160 . . . |Y| ≤ 128 + 16n

In fact, Y ∈ [−128, 128] always holds.

To prove that, e.g. Y ≥ −128, we must be able to:

represent the properties R = X− S and R ≤ −D
combine them to deduce S− X ≥ D, and then Y = S− D ≥ X
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Shortcomings of non-relational domains

The need for relational loop invariants

To prove some invariant after the end of a loop,
we often need to find a loop invariant of a more complex form

relational loop invariant

X:=0; I:=1;

while • I<5000 do

if [0,1]=1 then X:=X+1 else X:=X-1 fi;

I:=I+1

done �

A non-relational analysis finds at � that I = 5000 and X ∈ Z

The best invariant is: (I = 5000) ∧ (X ∈ [−4999, 4999]) ∧ (X ≡ 0 [2])

To find this non-relational invariant, we must find a relational loop
invariant at •: (−I < X < I) ∧ (X + I ≡ 1 [2]) ∧ (I ∈ [1, 5000]),

and apply the loop exit condition C]J I >= 5000 K
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Shortcomings of non-relational domains

Modular analysis

store the maximum of X,Y,0 into Z

max(X,Y,Z)

Z :=X ;

if Y > Z then Z :=Y ;

if Z < 0 then Z :=0;

Modular analysis:

analyze a procedure once (procedure summary)

reuse the summary at each call site (instantiation)

=⇒ improved efficiency

infer a relation between input X,Y,Z and output X′,Y′,Z′ values
P((V→ R)× (V→ R)) ≡ P((V× V)→ R)

requires inferring relational information
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Shortcomings of non-relational domains

Modular analysis

store the maximum of X,Y,0 into Z’

max(X,Y,Z)

X’:=X; Y’:=Y; Z’:=Z;

Z’:=X’;

if Y’ > Z’ then Z’:=Y’;

if Z’ < 0 then Z’:=0;

(Z′ ≥ X ∧ Z′ ≥ Y ∧ Z′ ≥ 0 ∧ X′ = X ∧ Y′ = Y)

Modular analysis:

analyze a procedure once (procedure summary)

reuse the summary at each call site (instantiation)

=⇒ improved efficiency

infer a relation between input X,Y,Z and output X′,Y′,Z′ values
P((V→ R)× (V→ R)) ≡ P((V× V)→ R)
requires inferring relational information

[Anco10], [Jean09]
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Linear equality domain
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Linear equality domain Affine equalities

The affine equality domain

Here I ∈ {Q,R}.

We look for invariants of the form:∧
j (
∑n

i=1 αijVi = βj) , αij , βj ∈ I

where all the αij and βj are inferred automatically.

We use a domain of affine spaces proposed by [Karr76]:

D] def
= { affine subspaces of V→ I }
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Linear equality domain Affine equalities

Affine equality representation

Machine representation: an affine subspace is represented as

either the constant ⊥],
or a pair 〈M, ~C 〉 where

M ∈ Im×n is a m × n matrix, n = |V| and m ≤ n,
~C ∈ Im is a row-vector with m rows.

〈M, ~C 〉 represents an equation system, with solutions:

γ(〈M, ~C 〉) def
= { ~V ∈ In |M× ~V = ~C }

M should be in row echelon form:
∀i ≤ m:∃ki :Miki = 1 and
∀c < ki :Mic = 0, ∀l 6= i :Mlki = 0,

if i < i ′ then ki < ki ′ (leading index)

example:
1 0 0 5 0
0 1 0 6 0
0 0 1 7 0
0 0 0 0 1


Remarks:

the representation is unique
as m ≤ n = |V|, the memory cost is in O(n2) at worst
> is represented as the empty equation system: m = 0
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Linear equality domain Affine equalities

Galois connection

Galois connection: (actually, a Galois insertion)

between arbitrary subsets and affine subsets

(P(In),⊆) −−−→−→←−−−−
α

γ
(Aff (In),⊆)

γ(X )
def
= X (identity)

α(X )
def
= smallest affine subset containing X

Aff (In) is closed under arbitrary intersections, so we have:

α(X ) = ∩ {Y ∈ Aff (In) |X ⊆ Y }
Aff (In) contains every point in In

we can also construct α(X ) by abstract union:
α(X ) = ∪] { {x} | x ∈ X }

Notes:

we have assimilated V→ I to In

we have used Aff (In) instead of the matrix representation D] for simplicity;
a Galois connection also exists between P(In) and D]
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Linear equality domain Affine equalities

Normalisation and emptiness testing

Let M× ~V = ~C be a system, not necessarily in normal form.

The Gaussian reduction Gauss(〈M, ~C 〉) tells in O(n3) time:

whether the system is satisfiable, and in that case

gives an equivalent system 〈M′, ~C ′〉 in normal form

i.e. returns an element in D].

Principle: reorder lines, and combine lines linearly to eliminate variables

Example: 2X + Y + Z = 19
2X + Y − Z = 9

3Z = 15
⇓{

X + 0.5Y = 7
Z = 5
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Linear equality domain Affine equalities

Affine equality operators

Applications

If X ],Y] 6= ⊥], we define:

X ] ∩] Y] def
= Gauss

(〈[
MX]

MY]

]
,

[
~CX]

~CY]

]〉)
X ] = ]Y] def⇐⇒ MX] = MY] and ~CX] = ~CY]

X ] ⊆] Y] def⇐⇒ X ] ∩] Y] =] X ]

C]J
∑

j αjVj − β = 0 KX ] def
= Gauss

(〈[
MX]

α1 · · ·αn

]
,

[
~CX]

β

]〉)
C]J e ./ 0 KX ] def

= X ] for other tests

Remark:

⊆], =], ∩], =] and C]J
∑

j αjVj − β = 0 K are exact:
X ] ⊆] Y] ⇐⇒ γ(X ]) ⊆ γ(Y]), γ(X ] ∩] Y]) = γ(X ]) ∩ γ(Y]), . . .
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Linear equality domain Affine equalities

Generator representation

Generator representation

An affine subspace can also be represented as a set of vector
generators ~G1, . . . , ~Gm and an origin point ~O, denoted as [G, ~O].

