
Memory abstraction 1
MPRI — Cours 2.6 “Interprétation abstraite :

application à la vérification et à l’analyse statique”

Xavier Rival

INRIA, ENS, CNRS

Oct, 19th. 2016

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 1 / 92

Memory models Towards memory properties

Outline

1 Memory models
Towards memory properties
Formalizing concrete memory states
Treatment of errors
Language semantics

2 Abstraction of arrays

3 Basic pointer analyses

4 Three valued logic heap abstraction

5 Conclusion

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 2 / 92

Memory models Towards memory properties

Overview of the lecture

So far, we have shown numeric abstract domains
non relational: intervals, congruences...
relational: polyhedra, octagons, ellipsoids...

How to deal with non purely numeric states ?
How to reason about complex data-structures ?

⇒ a very broad topic, and two lectures:

This lecture
overview memory models and memory properties
abstraction of arrays
abstraction of pointer structures / shape analysis

Next lecture: abstractions based on separation logic
Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 3 / 92

Memory models Towards memory properties

Assumptions

Imperative programs viewed as transition systems:

set of control states: L (program points)

set of variables: X (all assumed globals)

set of values: V (so far: V consists of integers (or floats) only)

set of memory states: M (so far: M = X→ V)

error state: Ω

states: S
S = L×M

SΩ = S] {Ω}

transition relation:
(→) ⊆ S× SΩ

Abstraction of sets of states described by domain D] and concretization
γ : (D],v]) −→ (P(S),⊆)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 4 / 92

Memory models Towards memory properties

Programs: syntax

We start from the same language syntax and will extend l-values:

l ::= l-valules
| x (x ∈ X)
| . . . we will add other kinds of l-values

pointers, array dereference...
e ::= expressions

| c (c ∈ V)
| l (lvalue)
| e⊕ e (arithoperation, comparison)

s ::= statements
| l = e (assignment)
| s; . . . s; (sequence)
| if(e){s} (condition)
| while(e){s} (loop)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 5 / 92

Memory models Towards memory properties

Programs: semantics

We assume classical definitions for:
l-values: JlK : M→ X
expressions: JeK : M→ V
programs and statements:

I we assume a label before each statement
I each statement defines a set of transition (→)

In this course, we rely on the usual reachable states semantics

Reachable states semantics
The reachable states are computed as JSKR = lfpF where

F : P(S) −→ P(S)
X 7−→ SI ∪ {s ∈ S | ∃s ′ ∈ X , s ′ → s}

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 6 / 92

Memory models Towards memory properties

Programs: semantics abstraction

We assume a memory abstraction:
memory abstract domain D]

mem

concretization function γmem : D]
mem → P(M)

Reachable states abstraction
We construct D] = L→ D]

mem and:

γ : D] −→ P(S)
X] 7−→ {(l ,m) ∈ S | m ∈ γmem(X](l))}

The whole question is how do we choose D]
mem, γmem...

previous lectures: X is fixed and finite and, V is scalars (integers or floats),
thus, M ≡ Vn

today, we will extend the language and the abstractions

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 7 / 92

Memory models Towards memory properties

Abstraction of purely numeric memory states

Purely numeric case
V is a set of values of the same kind
e.g., integers (Z), machine integers (Z ∩ [−263, 263 − 1])...
If the set of variables is fixed, we can use any abstraction for VN

Example: N = 2, X = {x , y}

concrete set

x

y

interval domain

x

y

octagon domain

x

y

polyedra domain

x

y

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 8 / 92

Memory models Towards memory properties

Heterogeneous memory states

In real life languages, there are many kinds of values:
scalars (integers of various sizes, boolean, floating-point values)...
pointers, arrays...

Heterogeneous memory states
types: t0, t1, . . .
values: V = Vt0] Vt1] . . .
finitely many variables; each has a fixed type: X = Xt0] Xt1] . . .
memory states:

M = Xt0 → Vt0 × Xt1 → Vt1 . . .

At a later point, we will add pointers: t0 denotes pointers, V = . . .]Vaddr

For the moment, we let t0 be integers, and t1 be booleans

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 9 / 92

Memory models Towards memory properties

Heterogeneous memory states: non relational abstraction

Principle: compose abstractions for sets of memory states of each type

Non relational abstraction of heterogeneous memory states
M ≡M0 ×M1 × . . . where Mi = Xi → Vi

Concretization function (case with two types)
γnr : P(M0)× P(M1) −→ P(M)

(m]
0,m]

1) 7−→ {(m0,m1) | ∀i , mi ∈ m]
i }

Example: V = Vint] Vbool, thus, M = Mint ×Mbool

Abstraction of P(Xint → Vint):
intervals
polyhedra...

Abstraction of P(Xbool → Vbool):
lattice of boolean constants
partitioning abstraction

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 10 / 92

Memory models Towards memory properties

Memory structures

To describe memories, the definition M = X→ V is too restrictive
It ignores many ways of organizing data in the memory states

Common structures (non exhaustive list)
Structures, records, tuples:
sequences of cells accessed with fields

Arrays:
similar to structures; indexes are integers in [0, n − 1]

Pointers:
numeric values corresponding to the address of a memory cell

Strings and buffers:
blocks with a sequence of elements and a terminating element (e.g., null

character)
Closures (functional languages):

pointer to function code and (partial) list of arguments)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 11 / 92

Memory models Towards memory properties

Specific properties to verify

Memory safety
Absence of memory errors (crashes, or undefined behaviors)

Pointer errors:
Dereference of a null pointer / of an invalid pointer

Access errors:
Out of bounds array access, buffer overruns (often used for attacks)

Invariance properties
Data should not become corrupted (values or structures...)

Preservation of structures, e.g., lists should remain connected
Preservation of invariants, e.g., of balanced trees

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 12 / 92

Memory models Towards memory properties

Properties to verify: examples

A program closing a list of file
descriptors

// l points to a list
c = l;
while(c 6= NULL){
close(c→ FD);
c = c→ next;
}

Correctness properties
1 memory safety
2 l is supposed to store all file

descriptors at all times
will its structure be preserved ?
yes, no breakage of a next link

3 closure of all the descriptors

Examples of structure preservation properties

Algorithms manipulating trees, lists...

Libraries of algorithms on balanced trees

Not guaranteed by the language !
e.g., balancing of Maps was wrong in the OCaml standard library...

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 13 / 92

Memory models Formalizing concrete memory states

A more realistic model

Not all memory cell corresponds to a variable
a variable may correspond to several cells (structures...)
dynamically allocated cells correspond to no variable at all...

