Order Theory
 MPRI 2-6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

Year 2023-2024

Course 1
14 September 2023

- Partially ordered structures
- (complete) partial orders
- (complete) lattices
- Fixpoints
- Abstractions
- Galois connections, upper closure operators (first-class citizens)
- Concretization-only framework
- Operator abstraction
- Fixpoint abstraction

Partial orders

Partial orders

Given a set X, a relation $\sqsubseteq \in X \times X$ is a partial order if it is:
11 reflexive: $\forall x \in X, x \sqsubseteq x$
2 antisymmetric: $\forall x, y \in X,(x \sqsubseteq y) \wedge(y \sqsubseteq x) \Longrightarrow x=y$
3 transitive: $\forall x, y, z \in X,(x \sqsubseteq y) \wedge(y \sqsubseteq z) \Longrightarrow x \sqsubseteq z$
(X, \sqsubseteq) is a poset (partially ordered set).

If we drop antisymmetry, we have a preorder instead.

Examples: partial orders

Partial orders:

- (\mathbb{Z}, \leq)
(completely ordered)
- $(\mathcal{P}(X), \subseteq)$
(not completely ordered: $\{1\} \nsubseteq\{2\},\{2\} \nsubseteq\{1\}$)
- $(S,=)$ is a poset for any S
- $\left(\mathbb{Z}^{2}, \sqsubseteq\right)$, where $(a, b) \sqsubseteq\left(a^{\prime}, b^{\prime}\right) \Longleftrightarrow\left(a \geq a^{\prime}\right) \wedge\left(b \leq b^{\prime}\right)$
(ordering of interval bounds that implies inclusion)

Examples: preorders

Preorders:

$\square(\mathcal{P}(X), \sqsubseteq)$, where $a \sqsubseteq b \Longleftrightarrow|a| \leq|b|$
(ordered by cardinal)
■ $\left(\mathbb{Z}^{2}, \sqsubseteq\right)$, where $(a, b) \sqsubseteq\left(a^{\prime}, b^{\prime}\right) \Longleftrightarrow\{x \mid a \leq x \leq b\} \subseteq\left\{x \mid a^{\prime} \leq x \leq b^{\prime}\right\}$ (inclusion of intervals represented by pairs of bounds)
not antisymmetric: $[1,0] \neq[2,0]$ but $[1,0] \sqsubseteq[2,0] \sqsubseteq[1,0]$

Equivalence: \equiv

$$
X \equiv Y \Longleftrightarrow(X \sqsubseteq Y) \wedge(Y \sqsubseteq X)
$$

We obtain a partial order by quotienting by \equiv.

Examples of posets (cont.)

- Given by a Hasse diagram, e.g.:

Examples of posets (cont.)

■ Infinite Hasse diagram for $(\mathbb{N} \cup\{\infty\}, \leq)$:
∞

3

$$
\infty \sqsubseteq \infty
$$

1
$1 \sqsubseteq 1,2, \ldots, \infty$
$0 \sqsubseteq 0,1,2, \ldots, \infty$
0

Use of posets (informally)

Posets are a very useful notion to discuss:

- logic: formulas ordered by implication \Longrightarrow
- program verification: program semantics \sqsubseteq specification (e.g.: behaviors of program \subseteq accepted behaviors)
- approximation: \sqsubseteq is an information order ("a $\sqsubseteq b$ " means: "a caries more information than b")
- iteration: fixpoint computation
(e.g., a computation is directed, with a limit: $X_{1} \sqsubseteq X_{2} \sqsubseteq \cdots \sqsubseteq X_{n}$)

(Least) Upper bounds

- c is an upper bound of a and b if: $a \sqsubseteq c$ and $b \sqsubseteq c$

■ c is a least upper bound (lub or join) of a and b if

- c is an upper bound of a and b
- for every upper bound d of a and $b, c \sqsubseteq d$

(Least) Upper bounds

If it exists, the lub of a and b is unique, and denoted as $a \sqcup b$.
(proof: assume that c and d are both lubs of a and b; by definition of lubs, $c \sqsubseteq d$ and $d \sqsubseteq c$; by antisymmetry of $\sqsubseteq, c=d$)

Generalized to upper bounds of arbitrary (even infinite) sets $\sqcup Y, Y \subseteq X$ (well-defined, as \sqcup is commutative and associative).