γ([G, ~O])
def
= { G× ~λ+ ~O | ~λ ∈ Im } (G ∈ In×m, ~O ∈ In)

We can switch between a generator and a constraint
representation:

From generators to constraints: 〈M, ~C 〉 = Cons([G, ~O])

Write the system ~V = G× ~λ+ ~O with variables ~V , ~λ.
Solve it in ~λ (by row operations).

Keep the constraints involving only ~V .

e.g.

 X = λ+ 2
Y = 2λ+ µ+ 3
Z = µ

=⇒

 X− 2 = λ
−2X + Y + 1 = µ

2X− Y + Z− 1 = 0

The result is: 2X− Y + Z = 1.
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Linear equality domain Affine equalities

Generator representation (cont.)

From constraints to generators: [G, ~O]
def
= Gen(〈M, ~C 〉)

Assume 〈M, ~C〉 is normalized.
For each non-leading variable V, assign a distinct λV,
solve leading variables in terms of non-leading ones.

e.g.

{
X + 0.5Y = 7

Z = 5
=⇒

 −0.5
1
0

λY +

 7
0
5


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Linear equality domain Affine equalities

Affine equality operators (cont.)

Applications

Given X ],Y] 6= ⊥], we define:

X ] ∪] Y] def
= Cons

([
GX] GY] ( ~OY] − ~OX] ), ~OX]

])
C]J Vj :=]−∞,+∞[ KX ] def

= Cons
([

GX] ~xj , ~OX]

])
C]J Vj :=

∑
i αiVi + β KX ] def

=

if αj = 0, (C]J
∑

i αiVi − Vj + β = 0 K ◦ C]J Vj :=]−∞,+∞[ K )X ]

if αj 6= 0,X ] where Vj is replaced with (Vj −
∑

i 6=j αiVi − β)/αj

(proofs on next slide)

C]J Vj := e KX ] def
= C]J Vj :=]−∞,+∞[ KX ] for other assignments

Remarks:

∪] is optimal, but not exact.

C]J Vj :=
∑

i αiVi + β K and C]J Vj :=]−∞,+∞[ K are exact.
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Linear equality domain Affine equalities

Affine assignments: proofs

C]J Vj :=
∑

i αiVi + β KX ] def
=

if αj = 0, (C]J
∑

i αiVi − Vj + β = 0 K ◦ C]J Vj :=]−∞,+∞[ K )X ]

if αj 6= 0,X ] where Vj is replaced with (Vj −
∑

i 6=j αiVi − β)/αj

Proof sketch:

we use the following identities in the concrete

non-invertible assignment: αj = 0

CJ Vj := e K = CJ Vj := e K ◦CJ Vj :=]−∞,+∞[ K as the value of Vj is not used in e
so: CJ Vj := e K = CJ Vj − e = 0 K ◦ CJ Vj :=]−∞,+∞[ K

=⇒ reduces the assignment to a test

invertible assignment: αj 6= 0

CJ Vj := e K ( CJ Vj := e K ◦ CJ Vj :=]−∞,+∞[ K as e depends on V
(e.g., CJ V := V + 1 K 6= CJ V := V + 1 K ◦ CJ V :=]−∞,+∞[ K )

ρ ∈ CJ Vj := e KR ⇐⇒ ∃ρ′ ∈ R: ρ = ρ′[Vj 7→
∑

i αiρ
′(Vi ) + β]

⇐⇒ ∃ρ′ ∈ R: ρ[Vj 7→ (ρ(Vj )−
∑

i 6=j αiρ
′(Vi )− β)/αj ] = ρ′

⇐⇒ ρ[Vj 7→ (ρ(Vj )−
∑

i 6=j αiρ(Vi )− β)/αj ] ∈ R

=⇒ reduces the assignment to a substitution by the inverse expression
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Linear equality domain Affine equalities

Analysis example

No infinite increasing chain: we can iterate without widening.

Forward analysis example:

1X:=10; Y:=100;

while 2X<>0 do3

X:=X-1;

Y:=Y+10

done4
X:=X−1

1

2

4

3

X<>0

X:=10

Y:=100

X=0

Y:=Y+10

` X ]0` X ]1` X ]2` X ]3` X ]4`
1 >] >] >] >] >]
2 ⊥] (10, 100) (10, 100) 10X + Y = 200 10X + Y = 200
3 ⊥] ⊥] (10, 100) (10, 100) 10X + Y = 200
4 ⊥] ⊥] ⊥] ⊥] (0, 200)

Note in particular:
X ]32 = {(10, 100)} ∪] {(9, 110)} = { (X, Y) | 10X + Y = 200 }
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Linear equality domain Affine equalities

Backward affine equality operators

Backward assignments:

←−
C ]J Vj :=]−∞,+∞[ K (X ],R]) def

= X ] ∩] (C]J Vj :=]−∞,+∞[ KR])

←−
C ]J Vj :=

∑
i αiVi + β K (X ],R]) def

=

X ] ∩] (R] where Vj is replaced with (
∑

i αiVi + β))

(reduces to a substitution by the (non-inverted) expression)

←−
C ]J Vj := e K (X ],R]) def

=
←−
C ]J Vj :=]−∞,+∞[ K (X ],R])

for other assignments

Remarks:

←−
C ]J Vj :=

∑
i αiVi + β K and

←−
C ]J Vj :=]−∞,+∞[ K are exact
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Linear equality domain Affine equalities

Constraint-only equality domain

In fact [Karr76] does not use the generator representation.
(rationale: few constraints but many generators in practice)

We need to redefine two operators: forgetting and union.

C]J Vj :=]−∞,+∞[ K

Idea:

We have to remove all the occurrences of Vj
but reduce the number of equations by only one

Algorithm:

Pick the row 〈 ~Mi ,Ci 〉 such that Mij 6= 0 and i maximal.
Use it to eliminate all non-0 occurrences of Vj in M.
(i maximal =⇒ M stays in row echelon form)

Then remove the row 〈 ~Mi ,Ci 〉.

e.g. forgetting Z:

{
X + Z = 10
Y+ Z = 7

=⇒
{

X− Y = 3

The operator is exact.
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Linear equality domain Affine equalities

Constraint-only equality domain (cont.)