Environment + Heap
Addresses are values: Vaddr ⊆ V
Environments e ∈ E map variables into their addresses
Heaps (h ∈ H) map addresses into values

E = X→ Vaddr
H = Vaddr → V

h is actually only a partial function
Memory states (or memories): M = E×H

Avoid confusion between heap (function from addresses to values) and
dynamic allocation space (often referred to as “heap”)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 14 / 92

Memory models Formalizing concrete memory states

Example of a concrete memory state (variables)

x and z are two list elements containing values 64 and 88, and where the
former points to the latter
y stores a pointer to z

Memory layout
(pointer values underlined)

address

&x = 300
304

&y = 308

&z = 312
316 0x0

88
312
312
64

e : x 7→ 300
y 7→ 308
z 7→ 312

h : 300 7→ 64
304 7→ 312
308 7→ 312
312 7→ 88
316 7→ 0

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 15 / 92

Memory models Formalizing concrete memory states

Example of a concrete memory state (variables + dyn. cell)

same configuration
+ z points to a dynamically allocated list element (in purple)

Memory layout

address

&x = 300
304

&y = 308

&z = 312
316

508
512 0x0

25

508
88
312
312
64

e : x 7→ 300
y 7→ 308
z 7→ 312

h : 300 7→ 64
304 7→ 312
308 7→ 312
312 7→ 88
316 7→ 508
508 7→ 25
512 7→ 0

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 16 / 92

Memory models Formalizing concrete memory states

Extending the semantic domains

Some slight modifications to the semantics of the initial language:
Values are addresses: Vaddr ⊆ V
L-values evaluate into addresses: JlK : M→ Vaddr

JxK(e, h) = e(x)

Semantics of expressions JeK : M→ V, mostly unchanged

JlK(e, h) = h(JlK(e, h))

Semantics of assignment l0 : l := e; l1 : . . .:
(l0, e, h0) −→ (l1, e, h1)

where
h1 = h0[JlK(e, h0)← JeK(e, h0)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 17 / 92

Memory models Formalizing concrete memory states

Realistic definitions of memory states

Our model is still not very accurate for most languages
Memory cells do not all have the same size
Memory management algorithms usually do not treat cells one by one,
e.g., malloc returns a pointer to a block
applying free to that pointer will dispose the whole block

Other refined models
Partition of the memory in blocks with a base address and a size
Partition of blocks into cells with a size
Description of fields with an offset
Description of pointer values with a base address and an offset...

For a very formal description of concrete memory states:
see CompCert project source files (Coq formalization)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 18 / 92

Memory models Treatment of errors

Language semantics: program crash

In an abnormal situation, the program will crash
Advantage: very clear semantics
Disadvantage (for the compiler designer): dynamic checks are required

Error state
Ω denotes an error configuration
Ω is a blocking: (→) ⊆ S× ({Ω}] S)

OCaml:
out-of-bound array access:
Exception: Invalid_argument "index out of bounds".

no notion of a null pointer
Java:

exception in case of out-of-bound array access, null dereference:
java.lang.ArrayIndexOutOfBoundsException

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 19 / 92

Memory models Treatment of errors

Language semantics: undefined behaviors

The behavior of the program is not specified when an abnormal situation is
encountered
Advantage: easy implementation (often architecture driven)
Disadvantage: unintuitive semantics, errors hard to reproduce

different compilers may make different choices...
or in fact, make no choice at all (= let the program evaluate even when
performing invalid actions)

Modeling of undefined behavior
Very hard to capture what a program operation may modify
Abnormal situation at (l0,m0) such that ∀m1 ∈M, (l0,m0)→ (l1,m1)

In C:
Array out-of-bound accesses and dangling pointer dereferences lead to
undefined behavior (and potentially, memory corruption) whereas a
null-pointer dereference always result into a crash

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 20 / 92

Memory models Language semantics

Composite objects

How are contiguous blocks of information organized ?

Java objects, OCaml struct types
sets of fields
each field has a type
no assumption on physical storage, no pointer arithmetics

C composite structures and unions
physical mapping defined by the norm
each field has a specified size and a specified alignment
union types / casts:
implementations may allow several views

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 21 / 92

Memory models Language semantics

Pointers and records / structures / objects

Many languages provide pointers or references and allow to manipulate
addresses, but with different levels of expressiveness

What kind of objects can be referred to by a pointer ?

Pointers only to records / structures / objects
Java: only pointers to objects
OCaml: only pointers to records, structures...

Pointers to fields
C: pointers to any valid cell...

struct {int a; int b} x;
int ∗ y = &(x · b);

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 22 / 92

Memory models Language semantics

Pointer arithmetics

What kind of operations can be performed on a pointer ?

Classical pointer operations
Pointer dereference:
∗p returns the contents of the cell of address p
“Address of” operator: &x returns the address of variable x
Can be analyzed with a rather coarse pointer model
e.g., symbolic base + symbolic field

Arithmetics on pointers, requiring a more precise model
Addition of a numeric constant:
p + n: address contained in p + n times the size of the type of p
Interaction with pointer casts...
Pointer subtraction: returns a numeric offset

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 23 / 92

Memory models Language semantics

String operations

Many data-structures can be handled in very different ways depending on
the language
Strings are just one example

OCaml strings
Abstract type: representation
not part of the language definition
Type safe implementation

I no buffer orverrun
I exception for out of bound

accesses
i.e., like arrays

Most operations generate new
string structures

C strings
A string is an array of
characters (char ∗) with a
terminal zero character
Direct access to string elements
(array dereference)
String copy operation
strcpy(s, ”foo_bar”):

I copies ”foo_bar” into s
I undefined behavior if length of

s < 7

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 24 / 92

Memory models Language semantics

Manual memory management

Allocation of unbounded memory space
How are new memory blocks created by the program ?
How do old memory blocks get freed ?

OCaml memory management
implicit allocation
when declaring a new object
garbage collection: purely
automatic process, that frees
unreachable blocks

C memory management
manual allocation: malloc
operation returns a pointer to a
new block
manual de-allocation: free
operation (block base address)

Manual memory management is not safe:
memory leaks: growing unreachable memory region; memory exhaustion
dangling pointers if freeing a block that is still referred to

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 25 / 92

Memory models Language semantics

Summary on the memory model

Choices to fix a memory model
Clear error cases or undefined behaviors
for analysis, a semantics with clear error cases is preferable

Composite objects: structure fully exposed or not

Pointers to objct fields: allowed or not

Pointer arithmetic: allowed or not
i.e., are pointer values symbolic values or numeric values

Memory management: automatic or manual

In this course, we start with a simple model, and add specific features one by one
(arrays, pointers) in order to study corresponding abstractions

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 26 / 92

Abstraction of arrays A micro language for manipulating arrays

Outline

1 Memory models

2 Abstraction of arrays
A micro language for manipulating arrays
Verifying safety of array operations
Abstraction of array contents
Abstraction of array properties

3 Basic pointer analyses

4 Three valued logic heap abstraction

5 Conclusion

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 27 / 92

Abstraction of arrays A micro language for manipulating arrays

Programs: extension with arrays

Extension of the syntax:

l ::= l-valules
| . . . previous constructions
| x[e] cell of array x

. . . ::= . . . the rest is unchanged

Extension of the states:
if x is an array variable, and corresponds to an array of length N, we have
N cells corresponding to it, with addresses

{e(x) + 0, e(x) + s, . . . , e(x) + (N − 1) · s}

where s is the size of a base type value (8 bytes for a 64-bit int)

Extension of the semantics, case of an array cell read:

Jx[e]K(e, h) =

{
e(x) + i · s if JeK(e, h) = i ∈ [0,N − 1]
Ω otherwise

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 28 / 92

Abstraction of arrays A micro language for manipulating arrays

Example

// a is an integer array of length n
bool s;
do{

s = false;
for(int i = 0; i < n − 1; i = i + 1){

if(a[i] < a[i + 1]){
swap(a, i, i + 1);
s = true;

}
}

}while(s);