Similarly, we define greatest lower bounds (glb, meet) $a \sqcap b, \sqcap Y$.
$(a \sqcap b \sqsubseteq a) \wedge(a \sqcap b \sqsubseteq b)$ and $\forall c,(c \sqsubseteq a) \wedge(c \sqsubseteq b) \Longrightarrow(c \sqsubseteq a \sqcap b)$

Note: not all posets have lubs, glbs
(e.g.: $a \sqcup b$ not defined on $(\{a, b\},=)$)

Chains

$C \subseteq X$ is a chain in (X, \sqsubseteq) if it is totally ordered by \sqsubseteq : $\forall x, y \in C,(x \sqsubseteq y) \vee(y \sqsubseteq x)$.

Complete partial orders (CPO)

A poset (X, \sqsubseteq) is a complete partial order (CPO)
if every chain C (including \emptyset) has a least upper bound $\sqcup C$.
A CPO has a least element $\sqcup \emptyset$, denoted \perp.
Examples, Counter-examples:

- (\mathbb{N}, \leq) is not complete, but $(\mathbb{N} \cup\{\infty\}, \leq)$ is complete.
- $(\{x \in \mathbb{Q} \mid 0 \leq x \leq 1\}, \leq)$ is not complete, but $(\{x \in \mathbb{R} \mid 0 \leq x \leq 1\}, \leq)$ is complete.
- $(\mathcal{P}(Y), \subseteq)$ is complete for any Y.
- (X, \sqsubseteq) is complete if X is finite.

Complete partial order examples

Lattices

Lattices

A lattice $(X, \sqsubseteq, \sqcup, \sqcap)$ is a poset with
11 a lub $a \sqcup b$ for every pair of elements a and b;
2 a glb $a \sqcap b$ for every pair of elements a and b.
Examples:

- integers $(\mathbb{Z}, \leq, \max , \min)$
- integer intervals (next slide)
- divisibility (in two slides)

If we drop one condition, we have a (join or meet) semilattice.
Reference on lattices: Birkhoff [Birk76].

Example: the interval lattice

Integer intervals: $(\{[a, b] \mid a, b \in \mathbb{Z}, a \leq b\} \cup\{\emptyset\}, \subseteq, \sqcup, \cap)$ where $[a, b] \sqcup\left[a^{\prime}, b^{\prime}\right] \stackrel{\text { def }}{=}\left[\min \left(a, a^{\prime}\right), \max \left(b, b^{\prime}\right)\right]$.

Example: the divisibility lattice

Divisibility $\left(\mathbb{N}^{*},|| c m,, g c d\right)$ where $x \mid y \stackrel{\text { def }}{\Longleftrightarrow} \exists k \in \mathbb{N}, k x=y$

Example: the divisibility lattice (cont.)

Let $P \stackrel{\text { def }}{=}\left\{p_{1}, p_{2}, \ldots\right\}$ be the (infinite) set of prime numbers.
We have a correspondence ι between \mathbb{N}^{*} and $P \rightarrow \mathbb{N}$:

- $\alpha=\iota(x)$ is the (unique) decomposition of x into prime factors
- $\iota^{-1}(\alpha) \stackrel{\text { def }}{=} \prod_{a \in P} a^{\alpha(a)}=x$
- ι is one-to-one on functions $P \rightarrow \mathbb{N}$ with finite support $(\alpha(a)=0$ except for finitely many factors $a)$

We have a correspondence between ($\left.\mathbb{N}^{*}, \mid, I c m, \operatorname{gcd}\right)$
and $(\mathbb{N}, \leq, \max , \min)$.
Assume that $\alpha=\iota(x)$ and $\beta=\iota(y)$ are the decompositions of x and y, then:
$-\prod_{a \in P} a^{\max (\alpha(a), \beta(a))}=\operatorname{lcm}\left(\prod_{a \in P} a^{\alpha(a)}, \prod_{a \in P} a^{\beta(a)}\right)=\operatorname{lcm}(x, y)$

- $\prod_{a \in P} a^{\min (\alpha(a), \beta(a))}=\operatorname{gcd}\left(\prod_{a \in P} a^{\alpha(a)}, \prod_{a \in P} a^{\beta(a)}\right)=\operatorname{gcd}(x, y)$
$■(\forall a: \alpha(a) \leq \beta(a)) \Longleftrightarrow\left(\prod_{a \in P} a^{\alpha(a)}\right)\left|\left(\prod_{a \in P} a^{\beta(a)}\right) \Longleftrightarrow x\right| y$