〈M, ~C 〉 ∪] 〈N, ~D〉
Idea: unify columns 1 to n in 〈M, ~C 〉 and 〈N, ~D〉
using row operations.

Algorithm sketch:

Assume that we have unified columns 1 to k to get

(
R
0

)
, arguments are in row

echelon form, and we have to unify at column k + 1: t(~0 1 ~0) with t(~β 0 ~0)
R ~0 M1

~0 1 ~M2

0 ~0 M3

 ,


R ~β N1

~0 0 ~N2

0 ~0 N3

 =⇒


R ~β M′1
~0 0 ~0

0 ~0 M3

 ,


R ~β N1

~0 0 ~N2

0 ~0 N3


Use the row (~0 1 ~M2) to create ~β in the left argument

Then remove the row (~0 1 ~M2)
The right argument is unchanged
=⇒ we have now unified columns 1 to k + 1

Unifying t(~α 0 ~0) and t(~0 1 ~0) is similar

Unifying t(~α 0 ~0) and t(~β 0 ~0) is a bit more complicated. . . see [Karr76]
No other case possible as we are in row echelon form
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Linear equality domain Affine equalities

A note on integers

Suppose now that I = Z.

Z is not closed under affine operations: (x/y)× y 6= x ,

Gaussian reduction implemented in Z is unsound.
(e.g. unsound normalization 2X + Y = 19 6=⇒ X = 9, by truncation)

One possible solution:

keep a representation using matrices with coefficients in Q,

keep all abstract operators as in Q,

change the concretization into: γZ(X ]) def
= γ(X ]) ∩ Zn.

With respect to γZ, the operators are no longer best / exact.

Example: where X ] is the equation Y = 2X

γZ(X ]) = { (X, Y) | X ∈ Z, Y = 2X }
(CJ X :=0 K ◦ γZ)X ] = { (X, Y) | X = 0, Y is even }
(γZ ◦ C]J X :=0 K )X ] = { (X, Y) | X = 0, Y ∈ Z }

=⇒ The analysis forgets the “intergerness” of variables.
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Linear equality domain Affine equalities

The congruence equality domain

Another possible solution: use a more expressive domain.

We look for invariants of the form:
∧
j

(
n∑

i=1

mijVi ≡ cj [kj ]

)
.

Algorithms:

there exists minimal forms (but not unique),
computed using an extension of Euclide’s algorithm,

there is a dual representation: { G× ~λ+ ~O | ~λ ∈ Zm },
and passage algorithms,

see [Gran91].

course 04 Relational Numerical Abstract Domains Antoine Miné p. 22 / 77



Polyhedron domain

Polyhedron domain
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Polyhedron domain

The polyhedron domain

Here again, I ∈ {Q,R}.

We look for invariants of the form:
∧
j

(
n∑

i=1

αijVi ≥ βj

)
.

We use the polyhedron domain proposed by [Cous78]:

D] def
= {closed convex polyhedra of V→ I}

Note: polyhedra need not be bounded (6= polytopes).
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Polyhedron domain

Double description of polyhedra

Polyhedra have dual representations (Weyl–Minkowski Theorem).
(see [Schr86])

Constraint representation

〈M, ~C 〉 with M ∈ Im×n and ~C ∈ Im

represents: γ(〈M, ~C 〉) def
= { ~V |M× ~V ≥ ~C}

We will also often use a constraint set notation {
∑

i αijVi ≥ βj }.

Generator representation

[P,R] where

P ∈ In×p is a set of p points: ~P1, . . . , ~Pp

R ∈ In×r is a set of r rays: ~R1, . . . , ~Rr

γ([P,R])
def
=
{(∑p

j=1 αj
~Pj

)
+
(∑r

j=1 βj
~Rj

)
| ∀j , αj , βj ≥ 0,

∑p
j=1 αj = 1

}
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Polyhedron domain

Double description of polyhedra (cont.)

Generator representation examples:

γ([P,R])
def
= { (

∑p
j=1 αj

~Pj) + (
∑r

j=1 βj
~Rj) | ∀j , αj , βj ≥ 0:

∑p
j=1 αj = 1 }

P1

P2

P3

P4

P5

P1

P2

P3

R1

R2

the points define a bounded convex hull

the rays allow unbounded polyhedra
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Polyhedron domain

Origin of duality

Dual A∗
def
= { ~x ∈ In | ∀~a ∈ A, ~a · ~x ≤ 0 }

{~a}∗ and {λ~r |λ ≥ 0}∗ are half-spaces,

(A ∪ B)∗ = A∗ ∩ B∗,

if A is convex, closed, and ~0 ∈ A, then A∗∗ = A.

Duality on polyhedral cones:

Cone: C = { ~V |M× ~V ≥ ~0} or C = {
∑r

j=1 βj
~Rj | ∀j , βj ≥ 0}

(polyhedron with no vertex, except ~0)

C ∗ is also a polyhedral cone,

C ∗∗ = C ,

a ray of C corresponds to a constraint of C ∗,

a constraint of C corresponds to a ray of C ∗.