Properties to verify by static analysis
1 Safety property: the program will not crash (no index out of bound)
2 Contents property: if the values in the array are in [0, 100] before, they are

also in that range after
3 Global array property: at the end, the array is sorted

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 29 / 92

Abstraction of arrays Verifying safety of array operations

Outline

1 Memory models

2 Abstraction of arrays
A micro language for manipulating arrays
Verifying safety of array operations
Abstraction of array contents
Abstraction of array properties

3 Basic pointer analyses

4 Three valued logic heap abstraction

5 Conclusion

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 30 / 92

Abstraction of arrays Verifying safety of array operations

Expressing correctness of array operations

Goal of the analysis: establish safety
Prove the absence of runtime error due to array reads / writes, i.e., that no Ω
will ever arise

Safety verification:
At label l , the analysis computes a local abstraction of the set of
reachable memory states Φ](l)

If a statement at label l performs array read or write operation x[e], where x
is an array of length n, the analysis simply needs to establish

∀m ∈ γmem(Φ](l)), JeK(m) ∈ [0, n − 1]

In many cases, this can be done with an interval abstraction
... but not always (exercise: when would it not be enough ?)

For now, we ignore the array contents (exercise: when does this fail ?)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 31 / 92

Abstraction of arrays Verifying safety of array operations

Verifying correctness of array operations

Case where intervals are enough:

// x array of length 40
int i = 0;
while(i < 40){

printf(”%d ; ”, x[i]);
i = i + 1;

}

interval analysis establishes that
i ∈ [0; 39] at the loop head
this allows the verification of the code

Case where intervals cannot represent precise enough invariants:

// x array of length 40
int i, j;
if(0 ≤ i && i < j)

if(j < 41)
printf(”%d ; ”, x[i]);

in the concrete, i ∈ [0, 39] at the array
access point
to establish this in the abstract, after the
first test, relation i < j need be represented
e.g., octagon abstract domain

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 32 / 92

Abstraction of arrays Abstraction of array contents

Outline

1 Memory models

2 Abstraction of arrays
A micro language for manipulating arrays
Verifying safety of array operations
Abstraction of array contents
Abstraction of array properties

3 Basic pointer analyses

4 Three valued logic heap abstraction

5 Conclusion

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 33 / 92

Abstraction of arrays Abstraction of array contents

Elementwise abstraction

Goal of the analysis: abstract contents
Inferring invariants about the contents of the array

e.g., that the values in the array are in a given range
e.g., in order to verify the safety of x[y[i + j] + k] or y = n/x[i]

Assumption:
One array t, of known, fixed length n (element size s)
Scalar variables x0, x1, . . . , xm−1

Elementwise abstraction
Each concrete cell is mapped into one abstract cell
D] should simply be an abstraction of P(Vm+n) (relational or not)

Abstract and concrete memory cell addresses:
C] = Vaddr = {&x0, . . . , &xm−1} ∪ {&t̄, &t̄ + 1 · s, . . . , &t̄ + (n − 1) · s}

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 34 / 92

Abstraction of arrays Abstraction of array contents

Elementwise abstraction example

We consider the following set of concrete states:

i : 1 t : 0 1 0 i : 4 t : 2 5 1

i : 8 t : 5 8 3 i : 7 t : 3 6 2

The elementwise abstraction produces the following vectors:

(1, 0, 1, 0) (4, 2, 5, 1)
(8, 5, 8, 3) (7, 3, 6, 2)

After applying the interval abstraction, we get:

([1, 8], [0, 5], [1, 8], [0, 3])

This is precise but costly if arrays are big; also we need to know statically the
length of arrays...
Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 35 / 92

Abstraction of arrays Abstraction of array contents

Post-condition for an assignment: example 1

Assignment t[0] = 6 Pre-condition: t : [0, 1] [1, 2]

concrete pre-condition:

t : 0 1 t : 0 2 t : 1 1 t : 1 2

effect of the assignment in the concrete and post-condition:

t : 6 1 t : 6 2 t : 6 1 t : 6 2

Thus, we obtain the abstract post-condition:

t : [6, 6] [1, 2]

This analysis step is precise, but what if the index is not known so precisely ?

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 36 / 92

Abstraction of arrays Abstraction of array contents

Post-condition for an assignment: example 2

Assignment t[i] = 6 Pre-condition: i ∈ [0, 1] ∧ t : [0, 0] [8, 8]

concrete pre-condition: t : 0 8

effect of the assignment in the concrete and post-condition:

t : 0 8 if i = 0 t : 6 8

t : 0 8 if i = 1 t : 0 6

Thus, we obtain the abstract post-condition:

t : [0, 6] [6, 8]

This analysis step looks quite coarse, but it is actually fine here:
each cell may get the new value or keep the old one...

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 37 / 92

Abstraction of arrays Abstraction of array contents

Two kinds of abstract updates

Strong updates
One modified concrete cell abstracted by one, precisely known
abstract cell
The effect of the update is computed precisely by the analysis

Strong updates are the most favorable case, as new information is computed
precisely, and known information is not lost (example 1)

Weak updates
The modified concrete cell cannot be mapped into a well identified
abstract cell
The resulting abstract information is obtained by joining the new value and
the old information

In the example we have just seen, the weak update loses no information...

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 38 / 92

Abstraction of arrays Abstraction of array contents

Array smashing abstraction: abstraction into one cell

The elementwise abstraction is too costly:
high number of abstract cells if the arrays are big
will not work if the size of arrays is not known statically

Alternative: use fewer abstract cells, e.g., a single cell

Assumption: m scalar variables, one array t̄ of length n

Array smashing
All cells of the array are mapped into one abstract cell t̄
Concrete cells:
Vaddr = {&x0, . . . , &xm−1} ∪ {&t̄, &t̄ + 1 · s, . . . , &t̄ + (n − 1) · s}
Abstract cells: C] = {&x0, . . . , &xm−1} ∪ {&t̄}
D] should simply be an abstraction of P(Vm+1)

This also works if the size of the array is not known statically:
int n = . . . ; int t[n];

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 39 / 92

Abstraction of arrays Abstraction of array contents

Array smashing abstraction

Definition
Abstract domain P(C] → P(V))

Abstraction function:

αsmash(H) =

{
&xi 7→ {h(xi)}
&t̄ 7→ {h(&t + 0), . . . , h(&t + n − 1)}

∣∣∣∣ h ∈ H

}

Example, with no variable and an array of length 2:

Set of concrete states H:{
t[0] 7→ 0
t[1] 7→ 10

}
,

{
t[0] 7→ 2
t[1] 7→ 11

}
,

{
t[0] 7→ 1
t[1] 7→ 12

}
Smashing abstraction produces {{0, 10}, {2, 11}, {1, 12}}
After non relational abstraction, we obtain &t̄ 7→ {0, 1, 2, 10, 11, 12}

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 40 / 92

Abstraction of arrays Abstraction of array contents

Array smashing abstraction example

We consider the following set of concrete states:

i : 1 t : 0 1 0 i : 4 t : 2 5 1

i : 8 t : 5 8 3 i : 7 t : 3 6 2

The smashing abstraction produces the following vectors:

({1}, {0, 1, 0}) ({4}, {2, 5, 1})
({8}, {5, 8, 3}) ({7}, {3, 6, 2})