Complete lattices

A complete lattice ($X, \sqsubseteq, \sqcup, \sqcap, \perp, \top$) is a poset with
11 a lub $\sqcup S$ for every set $S \subseteq X$
『 a glb $\sqcap S$ for every set $S \subseteq X$
(3) a least element \perp

4 a greatest element T

Notes:

- 1 implies 2 as $\sqcap S=\sqcup\{y \mid \forall x \in S, y \sqsubseteq x\}$ (and 2 implies 1 as well),
■ 1 and 2 imply 3 and $4: \perp=\sqcup \emptyset=\sqcap X, \top=\sqcap \emptyset=\sqcup X$,
- a complete lattice is also a CPO.

Complete lattice examples

- real segment $[0,1]:(\{x \in \mathbb{R} \mid 0 \leq x \leq 1\}, \leq, \max , \min , 0,1)$
- powersets $(\mathcal{P}(S), \subseteq, \cup, \cap, \emptyset, S)$
(next slide)
- any finite lattice
($\sqcup Y$ and $\sqcap Y$ for finite $Y \subseteq X$ are always defined)
- integer intervals with finite and infinite bounds:
$(\{[a, b] \mid a \in \mathbb{Z} \cup\{-\infty\}, b \in \mathbb{Z} \cup\{+\infty\}, a \leq b\} \cup\{\emptyset\}$, $\subseteq, \sqcup, \cap, \emptyset,[-\infty,+\infty])$
with $\sqcup_{i \in I}\left[a_{i}, b_{i}\right] \stackrel{\text { def }}{=}\left[\min _{i \in I} a_{i}, \max _{i \in I} b_{i}\right]$.
(in two slides)

Example: the powerset complete lattice

$\underline{\text { Example: }} \quad(\mathcal{P}(\mathbb{Z}), \subseteq, \cup, \cap, \emptyset, \mathbb{Z})$

Example: the intervals complete lattice

The integer intervals with finite and infinite bounds:
$(\{[a, b] \mid a \in \mathbb{Z} \cup\{-\infty\}, b \in \mathbb{Z} \cup\{+\infty\}, a \leq b\} \cup\{\emptyset\}$, $\subseteq, \sqcup, \cap, \emptyset,[-\infty,+\infty])$

Derivation

Given a (complete) lattice or partial order ($X, \sqsubseteq, \sqcup, \sqcap, \perp, \top$) we can derive new (complete) lattices or partial orders by:

- duality

$$
(X, \sqsupseteq, \sqcap, \sqcup, \top, \perp)
$$

\square - is reversed
$\square \square$ and Π are switched
■ \perp and T are switched

- lifting (adding a smallest element)
$\left(X \cup\left\{\perp^{\prime}\right\}, \sqsubseteq^{\prime}, \sqcup^{\prime}, \sqcap^{\prime}, \perp^{\prime}, \top\right)$
$\square a \sqsubseteq^{\prime} b \Longleftrightarrow a=\perp^{\prime} \vee a \sqsubseteq b$
- $\perp^{\prime} \sqcup^{\prime} a=a \sqcup^{\prime} \perp^{\prime}=a$, and $a \sqcup^{\prime} b=a \sqcup b$ if $a, b \neq \perp^{\prime}$

■ $\perp^{\prime} \Pi^{\prime} a=a \Pi^{\prime} \perp^{\prime}=\perp^{\prime}$, and $a \Pi^{\prime} b=a \sqcap b$ if $a, b \neq \perp^{\prime}$

- \perp^{\prime} replaces \perp
- T is unchanged

Derivation (cont.)

Given (complete) lattices or partial orders:
$\left(X_{1}, \sqsubseteq_{1}, \sqcup_{1}, \sqcap_{1}, \perp_{1}, \top_{1}\right)$ and $\left(X_{2}, \sqsubseteq_{2}, \sqcup_{2}, \sqcap_{2}, \perp_{2}, \top_{2}\right)$
We can combine them by:

- product

$$
\begin{aligned}
& \left(X_{1} \times X_{2}, \sqsubseteq, \sqcup, \sqcap, \perp, \top\right) \text { where } \\
& \quad-(x, y) \sqsubseteq\left(x^{\prime}, y^{\prime}\right) \xlongequal{\Longleftrightarrow} x \sqsubseteq_{1} x^{\prime} \wedge y \sqsubseteq_{2} y^{\prime} \\
& ■(x, y) \sqcup\left(x^{\prime}, y^{\prime}\right) \stackrel{\text { def }}{=}\left(x \sqcup_{1} x^{\prime}, y \sqcup_{2} y^{\prime}\right) \\
& ■(x, y) \sqcap\left(x^{\prime}, y^{\prime}\right) \stackrel{\text { def }}{=}\left(x \sqcap_{1} x^{\prime}, y \Pi_{2} y^{\prime}\right) \\
& ■-\perp \stackrel{\text { def }}{=}\left(\perp_{1}, \perp_{2}\right) \\
& ■ \top \stackrel{\text { def }}{=}\left(T_{1}, T_{2}\right)
\end{aligned}
$$

- smashed product (coalescent product, merging \perp_{1} and \perp_{2}) $\left(\left(\left(X_{1} \backslash\left\{\perp_{1}\right\}\right) \times\left(X_{2} \backslash\left\{\perp_{2}\right\}\right)\right) \cup\{\perp\}, \sqsubseteq, \sqcup, \sqcap, \perp, \top\right)$
(as $X_{1} \times X_{2}$, but all elements of the form $\left(\perp_{1}, y\right)$ and $\left(x, \perp_{2}\right)$ are identified to a unique \perp element)

Derivation (cont.)

Given a (complete) lattice or partial order $(X, \sqsubseteq, \sqcup, \sqcap, \perp, \top)$ and a set S :

- point-wise lifting (functions from S to X) $\left(S \rightarrow X, \sqsubseteq^{\prime}, \sqcup^{\prime}, \sqcap^{\prime}, \perp^{\prime}, \top^{\prime}\right)$ where
- $x \sqsubseteq^{\prime} y \Longleftrightarrow \forall s \in S: x(s) \sqsubseteq y(s)$
- $\forall s \in S:\left(x \sqcup^{\prime} y\right)(s) \stackrel{\text { def }}{=} x(s) \sqcup y(s)$
- $\forall s \in S:\left(x \sqcap^{\prime} y\right)(s) \stackrel{\text { def }}{=} x(s) \sqcap y(s)$
- $\forall s \in S: \perp^{\prime}(s)=\perp$
- $\forall s \in S: \top^{\prime}(s)=\top$
- smashed point-wise lifting $\left((S \rightarrow(X \backslash\{\perp\})) \cup\left\{\perp^{\prime}\right\}, \sqsubseteq^{\prime}, \sqcup^{\prime}, \sqcap^{\prime}, \perp^{\prime}, \top^{\prime}\right)$
as $S \rightarrow X$, but identify to \perp^{\prime} any map x where $\exists s \in S: x(s)=\perp$ (e.g. map each program variable in S to an interval in X)

Distributivity

A lattice $(X, \sqsubseteq, \sqcup, \sqcap)$ is distributive if:
$\square a \sqcup(b \sqcap c)=(a \sqcup b) \sqcap(a \sqcup c)$ and

- $a \sqcap(b \sqcup c)=(a \sqcap b) \sqcup(a \sqcap c)$

Examples, Counter-examples:

- $(\mathcal{P}(X), \subseteq, \cup, \cap)$ is distributive
- intervals are not distributive
$([0,0] \sqcup[2,2]) \sqcap[1,1]=[0,2] \sqcap[1,1]=[1,1]$ but
$([0,0] \sqcap[1,1]) \sqcup([2,2] \sqcap[1,1])=\emptyset \sqcup \emptyset=\emptyset$
common cause of precision loss in static analyses:
merging abstract information early, at control-flow joins
vs. merging executions paths late, at the end of the program

Sublattice

Given a lattice $(X, \sqsubseteq, \sqcup, \sqcap)$ and $X^{\prime} \subseteq X$ ($X^{\prime}, \sqsubseteq, \sqcup, \sqcap$) is a sublattice of X if X^{\prime} is closed under \sqcup and \sqcap

Example, Counter-examples:

- if $Y \subseteq X,(\mathcal{P}(Y), \subseteq, \cup, \cap, \emptyset, Y)$ is a sublattice of $(\mathcal{P}(X), \subseteq, \cup, \cap, \emptyset, X)$

■ integer intervals are not a sublattice of $(\mathcal{P}(\mathbb{Z}), \subseteq, \cup, \cap, \emptyset, \mathbb{Z})$ $\left[\min \left(a, a^{\prime}\right), \max \left(b, b^{\prime}\right)\right] \neq[a, b] \cup\left[a^{\prime}, b^{\prime}\right]$
another common cause of precision loss in static analyses:
\sqcup cannot represent the exact union, and loses precision