Extension to polyhedra: by homogenisation to polyhedral cones:

C (P)
def
= { λ~V | λ ≥ 0, (V1, . . . , Vn) ∈ γ(P), Vn+1 = 1 } ⊆ In+1

(polyhedron in In ' polyhedral cone in In+1)
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Polyhedron domain

Polyhedra representations

No best abstraction α
(e.g., a disc has infinitely many polyhedral over-approximations, but no best one)

No memory bound on the representations
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Polyhedron domain

Polyhedra representations

Minimal representations

A constraint / generator system is minimal if no constraint /
generator can be omitted without changing the concretization

Minimal representations are not unique

No memory bound even on minimal representations

Example: three different constraint representations for a point

(a) (b) (c)

(a) y + x ≥ 0, y − x ≥ 0, y ≤ 0, y ≥ −5 (non mimimal)

(b) y + x ≥ 0, y − x ≥ 0, y ≤ 0 (minimal)

(c) x ≤ 0, x ≥ 0, y ≤ 0, y ≥ 0 (minimal)
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Polyhedron domain

Chernikova’s algorithm

Algorithm by [Cher68], improved by [LeVe92] to switch from a
constraint system to an equivalent generator system

Why? most operators are easier on one representation

Notes:

By duality, we can use the same algorithm to switch from
generators to constraints

The minimal generator system can be exponential in the original
constraint system
(e.g., hypercube: 2n constraints, 2n vertices)

Equality constraints and lines (pairs of opposed rays) may be
handled separately and more efficiently
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Polyhedron domain

Chernikova’s algorithm (cont.)

Algorithm: incrementally add constraints one by one

Start with:

{
P0 = { (0, . . . , 0) } (origin)
R0 = { ~xi , −~xi | 1 ≤ i ≤ n } (axes)

For each constraint ~Mk · ~V ≥ Ck ∈ 〈M, ~C〉, update [Pk−1,Rk−1] to [Pk ,Rk ].

Start with Pk = Rk = ∅,

for any ~P ∈ Pk−1 s.t. ~Mk · ~P ≥ Ck , add ~P to Pk

for any ~R ∈ Rk−1 s.t. ~Mk · ~R ≥ 0, add ~R to Rk

for any ~P, ~Q ∈ Pk−1 s.t. ~Mk · ~P > Ck and ~Mk · ~Q < Ck , add to Pk :

~O
def
= Ck− ~Mk ·~Q

~Mk ·~P− ~Mk ·~Q
~P − Ck− ~Mk ·~P

~Mk ·~P− ~Mk ·~Q
~Q

i.e., move Q towards P along [Q,P] until it saturates the constraint

O

P

Q

P
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Polyhedron domain

Chernikova’s algorithm (cont.)

for any ~R, ~S ∈ Rk−1 s.t. ~Mk · ~R > 0 and ~Mk · ~S < 0, add to Rk :

~O
def
= ( ~Mk · ~S)~R − ( ~Mk · ~R)~S

i.e., rotate S towards R until it is parallel to the constraint

R

S

R

O

for any ~P ∈ Pk−1, ~R ∈ Rk−1 s.t.

either ~Mk · ~P > Ck and ~Mk · ~R < 0, or ~Mk · ~P < Ck and ~Mk · ~R > 0

add to Pk : ~O
def
= ~P + Ck− ~Mk ·~P

~Mk ·~R
~R

R
R

P

O

course 04 Relational Numerical Abstract Domains Antoine Miné p. 32 / 77



Polyhedron domain

Chernikova’s algorithm example

Example:

(0)

(1) (2) (3)

P0 = {(0, 0)} R0 = {(1, 0), (−1, 0), (0, 1), (0,−1)}

Y ≥ 1 P1 = {(0, 1)} R1 = {(1, 0), (−1, 0), (0, 1)}
X + Y ≥ 3 P2 = {(2, 1)} R2 = {(1, 0), (−1, 1), (0, 1)}
X − Y ≤ 1 P3 = {(2, 1), (1, 2)} R3 = {(0, 1), (1, 1)}
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Polyhedron domain

Chernikova’s algorithm example

Example:

(0) (1)

(2) (3)

P0 = {(0, 0)} R0 = {(1, 0), (−1, 0), (0, 1), (0,−1)}
Y ≥ 1 P1 = {(0, 1)} R1 = {(1, 0), (−1, 0), (0, 1)}

X + Y ≥ 3 P2 = {(2, 1)} R2 = {(1, 0), (−1, 1), (0, 1)}
X − Y ≤ 1 P3 = {(2, 1), (1, 2)} R3 = {(0, 1), (1, 1)}
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Polyhedron domain

Chernikova’s algorithm example

Example:

(0) (1) (2)

(3)

P0 = {(0, 0)} R0 = {(1, 0), (−1, 0), (0, 1), (0,−1)}
Y ≥ 1 P1 = {(0, 1)} R1 = {(1, 0), (−1, 0), (0, 1)}
X + Y ≥ 3 P2 = {(2, 1)} R2 = {(1, 0), (−1, 1), (0, 1)}

X − Y ≤ 1 P3 = {(2, 1), (1, 2)} R3 = {(0, 1), (1, 1)}

course 04 Relational Numerical Abstract Domains Antoine Miné p. 33 / 77



Polyhedron domain

Chernikova’s algorithm example

Example:

(0) (1) (2) (3)

P0 = {(0, 0)} R0 = {(1, 0), (−1, 0), (0, 1), (0,−1)}
Y ≥ 1 P1 = {(0, 1)} R1 = {(1, 0), (−1, 0), (0, 1)}
X + Y ≥ 3 P2 = {(2, 1)} R2 = {(1, 0), (−1, 1), (0, 1)}
X − Y ≤ 1 P3 = {(2, 1), (1, 2)} R3 = {(0, 1), (1, 1)}
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Polyhedron domain

Redundancy removal

Goal: only introduce non-redundant points and rays during
Chernikova’s algorithm

Definitions (for rays in polyhedral cones)

Given C = { ~V |M× ~V ≥ ~0 } = {R× ~β | ~β ≥ ~0 }.
~R saturates ~Mk · ~V ≥ 0

def⇐⇒ ~Mk · ~R = 0

S(~R,C )
def
= { k | ~Mk · ~R = 0 }.