After non relational abstraction:

&i 7−→ {1, 4, 8, 7}
&t̄ 7−→ {0, 1, 2, 3, 5, 6, 8}

After applying the interval abstraction, we get: ([1, 8], [0, 8])

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 41 / 92

Abstraction of arrays Abstraction of array contents

Post-condition for an assignment: example

Assignment t[0] = 6 Pre-condition: t : ∀i , t[i] : [0, 0]

concrete pre-condition: t : 0 0

effect of the assignment in the concrete and post-condition:

t : 0 0 t : 6 0

Thus, we obtain the abstract post-condition:

t : ∀i , t[i] : [0, 6]

Consequence:
the analysis of t[0] = 6; t[1] = 6; will
also produce

t : ∀i , t[i] : [0, 6]

This is a another case of
weak-update, resulting in
significant precision loss

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 42 / 92

Abstraction of arrays Abstraction of array contents

Weak-updates

Weak updates
The modified concrete cell cannot be mapped into a well identified
abstract cell
The resulting abstract information is obtained by joining the new value and
the old information

To summarize:

abstraction t[0] = . . . t[[a, b]] = . . .
element-wise strong update weak update
smashing weak update weak update

relatively to the abstraction, a weak update may be precise (as in the
examples)
however, successions of weak updates will prevent from inferring invariants
such as correctness of initialization

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 43 / 92

Abstraction of arrays Abstraction of array contents

Weak updates and strong updates: example

// x uninitialized array of length n
int i = 0;
while(i < n){

x[i] = 0;
i = i + 1;

}

Elementwise abstraction:
initially ∀i , m](&t + i · s) = >
if loop unrolled completely, at the
end, ∀i , m](&t + i · s) = [0, 0]

weak updates, if the loop is not
unrolled; then, at the end
∀i , m](&t + i · s) = >

Smashing abstraction:
initially m](t̄) = >
weak updates at each step
(whatever the unrolling that
is performed); at the end:
m](t̄) = >

Weak updates may cause a serious loss of precision
Workaround ahead: more complex array abstractions may help

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 44 / 92

Abstraction of arrays Abstraction of array contents

Other forms of array smashing

Smashing does not have to affect the whole array
Efficient smashing strategies can be found

Segment smashing:
abstraction of the array cells into {t̄0, . . . , t̄k−1} where t̄i corresponds to a
segment of the array
useful when sub-segments have interesting properties
issue: determine the segment by analysis

Modulo smashing:
abstraction of the array cells into {t̄0, . . . , t̄k−1} where t̄i corresponds to a
repeating set of offsets {&t̄ + k · i · s | k · i < n}
useful for arrays of structures
issue: determine k by analysis

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 45 / 92

Abstraction of arrays Abstraction of array properties

Outline

1 Memory models

2 Abstraction of arrays
A micro language for manipulating arrays
Verifying safety of array operations
Abstraction of array contents
Abstraction of array properties

3 Basic pointer analyses

4 Three valued logic heap abstraction

5 Conclusion

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 46 / 92

Abstraction of arrays Abstraction of array properties

Example array properties

Goal of the analysis: precisely abstract contents
Discover non trivial properties of array regions

Initialization to a constant (e.g., 0)
Sortedness

Array initialization loop
// t integer array of length n
int i = 0;
while(i < n){

t[i] = 0;
i = i + 1;

}

Hand proof sketch:

At iteration k , i = k and the segment
t[0], . . . t[k − 1] is initialized
At the loop exit, i = n and the whole
array is initialized

To complete the proof, we need to express properties on segments

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 47 / 92

Abstraction of arrays Abstraction of array properties

Array segment properties

Array initialization loop
// t integer array of length n
int i = 0;
while(i < n){

t[i] = 0;
i = i + 1;

}

Concrete state after 6 iterations:

t
i = 6

0 0 0 0 0 0 ? ? ? ?

Corresponding abstract state:

t
i ∈ [1, 10]

zerot̄(0, i− 1) >

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 48 / 92

Abstraction of arrays Abstraction of array properties

Array segment predicates

Definition
An array segment predicate is an abstract predicate that describes the contents
of a contiguous series of cells in the array, such as:

Initialization: zerot(i , j) iff t initialized to 0 between i and j

Sortedness: sortt(i , j) iff t sorted between i and j

Examples:
array satisfying zerot(2, 6):

t
i = 6

8 2 0 0 0 0 0 0 10 3

array satisfying sortt(1, 3) and sortt(6, 8):

t
i = 6

8 2 5 6 8 11 1 2 3 2

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 49 / 92

Abstraction of arrays Abstraction of array properties

Composing sortedness predicates

As part of the proof, predicates need be composed

zerot(i , j) ∧ zerot̄(j + 1, k) ⇒ zerot(i , k)
t[j] = 0 ⇒ zerot(j , j)

zerot(i , j) ∧ t[j + 1] = 0 ⇒ zerot(i , j + 1)

sortt(i , j) ∧ sortt̄(j + 1, k) 6⇒ sortt(i , k)
t[j] ≤ t[j + 1] ∧ sortt(i , j) ∧ sortt̄(j + 1, k) ⇒ sortt(i , k)

counter example for the fourth line: for [0; 3; 9; 2; 4; 8], we have:

sortt(0, 2) ∧ sortt(3, 5) but not sortt(0, 5)

Another sortedness predicate: sortt(i , j ,min,max)

B ≤ C ∧ sortt(i , j ,A,B) ∧ sortt̄(j + 1, k ,C ,D) ⇒ sortt(i , k,A,D)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 50 / 92

Abstraction of arrays Abstraction of array properties

Analysis operators (for predicate zero)
Assignment transfer function:

1 Identify segments that may be modified
2 If a single segment is impacted, split it
3 Do a strong update

For instance, for an array of length n:

zerot(0, n− 1) ∧ 0 ≤ i < n
t[i]=?−→ zerot(0, i− 1) ∧ zerot(i + 1, n− 1)

> ∧ 0 ≤ i < n
t[i]=0−→ zerot(i, i)

nothing

Abstract join operator: generalizes bounds

(> ∧ i = 0 < n) t] (zerot(0, 0) ∧ i = 1 < n)
= (zerot(0, i− 1) ∧ 0 ≤ i < n)

this union introduces an empty initialized segment in the left hand side
Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 51 / 92