Functions and Fixpoints

Functions

A function $f:\left(X_{1}, \sqsubseteq_{1}, \sqcup_{1}, \perp_{1}\right) \rightarrow\left(X_{2}, \sqsubseteq_{2}, \sqcup_{2}, \perp_{2}\right)$ is

- monotonic if

$$
\forall x, x^{\prime}, x \sqsubseteq_{1} x^{\prime} \Longrightarrow f(x) \sqsubseteq_{2} f\left(x^{\prime}\right)
$$

(aka: increasing, isotone, order-preserving, morphism)

- strict if $f\left(\perp_{1}\right)=\perp_{2}$
- continuous between CPO if $\forall C$ chain $\subseteq X_{1},\{f(c) \mid c \in C\}$ is a chain in X_{2} and $f\left(\sqcup_{1} C\right)=\sqcup_{2}\{f(c) \mid c \in C\}$
- a (complete) \sqcup-morphism between (complete) lattices if $\forall S \subseteq X_{1}, f\left(\sqcup_{1} S\right)=\sqcup_{2}\{f(s) \mid s \in S\}$

■ extensive if $X_{1}=X_{2}$ and $\forall x, x \sqsubseteq_{1} f(x)$

- reductive if $X_{1}=X_{2}$ and $\forall x, f(x) \sqsubseteq_{1} x$

Fixpoints

Given $f:(X, \sqsubseteq) \rightarrow(X, \sqsubseteq)$

- x is a fixpoint of f if $f(x)=x$
- x is a pre-fixpoint of f if $x \sqsubseteq f(x)$
- x is a post-fixpoint of f if $f(x) \sqsubseteq x$

We may have several fixpoints (or none)

- $\mathrm{fp}(f) \stackrel{\text { def }}{=}\{x \in X \mid f(x)=x\}$
- $\operatorname{Ifp} x_{x} f \stackrel{\text { def }}{=} \min _{\sqsubseteq}\{y \in \operatorname{fp}(f) \mid x \sqsubseteq y\}$ if it exists
(least fixpoint greater than x)
- $\operatorname{Ifp} f \stackrel{\text { def }}{=} \operatorname{Ifp}_{\perp} f$
(least fixpoint)
- dually: $\operatorname{gfp}_{x} f \stackrel{\text { def }}{=} \max _{\sqsubseteq}\{y \in \operatorname{fp}(f) \mid y \sqsubseteq x\}, \operatorname{gfp} f \stackrel{\text { def }}{=} \operatorname{gfp}_{T} f$ (greatest fixpoints)

Fixpoints: illustration

Fixpoints: example

Monotonic function with two distinct fixpoints

Fixpoints: example

Monotonic function with a unique fixpoint

Fixpoints: example

Non-monotonic function with no fixpoint

Uses of fixpoints: examples

- Express solutions of mutually recursive equation systems

Example:

The solutions of $\left\{\begin{array}{l}x_{1}=f\left(x_{1}, x_{2}\right) \\ x_{2}=g\left(x_{1}, x_{2}\right)\end{array}\right.$ with x_{1}, x_{2} in lattice X are exactly the fixpoint of \vec{F} in lattice $X \times X$, where $\vec{F}\binom{x_{1}}{,x_{2}}=\binom{f\left(x_{1}, x_{2}\right)}{g,\left(x_{1}, x_{2}\right)}$

The least solution of the system is Ifp \vec{F}.

Uses of fixpoints: examples

■ Close (complete) sets to satisfy a given property

Example:
$r \subseteq X \times X$ is transitive if:
$(a, b) \in r \wedge(b, c) \in r \Longrightarrow(a, c) \in r$
The transitive closure of r is the smallest transitive relation containing r.
Let $f(s)=r \cup\{(a, c) \mid(a, b) \in s \wedge(b, c) \in s\}$, then Ifp f :

- Ifp f contains r
- Ifp f is transitive
- Ifp f is minimal
$\Longrightarrow \operatorname{lfp} f$ is the transitive closure of r.

Tarski's fixpoint theorem

Tarski's theorem

If $f: X \rightarrow X$ is monotonic in a complete lattice X then $\mathrm{fp}(f)$ is a complete lattice.