Theorem:

assume C has no line (6 ∃~L 6= ~0 s.t. ∀α, α~L ∈ C )
~R is non-redundant w.r.t. R ⇐⇒ 6 ∃~Ri ∈ R, S(~R,C ) ⊆ S(~Ri ,C )

S(~Ri ,C ), ~Ri ∈ R is maintained during Chernikova’s algorithm
in a saturation matrix

extension possible to polyhedra and lines

various improvements exist [LeVe92]
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Polyhedron domain

Operators on polyhedra

Given X ],Y] 6= ⊥], we define:

X ] ⊆] Y] def⇐⇒
{
∀~P ∈ PX] , MY] × ~P ≥ ~CY]

∀~R ∈ RX] , MY] × ~R ≥ ~0

(every generator of X ] must satisfy every constraint in Y])

X ] =] Y] def⇐⇒ X ] ⊆] Y] and Y] ⊆] X ]

X ] ∩] Y] def
=

〈[
MX]

MY]

]
,

[
~CX]

~CY]

]〉
(set union of sets of constraints)

Remarks:

⊆], =] and ∩] are exact.
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Polyhedron domain

Operators on polyhedra: join

Join: X ] ∪] Y] def
= [ [PX ] PY] ], [RX ] RY] ] ] (join generator sets)

Examples:

two polytopes a point and a line

∪] is optimal:

we get the topological closure of the convex hull of γ(X ]) ∪ γ(Y])
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Polyhedron domain

Operators on polyhedra (cont.)

Forward operators: affine tests

C]J
∑

i αiVi + β ≥ 0 KX ] def
=

〈[
MX ]

α1 · · ·αn

]
,

[
~CX ]

−β

]〉
C]J
∑

i αiVi + β = 0 KX ] def
=

(C]J
∑

i αiVi + β ≥ 0 K ◦ C]J
∑

i (−αi )Vi − β ≥ 0 K )X ]

These test operators are exact.
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Polyhedron domain

Operators on polyhedra (cont.)

Forward operators: forget

C]J Vj :=]−∞,+∞[ KX ] def
= [ PX ] , [ RX ] ~xj (−~xj) ] ]

This operator is exact.

It is also a sound abstraction for any assignment.
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Polyhedron domain

Operators on polyhedra (cont.)

Forward operators: affine assignments

C]J Vj :=
∑

i αiVi + β KX ] def
=

if αj = 0, (C]J
∑

i αiVi − Vj + β = 0 K ◦ C]J Vj :=]−∞,+∞[ K )X ]

if αj 6= 0, 〈M, ~C 〉 where Vj is replaced with 1
αj

(Vj −
∑

i 6=j αiVi − β)

Examples :

X ← X + Y

X ← Y

Affine assignments are exact.

They could also be defined on generator systems.
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Polyhedron domain

Operators on polyhedra (cont.)

Backward assignments:

←−
C ]J Vj :=]−∞,+∞[ K (X ],R]) def

= X ] ∩] (C]J Vj :=]−∞,+∞[ KR])

←−
C ]J Vj :=

∑
i αiVi + β K (X ],R]) def

=

X ] ∩] (R] where Vj is replaced with (
∑

i αiVi + β))

←−
C ]J Vj := e K (X ],R]) def

=
←−
C ]J Vj :=]−∞,+∞[ K (X ],R])

for other assignments

Note: identical to the case of linear equalities.
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Polyhedron domain

Polyhedra widening

D] has strictly increasing infinite chains =⇒ we need a widening

Definition:

Take X ] and Y] in minimal constraint-set form
X ] O Y] def

= { c ∈ X ] | Y] ⊆] {c} }

∪ { c ∈ Y] | ∃c ′ ∈ X ]:X ] =] (X ] \ c ′) ∪ {c} }

We suppress any unstable constraint c ∈ X ], i.e., Y] 6⊆] {c}

We also keep constraints c ∈ Y] equivalent to those in X ],
i.e., when ∃c ′ ∈ X ]:X ] =] (X ] \ c ′) ∪ {c}

Example:
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Polyhedron domain

Polyhedra widening

D] has strictly increasing infinite chains =⇒ we need a widening

Definition:

Take X ] and Y] in minimal constraint-set form
X ] O Y] def

= { c ∈ X ] | Y] ⊆] {c} }
∪ { c ∈ Y] | ∃c ′ ∈ X ]:X ] =] (X ] \ c ′) ∪ {c} }

We suppress any unstable constraint c ∈ X ], i.e., Y] 6⊆] {c}
We also keep constraints c ∈ Y] equivalent to those in X ],
i.e., when ∃c ′ ∈ X ]:X ] =] (X ] \ c ′) ∪ {c}

Example:
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Polyhedron domain

Example analysis

Example program

X:=2; I:=0;

while • I<10 do

if [0,1]=0 then X:=X+2 else X:=X-3 fi;

I:=I+1

done�

Loop invariant:

Increasing iterations with wideningg at • give:

X ]1 = {X = 2, I = 0}
X ]2 = {X = 2, I = 0} O ({X = 2, I = 0} ∪] {X ∈ [−1, 4], I = 1})

= {X = 2, I = 0} O { I ∈ [0, 1], 2− 3I ≤ X ≤ 2I + 2 }
= {I ≥ 0, 2− 3I ≤ X ≤ 2I + 2}

Decreasing iterations (to find I ≤ 10):

X ]3 = {X = 2, I = 0} ∪] { I ∈ [1, 10], 2− 3I ≤ X ≤ 2I + 2 }
= {I ∈ [0, 10], 2− 3I ≤ X ≤ 2I + 2}

We find, at the end of the loop �: I = 10 ∧ X ∈ [−28, 22].
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Polyhedron domain

Example analysis (illustration)

Example program

X:=2; I:=0;

while • I<10 do

if [0,1]=0 then X:=X+2 else X:=X-3 fi;

I:=I+1

done�

X ]1 = {X = 2, I = 0}
X ]2 = {X = 2, I = 0} O ({X = 2, I = 0} ∪] {X ∈ [−1, 4], I = 1})

= {I ≥ 0, 2− 3I ≤ X ≤ 2I + 2}
X ]3 = {X = 2, I = 0} ∪] { I ∈ [1, 10], 2− 3I ≤ X ≤ 2I + 2 }

= {I ∈ [0, 10], 2− 3I ≤ X ≤ 2I + 2}
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Polyhedron domain

Other polyhedra widenings

Widening with thresholds:

Given a finite set T of constraints, we add to X ] O Y] all the
constraints from T satisfied by both X ] and Y].