Abstraction of arrays Abstraction of array properties

Array analysis: example

// t integer array of length n > 0
t i >>

int i = 0;

t i >>

while(i < n){
t i >>

t[i] = 0;

t i >>

i = i + 1;

t i >>

}
t i >>

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 52 / 92

Abstraction of arrays Abstraction of array properties

Array analysis: example

// t integer array of length n > 0
t i >>

int i = 0;

t i [0, 0]>

while(i < n){
t i >>

t[i] = 0;

t i >>

i = i + 1;

t i >>

}
t i >>

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 52 / 92

Abstraction of arrays Abstraction of array properties

Array analysis: example

// t integer array of length n > 0
t i >>

int i = 0;

t i [0, 0]>

while(i < n){
t i [0, 0]>

t[i] = 0;

t i >>

i = i + 1;

t i >>

}
t i >>

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 52 / 92

Abstraction of arrays Abstraction of array properties

Array analysis: example

// t integer array of length n > 0
t i >>

int i = 0;

t i [0, 0]>

while(i < n){
t i [0, 0]>

t[i] = 0;

t i [0, 0]zerot̄(0, 0) >

i = i + 1;

t i >>

}
t i >>

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 52 / 92

Abstraction of arrays Abstraction of array properties

Array analysis: example

// t integer array of length n > 0
t i >>

int i = 0;

t i [0, 0]>

while(i < n){
t i [0, 0]>

t[i] = 0;

t i [0, 0]zerot̄(0, 0) >

i = i + 1;

t i [1, 1]zerot̄(0, 0) >

}
t i >>

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 52 / 92

Abstraction of arrays Abstraction of array properties

Array analysis: example

// t integer array of length n > 0
t i >>

int i = 0;

t i [0, 1]zerot̄(0, i− 1) >

while(i < n){
t i [0, 0]>

t[i] = 0;

t i [0, 0]zerot̄(0, 0) >

i = i + 1;

t i [1, 1]zerot̄(0, 0) >

}
t i >>

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 52 / 92

Abstraction of arrays Abstraction of array properties

Array analysis: example

// t integer array of length n > 0
t i >>

int i = 0;

t i [0, 1]zerot̄(0, i− 1) >

while(i < n){
t i [0, 1]zerot̄(0, i− 1) >

t[i] = 0;

t i [0, 0]zerot̄(0, 0) >

i = i + 1;

t i [1, 1]zerot̄(0, 0) >

}
t i >>

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 52 / 92

Abstraction of arrays Abstraction of array properties

Array analysis: example

// t integer array of length n > 0
t i >>

int i = 0;

t i [0, 1]zerot̄(0, i− 1) >

while(i < n){
t i [0, 1]zerot̄(0, i− 1) >

t[i] = 0;

t i [0, 1]zerot̄(0, i) >

i = i + 1;

t i [1, 1]zerot̄(0, 0) >

}
t i >>

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 52 / 92

Abstraction of arrays Abstraction of array properties

Array analysis: example

// t integer array of length n > 0
t i >>

int i = 0;

t i [0, 1]zerot̄(0, i− 1) >

while(i < n){
t i [0, 1]zerot̄(0, i− 1) >

t[i] = 0;

t i [0, 1]zerot̄(0, i) >

i = i + 1;

t i [1, 2]zerot̄(0, i− 1) >

}
t i >>

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 52 / 92

Abstraction of arrays Abstraction of array properties

Array analysis: example

// t integer array of length n > 0
t i >>

int i = 0;

t i [0, n]zerot̄(0, i− 1) >

while(i < n){
t i [0, 1]zerot̄(0, i− 1) >

t[i] = 0;

t i [0, 1]zerot̄(0, i) >

i = i + 1;

t i [1, 2]zerot̄(0, i− 1) >

}
t i >>

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 52 / 92

Abstraction of arrays Abstraction of array properties

Array analysis: example

// t integer array of length n > 0
t i >>

int i = 0;

t i [0, n]zerot̄(0, i− 1) >

while(i < n){
t i [0, n− 1]zerot̄(0, i− 1) >

t[i] = 0;

t i [0, 1]zerot̄(0, i) >

i = i + 1;

t i [1, 2]zerot̄(0, i− 1) >

}
t i >>

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 52 / 92

Abstraction of arrays Abstraction of array properties

Array analysis: example

// t integer array of length n > 0
t i >>

int i = 0;

t i [0, n]zerot̄(0, i− 1) >

while(i < n){
t i [0, n− 1]zerot̄(0, i− 1) >

t[i] = 0;

t i [0, n− 1]zerot̄(0, i) >

i = i + 1;

t i [1, 2]zerot̄(0, i− 1) >

}
t i >>

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 52 / 92

Abstraction of arrays Abstraction of array properties

Array analysis: example

// t integer array of length n > 0
t i >>

int i = 0;

t i [0, n]zerot̄(0, i− 1) >

while(i < n){
t i [0, n− 1]zerot̄(0, i− 1) >

t[i] = 0;

t i [0, n− 1]zerot̄(0, i) >

i = i + 1;

t i [1, n]zerot̄(0, i− 1) >

}
t i >>

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 52 / 92

Abstraction of arrays Abstraction of array properties

Array analysis: example

// t integer array of length n > 0
t i >>

int i = 0;

t i [0, n]zerot̄(0, i− 1) >

while(i < n){
t i [0, n− 1]zerot̄(0, i− 1) >

t[i] = 0;

t i [0, n− 1]zerot̄(0, i) >

i = i + 1;

t i [1, n]zerot̄(0, i− 1) >

}
t i [n, n]zerot̄(0, n− 1)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 52 / 92

Abstraction of arrays Abstraction of array properties

Partitioning of arrays

Array partitions
A partition of an array t of length n is a sequence P = {e0, . . . , ek} of
symbolic expressions where

ei denotes the lower (resp., upper) bound of element i (resp. i − 1) of the
partition
e0 should be equal to 0 (and ek to n)

Example:
set of four concrete states:{

i = 1 [0, 4, 1, 2, 3, 5]
i = 2 [0, 1, 5, 2, 3, 4]

i = 3 [2, 2, 4, 5, 1, 8]
i = 5 [0, 2, 4, 6, 7, 9]

partition: {0, i + 1, 6}
note that the array is always

I sorted between 0 and i
I sorted between i+ 1 and 5

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 53 / 92

Abstraction of arrays Abstraction of array properties

Abstraction based on array partitions

Segment and array abstraction
An array segmentation is given by a partition P = {e0, . . . , ek} and a set of
abstract properties {P0, . . . ,Pk−1}.
Its concretization is the set of memory states m = (e, h) such that

∀i , [t[v], t[v + 1], . . . , t[w − 1]] satisfies Pi , where
{

v = JeiK(m)
w = Jei+1K(m)

Partitions can be:
I static, i.e., pre-computed by another analysis [HP’08]
I dynamic, i.e., computed as part of the analysis [CCL’11]

(more complex abstract domain structure with partitions and predicates)

Example: array initialization

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 54 / 92

Basic pointer analyses

Outline

1 Memory models

2 Abstraction of arrays

3 Basic pointer analyses

4 Three valued logic heap abstraction

5 Conclusion

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 55 / 92

Basic pointer analyses

Programs with pointers: syntax

Syntax extension: quite a few additional constructions

l ::= l-valules
| x (x ∈ X)
| . . .
| ∗e pointer dereference
| l · f field read

e ::= expressions
| l
| . . .
| &l "address of" operator

s ::= statements
| . . .
| x = malloc(c) allocation of c bytes
| free(x) deallocation of the block pointed to by x

We do not consider pointer arithmetics here

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 56 / 92

Basic pointer analyses

Programs with pointers: semantics

Case of l-values:

JxK(e, h) = e(x)

J∗eK(e, h) =

{
h(JeK(e, h)) if JeK(e, h) 6= 0 ∧ JeK(e, h) ∈ Dom(h)
Ω otherwise

Jl · fK(e, h) = JlK(e, h) + offset(f) (numeric offset)

Case of expressions:

JlK(e, h) = h(JlK(e, h)) (evaluates into the contents)
J&lK(e, h) = JlK(e, h) (evaluates into the address)