Proved by Knaster and Tarski [Tars55].

Tarski's fixpoint theorem

Tarski's theorem

If $f: X \rightarrow X$ is monotonic in a complete lattice X then $\mathrm{fp}(f)$ is a complete lattice.

Proof:

We prove Ifp $f=\sqcap\{x \mid f(x) \sqsubseteq x\} \quad$ (meet of post-fixpoints).

Tarski's fixpoint theorem

Tarski's theorem

If $f: X \rightarrow X$ is monotonic in a complete lattice X then $\mathrm{fp}(f)$ is a complete lattice.

Proof:

We prove Ifp $f=\sqcap\{x \mid f(x) \sqsubseteq x\} \quad$ (meet of post-fixpoints). Let
$f^{*}=\{x \mid f(x) \sqsubseteq x\}$ and $a=\sqcap f^{*}$.
$\forall x \in f^{*}, a \sqsubseteq x \quad$ (by definition of Π)
so $f(a) \sqsubseteq f(x) \quad$ (as f is monotonic)
so $f(a) \sqsubseteq x \quad$ (as x is a post-fixpoint).
We deduce that $f(a) \sqsubseteq \sqcap f^{*}$, i.e. $f(a) \sqsubseteq a$.

Tarski's fixpoint theorem

Tarski's theorem

If $f: X \rightarrow X$ is monotonic in a complete lattice X then $f p(f)$ is a complete lattice.

Proof:

We prove Ifp $f=\sqcap\{x \mid f(x) \sqsubseteq x\} \quad$ (meet of post-fixpoints).
$f(a) \sqsubseteq a$
so $f(f(a)) \sqsubseteq f(a) \quad$ (as f is monotonic)
so $f(a) \in f^{*} \quad$ (by definition of f^{*})
so $a \sqsubseteq f(a)$.
We deduce that $f(a)=a$, so $a \in f p(f)$.
Note that $y \in f p(f)$ implies $y \in f^{*}$. As $a=\sqcap f^{*}, a \sqsubseteq y$, and we deduce $a=\operatorname{Ifp} f$.

Tarski's fixpoint theorem

Tarski's theorem

If $f: X \rightarrow X$ is monotonic in a complete lattice X then $f p(f)$ is a complete lattice.

Proof:

Given $S \subseteq \mathrm{fp}(f)$, we prove that $\operatorname{lfp}_{\sqcup S} f$ exists.
Consider $X^{\prime}=\{x \in X \mid \sqcup S \sqsubseteq x\}$. X^{\prime} is a complete lattice.
Moreover $\forall x^{\prime} \in X^{\prime}, f\left(x^{\prime}\right) \in X^{\prime}$.
f can be restricted to a monotonic function f^{\prime} on X^{\prime}.
We apply the preceding result, so that $\operatorname{lfp} f^{\prime}=\operatorname{lfp}_{\sqcup S} f$ exists.
By definition, $\operatorname{lfp}_{\sqcup S} f \in \mathrm{fp}(f)$ and is smaller than any fixpoint larger than all $s \in S$.

Tarski's fixpoint theorem

Tarski's theorem

If $f: X \rightarrow X$ is monotonic in a complete lattice X then $f p(f)$ is a complete lattice.

Proof:

By duality, we construct $\operatorname{gfp} f$ and $\operatorname{gfp}_{\square S} f$.
The complete lattice of fixpoints is: $\left(f p(f), \sqsubseteq, \lambda S\right.$.lfp $\left.{ }_{\sqcup S} f, \lambda S . \operatorname{gfp}_{\sqcap S} f, \operatorname{Ifp} f, \operatorname{gfp} f\right)$.

Not necessarily a sublattice of $(X, \sqsubseteq, \sqcup, \sqcap, \perp, \top)$!

Tarski's fixpoint theorem: example

Lattice: $(\{\mid \mathrm{ff}, \mathrm{fp} 1, \mathrm{fp} 2, \mathrm{pre}, \mathrm{gfp}\}, \sqcup, \sqcap, \mathrm{Ifp}, \mathrm{gfp})$
Fixpoint lattice: ($\left.\{\mathrm{Ifp}, \mathrm{fp} 1, \mathrm{fp} 2, \mathrm{gfp}\}, \sqcup^{\prime}, \Pi^{\prime}, \mathrm{Ifp}, \mathrm{gfp}\right)$
(not a sublattice as $\mathrm{fp} 1 \sqcup^{\prime} \mathrm{fp} 2=\mathrm{gfp}$ while $\mathrm{fp} 1 \sqcup \mathrm{fp} 2=$ pre,
but gfp is the smallest fixpoint greater than pre)

"Kleene" fixpoint theorem

[^0]
"Kleene" fixpoint theorem

"Kleene" fixpoint theorem

If $f: X \rightarrow X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\mathrm{Ifp}_{a} f$ exists.