Delayed widening:

We replace X ] O Y] with X ] ∪] Y] a finite number of times
(this works for any widening and abstract domain).

See also [Bagn03].
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Polyhedron domain

Strict inequalities

The polyhedron domain can be extended to allow strict
constraints: { ~V |M× ~V ≥ ~C and M′ × ~V > ~C ′ }

Idea:

A non-closed polyhedron on V is represented

as a closed polyhedron P on V′
def
= V ∪ {Vε}.

α1V1 + · · ·+ αnVn + 0Vε ≥ 0 represents α1V1 + · · ·+ αnVn≥0
α1V1 + · · ·+ αnVn − cVε ≥ 0, c > 0 represents α1V1 + · · ·+ αnVn>0

P represents the non necessarily closed polyhedron:

γε(P)
def
= {(V1, . . . , Vn) | ∃Vε > 0, (V1, . . . , Vn, Vε) ∈ γ(P)}.

Notes:

The minimal form needs some adaptation [Bagn02].

Chernikova’s algorithm, ∩], ∪], C]J c K , and
←−
C ]J c K can be

easily reused.
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Polyhedron domain

Integer polyhedra

How can we deal with I = Z?

Issue: integer linear programming is difficult.

Example: satsfiability of conjunctions of linear constraints:

polynomial cost in Q,

NP-complete cost in Z.

Possible solutions:

Use some complete integer algorithms.
(e.g. Presburger arithmetics)
Costly, and we do not have any abstract domain structure.

Keep Q−polyhedra as representation, and change the

concretization into: γZ(X ]) def
= γ(X ]) ∩ Zn.

However, operators are no longer exact / optimal.
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Weakly relational domains

Weakly relational domains
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Weakly relational domains Zone domain

Zone domain
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Weakly relational domains Zone domain

The zone domain

Here, I ∈ {Z,Q,R}.

We look for invariants of the form:∧
Vi − Vj ≤ c or ± Vi ≤ c , c ∈ I

A subset of In bounded by such constraints is called a zone.

[Mine01a]
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Weakly relational domains Zone domain

Machine representation

A potential constraint has the form: Vj − Vi ≤ c .

Potential graph: directed, weighted graph G

nodes are labelled with variables in V,

we add an arc with weight c from Vi to Vj for each constraint
Vj − Vi ≤ c .

Difference Bound Matrix (DBM)

Adjacency matrix m of G:

m is square, with size n × n, and elements in I ∪ {+∞},
mij = c < +∞ denotes the constraint Vj − Vi ≤ c ,

mij = +∞ if there is no upper bound on Vj − Vi .

Concretization:

γ(m)
def
= { (v1, . . . , vn) ∈ In | ∀i , j , vj − vi ≤ mij }.
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Weakly relational domains Zone domain

Machine representation (cont.)

Unary constraints add a constant null variable V0.

m has size (n + 1)× (n + 1);

Vi ≤ c is denoted as Vi − V0 ≤ c , i.e., mi0 = c ;

Vi ≥ c is denoted as V0 − Vi ≤ −c , i.e., m0i = −c ;

γ is now: γ0(m)
def
= { (v1, . . . , vn) | (0, v1, . . . , vn) ∈ γ(m) }.

Example:

V0

V2

V1

V04



 3 ��
V1

−1

??

V2

−1mm

1
oo

V0 V1 V2

V0 +∞ 4 3
V1 −1 +∞ +∞
V2 −1 1 +∞
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Weakly relational domains Zone domain

The DBM lattice

D] contains all DBMs, plus ⊥].

≤ on I ∪ {+∞} is extended point-wisely.

If m,n 6= ⊥]:
m ⊆] n

def⇐⇒ ∀i , j , mij ≤ nij

m =] n
def⇐⇒ ∀i , j , mij = nij[

m ∩] n
]
ij

def
= min(mij , nij)[

m ∪] n
]
ij

def
= max(mij , nij)[

>]
]
ij

def
= +∞

(D],⊆],∪],∩],⊥],>]) is a lattice.

Remarks:

D] is complete if ≤ is (I = R or Z, but not Q),

m ⊆] n =⇒ γ0(m) ⊆ γ0(n), but not the converse,

m =] n =⇒ γ0(m) = γ0(n), but not the converse.
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Weakly relational domains Zone domain

Normal form, equality and inclusion testing

Issue: how can we compare γ0(m) and γ0(n)?

Idea: find a normal form by propagating/tightening constraints. V0 − V1 ≤ 3
V1 − V2 ≤ −1
V0 − V2 ≤ 4

 V0 − V1 ≤ 3
V1 − V2 ≤ −1
V0 − V2 ≤ 2

V1

3

��
V2

−1
??

4
// V0

=⇒

V1

3

��
V2

−1
??

2
// V0

(A) (B)

Definition: shortest-path closure m∗

m∗ij
def
= min

N
〈i = i1, . . . , iN = j〉

N−1∑
k=1

mik ik+1

Exists only when m has no cycle with strictly negative weight.
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Weakly relational domains Zone domain

Floyd–Warshall algorithm

Properties:

γ0(m) = ∅ ⇐⇒ G has a cycle with strictly negative weight.

if γ0(m) 6= ∅, the shortest-path graph m∗ is a normal form:

m∗ = min⊆] { n | γ0(m) = γ0(n) }

If γ0(m), γ0(n) 6= ∅, then

γ0(m) = γ0(n) ⇐⇒ m∗ =] n∗,
γ0(m) ⊆ γ0(n) ⇐⇒ m∗ ⊆] n.

Floyd–Warshall algorithm{
m0

ij
def
= mij

mk+1
ij

def
= min(mk

ij ,m
k
ik + mk

kj)

If γ0(m) 6= ∅, then m∗ = mn+1, (normal form)

γ0(m) = ∅ ⇐⇒ ∃i , mn+1
ii < 0, (emptiness testing)

mn+1 can be computed in O(n3) time.
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Weakly relational domains Zone domain

Abstract operators

Abstract join: näıve version ∪] (element-wise max)

∪] is a sound abstraction of ∪
but γ0(m ∪] n) is not necessarily the smallest zone
containing γ0(m) and γ0(n) !