Case of statements:
memory allocation x = malloc(c): (e, h)→ (e, h ′) where
h ′ = h[e(x)← k]] {k 7→ vk , k + 1 7→ vk+1, . . . , k + c − 1 7→ vk+c−1} and
k, . . . , k + c − 1 are fresh and unused in h
memory deallocation free(x): (e, h)→ (e, h ′) where k = e(x) and
h = h ′] {k 7→ vk , k + 1 7→ vk+1, . . . , k + c − 1 7→ vk+c−1}

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 57 / 92

Basic pointer analyses

Pointer non relational abstractions

We rely on the non relational abstraction of heterogeneous states that was
introduced earlier, with a few changes:

V = Vaddr] Vint

X = Xaddr] Xint] . . .
concrete memory cells now include structure fields, and fields of
dynamically allocated regions
abstract cells C] finitely summarize concrete cells
we apply a non relational abstraction to pointer locations, based on D]

ptr

and γptr : D]
ptr → P(Vaddr) (other location abstracted in the same way as

before, e.g., non relationally)

We will see several instances of this kind of abstraction

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 58 / 92

Basic pointer analyses

Pointer non relational abstraction: null pointers

The dereference of a null pointer will cause a crash

To establish safety: compute which pointers may be null

Null pointer analysis
Abstract domain for addresses:

γptr(⊥) = ∅
γptr(>) = Vaddr

γptr(6= NULL) = Vaddr \ {0} ⊥

6= NULL

>

we may also use a lattice with a fourth element = NULL
exercise: what do we gain using this lattice ?
very lightweight, can typically resolve rather trivial cases
useful for C, but also for Java

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 59 / 92

Basic pointer analyses

Pointer non relational abstraction: dangling pointers

The dereferece of a null pointer will cause a crash

To establish safety: compute which pointers may be dangling

Null pointer analysis
Abstract domain for addresses:

γptr(⊥) = ∅
γptr(>) = Vaddr ×H
γptr(Not dangling) = {(v , h) | h ∈ H ∧ v ∈
Dom(h)} ⊥

Not dangling

>

very lightweight, can typically resolve rather trivial cases
useful for C, useless for Java (initialization requirement + GC)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 60 / 92

Basic pointer analyses

Pointer non relational abstraction: points-to sets

Determine where a pointer may store a reference to

1 : int x, y;
2 : int ∗ p;
3 : y = 9;
4 : p = &x;
5 : ∗p = 0;

what is the final value for x ?
0, since it is modified at line 5...
what is the final value for y ?
9, since it is not modified at line 5...

Basic pointer abstraction
We assume a set of abstract memory locations A] is fixed:

A] = {&x, &y, . . . , &t, a0, a1, . . . , aN}
Concrete addresses are abstracted into A] by φA : A→ A]] {>}
A pointer value is abstracted by the abstraction of the addresses it may point
to, i.e., D]

ptr = P(A])

and γptr(a
]) = {a ∈ A | φA(a) = a]}

example: p may point to {&x}
Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 61 / 92

Basic pointer analyses

Points-to sets computation example

Example code:

1 : int x, y;
2 : int ∗ p;
3 : y = 9;
4 : p = &x;
5 : ∗p = 0;
6 : . . .

Abstract locations: {&x, &y, &p}
Analysis results:

&x &y &p
1 > > >
2 > > >
3 > > >
4 > [9, 9] >
5 > [9, 9] {&x}
6 [0, 0] [9, 9] {&x}

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 62 / 92

Basic pointer analyses

Points-to sets computation and imprecision

x ∈ [−10,−5]; y ∈ [5, 10]
1 : int ∗ p;
2 : if(?){
3 : p = &x;
4 : } else {
5 : p = &y;
6 : }
7 : ∗p = 0;
8 : . . .

&x &y &p
1 [−10,−5] [5, 10] >
2 [−10,−5] [5, 10] >
3 [−10,−5] [5, 10] >
4 [−10,−5] [5, 10] {&x}
5 [−10,−5] [5, 10] >
6 [−10,−5] [5, 10] {&y}
7 [−10,−5] [5, 10] {&x, &y}
8 [−10, 0] [0, 10] {&x, &y}

What is the final range for x ?
What is the final range for y ?

Abstract locations: {&x, &y, &p}

Imprecise results
The abstract information about
both x and y are weakened
The fact that x 6= y is lost

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 63 / 92

Basic pointer analyses

Weak-updates

As in array analysis, we encounter:

Weak updates
The modified concrete cell cannot be mapped into a well identified
abstract cell
The resulting abstract information is obtained by joining the new value and
the old information

Effect in pointer analysis, in the case of an assignment:
if the points-to set contains exactly one element, the analysis can perform
a strong update
if the points-to set may contain more than one element, the analysis needs
to perform a weak-update

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 64 / 92

Basic pointer analyses

Pointer aliasing based on equivalence on access paths

Aliasing relation
Given m = (e, h), pointers p and q are aliases iff h(e(p)) = h(e(q))

Abstraction to infer pointer aliasing properties
An access path describes a sequence of operations to compute an l-value
(i.e., an address); e.g.:

a ::= x | a · f | ∗ a
An abstraction for aliasing is an over-approximation for equivalence
relations over access paths

Examples of aliasing abstractions:
set abstractions: map from access paths to their equivalence class
(ex: {{p0, p1, &x}, {p2, p3}, . . .})
numerical relations, to describe aliasing among paths of the form x(->n)k

(ex: {{x(->n)k, &(x(->n)k+1) | k ∈ N})

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 65 / 92

Basic pointer analyses

Limitation of basic pointer analyses

Weak updates:
imprecision in updates that spread out as soon as points-to set contain
several elements
impact client analyses severely (as for array analyses)

Unsatisfactory abstraction of unbounded memory:
common assumption that C] be finite
programs using dynamic allocations often perform unbounded numbers of
malloc calls (e.g., allocation of a list)

Unable to express well structural invariants:
for instance, that a structure should be a list, a tree...
very indirect abstraction in numeric / path equivalence abstration

Shape abstraction:
We will use similar ideas as for array segment analyses

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 66 / 92

Three valued logic heap abstraction

Outline

1 Memory models

2 Abstraction of arrays

3 Basic pointer analyses

4 Three valued logic heap abstraction
Building an abstract domain
Weakening abstract elements
Computation of transfer functions

5 Conclusion

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 67 / 92

Three valued logic heap abstraction

An abstract representation of memory states: shape graphs

Goal of the static analysis
Infer structural invariants of programs using unbounded heap

Observation: representation of memory states by shape graphs
Nodes (aka, atoms) denote memory locations
Edges denote properties, such as:

I “field f of location u points to v ”
I “variable x is stored at location u”

Two alias pointers:

x

y

u0

u1

u2

A list of length 2:

x u0 u1 u2
n n

⇒ We need to over-approximate sets of shape graphs

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 68 / 92

Three valued logic heap abstraction

Shape graphs and their representation

Description with predicates
Boolean encoding: nodes are atoms u0, u1, . . .