The union of two zones with ∪] is no more precise in the zone domain
than in the interval domain!
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Weakly relational domains Zone domain

Abstract operators (cont.)

Abstract join: precise version: ∪] after closure

(m∗) ∪] (n∗) is however optimal

we have: (m∗) ∪] (n∗) = min⊆] { o | γ0(o) ⊇ γ0(m) ∪ γ0(n) }
which implies:
γ0((m∗) ∪] (n∗)) = min⊆ { γ0(o) | γ0(o) ⊇ γ0(m) ∪ γ0(n) }

after closure, new constraints c ≤ X − Y ≤ d give an increase in precision

(m∗) ∪] (n∗) is always closed.

course 04 Relational Numerical Abstract Domains Antoine Miné p. 56 / 77



Weakly relational domains Zone domain

Abstract operators (cont.)

Abstract intersection ∩]: element-wise min

∩] is an exact abstraction of ∩ (zones are closed under intersection):

γ0(m ∩] n) = γ0(m) ∩ γ0(n)

(m∗) ∩] (n∗) is not necessarily closed. . .

Remark

The set of closed matrices, with ⊥], and the operations ⊆], ∪], λm, n.(m ∩] n)∗ is a
sub-lattice, where γ0 is injective.
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Weakly relational domains Zone domain

Abstract operators (cont.)

We can define:[
C]J Vj0 − Vi0 ≤ c K m

]
ij

def
=

{
min(mij , c) if (i , j) = (i0, j0),
mij otherwise.

C]J Vj0 − Vi0 = [a, b] K m
def
= (C]J Vj0 − Vi0 ≤ b K ◦ C]J Vi0 − Vj0 ≤ −a K )m

[
C]J Vj0 :=]−∞,+∞[ K m

]
ij

def
=

{
+∞ if i = j0 or j = j0,
m∗ij otherwise.

(not optimal on non-closed arguments)

C]J Vj0 := Vi0 + [a, b] K m
def
=

(C]J Vj0 − Vi0 = [a, b] K ◦ C]J Vj0 :=]−∞,+∞[ K )m if i0 6= j0

[
C]J Vj0 := Vj0 + [a, b] K m

]
ij

def
=

 mij − a if i = j0 and j 6= j0
mij + b if i 6= j0 and j = j0
mij otherwise.

(i0 6= j0; Vi0 can be replaced with 0 by setting i0 = 0)

These transfer functions are exact.
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Weakly relational domains Zone domain

Abstract operators (cont.)

Backward assignment:

←−
C ]J Vj0 :=]−∞,+∞[ K (m, r)

def
= m ∩] (C]J Vj0 :=]−∞,+∞[ K r)

←−
C ]J Vj0 := Vj0 + [a, b] K (m, r)

def
= m ∩] (C]J Vj0 := Vj0 + [−b,−a] K r)

[←−
C ]J Vj0 := Vi0 + [a, b] K (m, r)

]
ij

def
=

m ∩]


min(r∗ij , r

∗
j0j

+ b) if i = i0 and j 6= i0, j0
min(r∗ij , r

∗
ij0
− a) if j = i0 and i 6= i0, j0

+∞ if i = j0 or j = j0
r∗ij otherwise.
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Weakly relational domains Zone domain

Abstract operators (cont.)

Issue: given an arbitrary linear assignment Vj0 := a0 +
∑

k ak × Vk

there is no exact abstraction, in general;

the best abstraction α ◦ CJ c K ◦ γ is costly to compute.
(e.g. convert to a polyhedron and back, with exponential cost)

Possible solution:
Given a (more general) assignment e = [a0, b0] +

∑
k [ak , bk ]× Vk

we define an approximate operator as follows:

[
C]J Vj0 := e K m

]
ij

def
=


max(E]J e K m) if i = 0 and j = j0
−min(E]J e K m) if i = j0 and j = 0

max(E]J e − Vi K m) if i 6= 0, j0 and j = j0
−min(E]J e + Vj K m) if i = j0 and j 6= 0, j0
mij otherwise

where E]J e K m evaluates e using interval arithmetics with Vk ∈ [−m∗k0,m
∗
0k ].

Quadratic total cost (plus the cost of closure).
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Weakly relational domains Zone domain

Abstract operators (cont.)

Example:
Argument 0 ≤ Y ≤ 10

0 ≤ Z ≤ 10
0 ≤ Y− Z ≤ 10

⇓ X := Y− Z −10 ≤ X ≤ 10
−20 ≤ X− Y ≤ 10
−20 ≤ X− Z ≤ 10

 −10 ≤ X ≤ 10
−10 ≤ X− Y ≤ 0
−10 ≤ X− Z ≤ 10

 0 ≤ X ≤ 10
−10 ≤ X− Y ≤ 0
−10 ≤ X− Z ≤ 10

Intervals Approximate Best
solution (polyhedra)

We have a good trade-off between cost and precision.

The same idea can be used for tests and backward assignments.
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Weakly relational domains Zone domain

Widening and narrowing

The zone domain has both strictly increasing and decreasing
infinite chains.

Widening O

[m O n]ij
def
=

{
mij if nij ≤ mij

+∞ otherwise
Unstable constraints are deleted.

Narrowing M

[m M n]ij
def
=

{
nij if mij = +∞
mij otherwise

Only +∞ bounds are refined.

Remarks:

We can construct widenings with thresholds.

O (resp. M) can be seen as a point-wise extension of an
interval widening (resp. narrowing).
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Weakly relational domains Zone domain

Interaction between closure and widening

Widening O and closure ∗ cannot always be mixed safely:

• mi+1
def
= mi O (n∗i ) OK

• mi+1
def
= (m∗i ) O ni wrong!

• mi+1
def
= (mi O ni )

∗ wrong
otherwise the sequence (mi ) may be infinite!

Example:

X:=0; Y:=[-1,1];

while • 1=1 do

R:=[-1,1];

if X=Y then Y:=X+R

else X:=Y+R fi

done

X ]2j• X ]2j+1
•

X ∈ [−2j , 2j] X ∈ [−2j − 2, 2j + 2]
Y ∈ [−2j − 1, 2j + 1] Y ∈ [−2j − 1, 2j + 1]

X− Y ∈ [−1, 1] X− Y ∈ [−1, 1]

Applying the closure after the widening at • prevents convergence.
Without the closure, we would find in finite time X− Y ∈ [−1, 1].

Note: this situation also occurs in reduced products

(here, D] 'reduced product of n × n intervals, ∗ 'reduction)
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Weakly relational domains Zone domain

Interaction between closure and widening (illustration)

X:=0; Y:=[-1,1];

while • 1=1 do

R:=[-1,1];

if X=Y then Y:=X+R

else X:=Y+R fi

done

X ]2j• X ]2j+1
•

X ∈ [−2j , 2j] X ∈ [−2j − 2, 2j + 2]
Y ∈ [−2j − 1, 2j + 1] Y ∈ [−2j − 1, 2j + 1]

X− Y ∈ [−1, 1] X− Y ∈ [−1, 1]

▽ ▽

▽*▽* ...

widening
without
closure

widening
with
closure

course 04 Relational Numerical Abstract Domains Antoine Miné p. 64 / 77



Weakly relational domains Octagon domain

Octagon domain
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Weakly relational domains Octagon domain

The octagon domain

Now, I ∈ {Q,R}.

We look for invariants of the form:
∧

±Vi ± Vj ≤ c , c ∈ I

A subset of In defined by such constraints is called an octagon.

It is a generalisation of zones (more symmetric).

[Mine01b]
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Weakly relational domains Octagon domain

Machine representation

Idea: use a variable change to get back to potential constraints.

Let V′
def
= {V′1, . . . , V′2n}.

the constraint: is encoded as:
Vi − Vj ≤ c (i 6= j) V′2i−1 − V′2j−1≤ c and V′2j − V′2i ≤ c
Vi + Vj ≤ c (i 6= j) V′2i−1 − V′2j ≤ c and V′2j−1 − V′2i ≤ c
−Vi − Vj ≤ c (i 6= j) V′2j − V′2i−1 ≤ c and V′2i − V′2j−1≤ c

Vi ≤ c V′2i−1 − V′2i ≤ 2c
Vi ≥ c V′2i − V′2i−1 ≤−2c

We use a matrix m of size (2n)× (2n) with elements in I ∪ {+∞}
and γ±(m)

def
= { (v1, . . . , vn) | (v1,−v1, . . . , vn,−vn) ∈ γ(m) }.

Note:
Two distinct m elements can represent the same constraint on V.

To avoid this, we impose that ∀i , j , mij = m̄ ı̄ where ı̄ = i ⊕ 1.
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Weakly relational domains Octagon domain

Machine representation (cont.)

Example:



V1 + V2 ≤ 3
V2 − V1 ≤ 3
V1 − V2 ≤ 3
−V1 − V2 ≤ −3
2V2 ≤ 2
−2V2 ≤ 8

V′1
3 //

3

��

V′2oo

3

��
8

uu
V′4

OO

3
//

2

55

V′2oo

OO

V2

V1

Lattice

Constructed by point-wise extension of ≤ on I ∪ {+∞}.
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Algorithms

m∗ is not a normal form for γ±.

Idea use two local transformations instead of one:{
V′ i − V′k ≤ c
V′k − V′j ≤ d

=⇒ V′ i − V′j ≤ c + d

and {
V′ i − V′ ı̄ ≤ c
V′ ̄ − V′j ≤ d

=⇒ V′ i − V′j ≤ (c + d)/2

Modified Floyd–Warshall algorithm

m•
def
= S(m2n+1)

where:

(A)

{
m1 def

= m

[mk+1]ij
def
= min(nij , nik + nkj ), 1 ≤ k ≤ 2n

(B) [S(n)]ij
def
= min(nij , (ni ı̄ + n̄j )/2)
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Algorithms (cont.)

Applications

γ±(m) = ∅ ⇐⇒ ∃i , m•ii < 0,

if γ±(m) 6= ∅, m• is a normal form:
m• = min⊆] { n | γ±(n) = γ±(m) },

(m•) ∪] (n•) is the best abstraction for the set-union
γ±(m) ∪ γ±(n).

Widening and narrowing

The zone widening and narrowing can be used on octagons.

The widened iterates should not be closed.
(prevents convergence)

Abstract transfer functions are similar to the case
of the zone domain.
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Analysis example

Rate limiter

Y:=0; while • 1=1 do

X:=[-128,128]; D:=[0,16];

S:=Y; Y:=X; R:=X-S;

if R<=-D then Y:=S-D fi;

if R>=D then Y:=S+D fi

done

X: input signal
Y: output signal
S: last output
R: delta Y-S

D: max. allowed for |R|

Analysis using:

the octagon domain,

an abstract operator for Vj0 := [a0, b0] +
∑

k [ak , bk ]× Vk
similar to the one we defined on zones,

a widening with thresholds T .

Result: we prove that |Y| is bounded by: min { t ∈ T | t ≥ 144 }.

Note: the polyhedron domain would find |Y| ≤ 128 and does not
require thresholds, but it is more costly.
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Summary
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Summary of numerical domains

domain invariants memory cost time cost (per operation)

intervals V ∈ [`, h] O(|n|) O(|n|)

linear equalities
∑

i αiVi = βi O(|n|2) O(|n|3)

zones Vi − Vj ≤ c O(|n|2) O(|n|3)

polyhedra
∑

i αiVi ≥ βi unbounded, exponential in practice

abstract domains provide trade-offs between cost and precision

relational invariants are often necessary
even to prove non-relational properties

an abstract domain is defined by the choice of:

some properties of interest and operators (semantic part)

data-structures and algorithms (algorithmic part)

an analysis mixes two kinds of approximations:

static approximations (choice of abstract properties)

dynamic approximations (widening)
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