Predicates over atoms:
I x(u): variable x contains the address of u
I n(u, v): field of u points to v

Truth values: traditionally noted 0 and 1 in the TVLA litterature

Two alias pointers:

x

y

u0

u1

u2

x y
u0 1 0
u1 0 1
u2 0 0

7→ u0 u1 u2

u0 0 0 1
u1 0 0 1
u2 0 0 0

A list of length 2:

x u0 u1 u2
n n

x
u0 1
u1 0
u2 0

·n 7→ u0 u1 u2

u0 0 1 0
u1 0 0 1
u2 0 0 0

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 69 / 92

Three valued logic heap abstraction

Unknown value: three valued logic

How to abstract away some information ? i.e.,
to abstract several graphs into one ?

Example: pointer variable p alias with x or y
x

p

y

u0

u1

x

p

y

u0

u1

A boolean lattice
Use predicate tables
Add a > boolean value;
(denoted to by 1

2 in TVLA papers)

0 1

1
2

Graph representation:
dotted edges
Abstract graph:

x

p

y

u0

u1

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 70 / 92

Three valued logic heap abstraction

Summary nodes

At this point, we cannot talk about unbounded memory states with finitely
many nodes

An idea
Choose a node to represent several concrete nodes
Similar to smashing

Definition: summary node
A summary node is an atom that may denote several concrete atoms

Lists of lengths 1, 2, 3:

x u0 u1
n

x u0 u1 u2
n n

x u0 u1 u2 u3
n n n

Attempt at a summary graph:

x u0 u1
n n

Edges to u1 are dotted

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 71 / 92

Three valued logic heap abstraction

A few interesting predicates

We have already seen:
x(u): variable x contains the address of u
n(u, v): field of u points to v

sum(u): whether u is a summary node (convention: either 0 or 1
2)

The properties of lists are not well-captured in

x u0 u1
n n

We need to add more information, e.g., about connectedness

“Is shared”
sh(u) if and only if

∃v0, v1,

 v0 6= v1
∧ n(v0, u)
∧ n(v1, u)

Predicates defined by transitive closure
Reachability: r(u, v) if and only if
u = v ∨ ∃u0, n(u, u0) ∧ r(u0, v)

Acyclicity: acy(v)

similar, with a negation

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 72 / 92

Three valued logic heap abstraction Building an abstract domain

Three structures

Definition: 3-structures
A 3-structure is a tuple (U ,P, φ):

a set U = {u0, u1, . . . , um} of atoms
a set P = {p0, p1, . . . , pn} of predicates
(we write ki for the arity of predicate pi)
a truth table φ such that φ(pi , ul1 , . . . , ulki) denotes the truth value of pi for
ul1 , . . . , ulki
note: truth values are elements of the lattice {0, 1

2 , 1}

x u0 u1
n n {

U = {u0, u1}
P = {x(·), n(·, ·), sum(·)}

x sum
u0 1 0
u1 0 1

2

n u0 u1

u0 0 1
u1 0 0

In the following we build up an abstract domain of 3-structures

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 73 / 92

Three valued logic heap abstraction Building an abstract domain

Embedding

How to compare two 3-structures ?
How to describe the concretization of 3-structures ?

The embedding principle
Let S0 = (U0,P, φ0) and S1 = (U1,P, φ1) be two three structures, with the same
sets of predicates. Let f : U0 → U1, surjective.
We say that f embeds S0 into S1 iff

for all predicate p ∈ P or arity k , for all ul1 , . . . , ulki ∈ U0,
φ0(ul1 , . . . , ulki) v φ1(f (ul1), . . . , f (ulki))

Then, we write S0 vf S1

Note: we use the order v of the lattice {0, 1
2 , 1}

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 74 / 92

Three valued logic heap abstraction Building an abstract domain

Embedding examples

x u0 u1 u2
n n n

vf x u0 u1
n n

where f : u0 7→ u0; u1 7→ u1; u2 7→ u1

x u0 u1 u2 u3
n n n vf x u0 u1

n n

where f : u0 7→ u0; u1 7→ u1; u2 7→ u1; u3 7→ u1

x u0 u1 u2

n
n vf x u0 u1

n n

where f : u0 7→ u0; u1 7→ u1; u2 7→ u1

Reachability would be necessary to constrain it be a list
Alternatively: cells should not be shared

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 75 / 92

Three valued logic heap abstraction Building an abstract domain

Two structures and concretization

Concrete states correspond to 2-structures
A 3-structure (U ,P, φ) is a 2-structure, if and only if φ always returns in {0, 1}

A 2-structure defines a set of concrete memory states (e, h) obtained by
mapping symbols to addresses, that are compatible with the predicates of
the structure
We let stores(S) denote the stores corresponding to 2-structure S

Concretization of a 3-structure

γ(S) =
⋃
{stores(S ′) | S ′ 2-structure s.t. ∃f ,S ′ vf S}

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 76 / 92

Three valued logic heap abstraction Building an abstract domain

Concretization examples

Without reachability:

x u0 u1 u2

n
n vf x u0 u1

n n

where f : u0 7→ u0; u1 7→ u1; u2 7→ u1; u3 7→ u1

With reachability:

x u0 u1 u2
n n vf x u0 u1

n n
r(u0, u1)

where f : u0 7→ u0; u1 7→ u1; u2 7→ u1

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 77 / 92

Three valued logic heap abstraction Building an abstract domain

Principle for the design of sound transfer functions

How to carry out static analysis using 3-structures ?

Concrete states correspond to 2-structures
The analysis should track 3-structures, thus the analysis correctness should
rely on the embedding relation

Embedding theorem
Let S0 = (U0,P, φ0) and S1 = (U1,P, φ1) be two three structures, with the
same sets of predicates
Let f : U0 → U1, such that S0 vf S1

Let Ψ be a logical formula, with variables in X

Let g : X → U0 be an assignment for the variables of Ψ

Then,
JΨ|g K(S0) v JΨ|f ◦g K(S1)

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 78 / 92

Three valued logic heap abstraction Building an abstract domain

Principle for the design of sound transfer functions

Transfer functions for static analysis
Semantics of concrete statements encoded into boolean formulas
Evaluation in the abstract is sound (embedding theorem)

Example:
analysis of an assignment y := x

1 let y′ denote the new value of y
2 add the constraint y′(u) = x(u)

3 rename y′ into y

Advantages:
abstract transfer functions derive directly from the concrete transfer
functions (intuition: α ◦ f ◦ γ...)
the same solution works for weakest pre-conditions

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 79 / 92

Three valued logic heap abstraction Weakening abstract elements

A powerset abstraction

Do 3-structures allow for a sufficient level of precision ?
How to over-approximate a set of 2-structures ?

int ∗ x; int ∗ y; . . .
int ∗ p = NULL;
if(. . .){

p = x;
}else{

p = y;
}
printf(”%d”, ∗p);
∗p = . . . ;

After the if statement:
abstracting would be imprecise

x

p

y

u0

u1

x

p

y

u0

u1

Powerset abstraction
Shape analyzers usually rely on a powerset abstract domain based on
disjunctive completion of a finite lattice
i.e., TVLA manipulates finite disjunctions of 3-structures
How to ensure disjunctions will not grow infinite ?

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 80 / 92

Three valued logic heap abstraction Weakening abstract elements

Canonical abstraction

Canonicalization principle
Let L be a lattice, L′ ⊆ L be a finite sub-lattice and can : L → L′:

operator can is called canonicalization if and only if it defines an upper
closure operator
then it defines a canonicalization operator can : P(L)→ P(L′):

can(E) = {can(x) | x ∈ E}

To make the powerset domain work, we simply need a can over 3-structures

A canonicalization over 3-structures
We assume there are n variables x1, . . . , xn
Thus the number of unary predicates is finite
Sub-lattice: structures with atoms distinguished by the values of the
unary predicates (or abstraction predicates) x1, . . . , xn

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 81 / 92

Three valued logic heap abstraction Weakening abstract elements

Canonical abstraction

We assume the analysis relies on unary predicates for canonicalization. The
analysis design may choose another set of predicates than the unary predicates for
the sub-lattice representation

Canonical abstraction by truth blurring
1 Identify nodes that have different abstraction predicates
2 When several nodes have the same abstraction predicate

introduce a summary node
3 Compute new predicate values by doing a join over truth values

Elements not merged: Elements merged:

x

p

y

u0

u1

x

p

y

u0

u1

Lists of lengths 1, 2, 3: Abstract into:
x u0 u1

n

x u0 u1 u2
n n

x u0 u1 u2 u3
n n n

x u0 u1
n

x r(x)

u0 u1
n n

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 82 / 92

Three valued logic heap abstraction Computation of transfer functions

Assignment: a simple case

Statement l0 : y = y -> n; l1 : . . . Pre-condition S x, y u0 u1 u2
n n .

Transfer function computation:
It should produce an over-approximation of {m1 ∈M | (l0,m0)→ (l1,m1)}
Encoding using “primed predicates” to denote predicates after the
evaluation of the assignment, to evaluate them in the same structure (non
primed variables are removed afterwards and primed variables renamed):

x′(u) = x(u)
y′(u) = ∃v , y(v) ∧ n(v , u)

n′(u, v) = n(u, v)

Result:

x

u0

y

u1 u2
n n

This is exactly the expected result

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 83 / 92

Three valued logic heap abstraction Computation of transfer functions

Assignment: a more involved case

Statement l0 : y = y -> n; l1 : . . . Pre-condition S

x, y r(x)

u0 u1
n n

.

Let us try to resolve the update in the same way as before:

x′(u) = x(u)
y′(u) = ∃v , y(v) ∧ n(v , u)

n′(u, v) = n(u, v)

We cannot resolve y′: {
y′(u0) = 0
y′(u1) = 1

2

Imprecision: after the statement, y may point to anywhere in the list, save
for the first element...

The assignment transfer function cannot be computed immediately
We need to refine the 3-structure first

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 84 / 92

Three valued logic heap abstraction Computation of transfer functions

Focus

Focusing on a formula
We assume a 3-structure S and a boolean formula f are given, we call a focusing
S on f the generation of a set Ŝ such that:

f evaluates to 0 or 1 on all elements of Ŝ
precision was gained: ∀S ′ ∈ Ŝ, S ′ v S
soundness is preserved: γ(S) =

⋃
{γ(S ′) | S ′ ∈ Ŝ}

Focusing algorithms are complex and tricky
Involves splitting of summary nodes, solving of boolean constraints

Example: focusing on
y′(u) = ∃v , y(v)

∧ n(v , u)
We obtain (we show y and y′):

x, y r(x), y′

u0 u1
n n

x, y r(x)

u0 u1
n

x, y r(x), y′

u0 u1
n n

x, y r(x), y′ r(x)

u0 u1 u2
n n

nn

n

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 85 / 92

Three valued logic heap abstraction Computation of transfer functions

Focus and coerce

Some of the 3-structures generated by focus are not precise

x, y r(x)

u0 u1
n

u1 is reachable from x, but there is no
sequence of n fields: this structure has
empty concretization

x, y r(x), y′ r(x)

u0 u1 u2
n n

nn

n

u0 has an n-field to u1 so u1
denotes a unique atom and
cannot be a summary node

Coerce operation
It enforces logical constraints among predicates and discards 3-structures with
an empty concretization

Result:
x, y r(x), y′

u0 u1
n

x, y r(x), y′ r(x)

u0 u1 u2
n n n

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 86 / 92

Three valued logic heap abstraction Computation of transfer functions

Focus, transfer, abstract...

Computation of a transfer function
We consider a transfer function encoded into boolean formula f

S]pre

Ŝpre Ŝpost

S]post

focus
coerce

f

can

Soundness proof steps:
1 sound encoding of the semantics of program statements into formulas

(typically, no loss of precision at this stage)
2 focusing produces a refined over-approximation (disjunction)
3 canonicalization over-approximates graphs (truth blurring)

A common picture in shape analysis

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 87 / 92

Conclusion

Outline

1 Memory models

2 Abstraction of arrays

3 Basic pointer analyses

4 Three valued logic heap abstraction

5 Conclusion

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 88 / 92

Conclusion

Summarization: one abstract cell, many concrete cells

Large / unbounded numbers of concrete cells need to be abstracted

Array blocks may have large number of elements
Dynamic memory allocation functions may be called an unbounded
number of times

Summary abstract cell
A summary abstract cell describes several concrete cells.
A summary abstract variable describes several concrete values.

Formalization based on a function mapping concrete cells into the
abstract cells that represent them:

φA : A→ A]

Analysis operations should reason on abstract states up-to φA

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 89 / 92

Conclusion

Updates: weak vs strong

Memory updates may be very imprecise

Several typical cases:
1 update to a cell that cannot be determined precisely

i.e., affecting an abstract cell among A] ⊆ A], where |A]| > 1
2 update to a summary cell

In those cases, the abstract update joins previous values and new values

Weak updates
The modified concrete cell cannot be mapped into a well identified
abstract cell
The resulting abstract information is obtained by joining the new value and
the old information

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 90 / 92

Conclusion

Concretize partially, update, abstract

Summaries can be refined locally for better precision

Array segment predicates can be split into predicates over smaller
segments for abstract transfer functions
The information over TVLA summary nodes can be refined using
disjunctions for the computation of abstract post-conditions

A scheme to compute more precise post-conditions

S]pre

Spre Spost

S]post

partially
concretize

f

abstract

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 91 / 92

Conclusion

Bibliography

[HP’08]: Discovering properties about arrays in simple programs.
Nicolas Halbwachs, Mathias Péron. In PLDI’08, pages 339-348, 2008.

[CCL’11]: A parametric segmentation functor for fully automatic and scalable
array content analysis.
Patrick Cousot, Radhia Cousot, Francesco Logozzo. In POPL’11, pages 105-118,
2011.

[AD’94]: Interprocedural may alias analysis for pointers: beyond k-limiting.
Alain Deutsch. In PLDI’94, pages 230–241, 1994.

[SRW’99]: Parametric Shape Analysis via 3-Valued Logic.
Shmuel Sagiv, Thomas W. Reps et Reinhard Wilhelm. In POPL’99, pages
105–118, 1999.

Xavier Rival (INRIA, ENS, CNRS) Memory abstraction Oct, 19th. 2016 92 / 92

	Memory models
	Towards memory properties
	Formalizing concrete memory states
	Treatment of errors
	Language semantics

	Abstraction of arrays
	A micro language for manipulating arrays
	Verifying safety of array operations
	Abstraction of array contents
	Abstraction of array properties

	Basic pointer analyses
	Three valued logic heap abstraction
	Building an abstract domain
	Weakening abstract elements
	Computation of transfer functions

	Conclusion