We prove that $\left\{f^{n}(a) \mid n \in \mathbb{N}\right\}$ is a chain and $\operatorname{lfp}_{a} f=\sqcup\left\{f^{n}(a) \mid n \in \mathbb{N}\right\}$.

"Kleene" fixpoint theorem

> "Kleene" fixpoint theorem
> If $f: X \rightarrow X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\mathrm{Ifp}_{\mathrm{a}} f$ exists.

We prove that $\left\{f^{n}(a) \mid n \in \mathbb{N}\right\}$ is a chain and lfp $_{\mathrm{a}} f=\sqcup\left\{f^{n}(a) \mid n \in \mathbb{N}\right\}$.
$a \sqsubseteq f(a)$ by hypothesis.
$f(a) \sqsubseteq f(f(a))$ by monotony of f.
(Note that any continuous function is monotonic.
Indeed, $x \sqsubseteq y \Longrightarrow x \sqcup y=y \Longrightarrow f(x \sqcup y)=f(y)$;
by continuity $f(x) \sqcup f(y)=f(x \sqcup y)=f(y)$, which implies $f(x) \sqsubseteq f(y)$.)
By recurrence $\forall n, f^{n}(a) \sqsubseteq f^{n+1}(a)$.
Thus, $\left\{f^{n}(a) \mid n \in \mathbb{N}\right\}$ is a chain and $\sqcup\left\{f^{n}(a) \mid n \in \mathbb{N}\right\}$ exists.

"Kleene" fixpoint theorem

"Kleene" fixpoint theorem

If $f: X \rightarrow X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\mathrm{Ifp}_{a} f$ exists.

```
f(\sqcup{fn}(a)|n\in\mathbb{N}}
= \sqcup{ frn+1(a)|n\in\mathbb{N }) (by continuity)}
=a\sqcup(\sqcup{\mp@subsup{f}{}{n+1}(a)|n\in\mathbb{N}})\mathrm{ (as all f f+1}(a)\mathrm{ are greater than a)}
= \sqcup{\mp@subsup{f}{}{n}(a)|n\in\mathbb{N}}\mathrm{ .}
So, \sqcup{fn}(a)|n\in\mathbb{N}}\infp(f
```

Moreover, any fixpoint greater than a must also be greater than all $f^{n}(a), n \in \mathbb{N}$.
So, $\sqcup\left\{f^{n}(a) \mid n \in \mathbb{N}\right\}=\operatorname{Ifp}_{a} f$.

Well-ordered sets

(S, \sqsubseteq) is a well-ordered set if:
■ \sqsubseteq is a total order on S

- every $X \subseteq S$ such that $X \neq \emptyset$ has a least element $\sqcap X \in X$

Consequences:

- any element $x \in S$ has a successor $x+1 \stackrel{\text { def }}{=} \sqcap\{y \mid x \sqsubset y\}$ (except the greatest element, if it exists)
■ if $\nexists y, x=y+1, x$ is a limit and $x=\sqcup\{y \mid y \sqsubset x\}$ (every bounded subset $X \subseteq S$ has a lub $\sqcup X=\sqcap\{y \mid \forall x \in X, x \sqsubseteq y\}$)

Examples:

$\square(\mathbb{N}, \leq)$ and $(\mathbb{N} \cup\{\infty\}, \leq)$ are well-ordered
$■(\mathbb{Z}, \leq),(\mathbb{R}, \leq),\left(\mathbb{R}^{+}, \leq\right)$are not well-ordered

- ordinals $0,1,2, \ldots, \omega, \omega+1, \ldots$ are well-ordered (ω is a limit) well-ordered sets are ordinals up to order-isomorphism (i.e., bijective functions f such that f and f^{-1} are monotonic)

Constructive Tarski theorem by transfinite iterations

Given a function $f: X \rightarrow X$ and $a \in X$, the transfinite iterates of f from a are:

$$
\begin{cases}x_{0} \xlongequal{\text { def }} a & \\ x_{n} \xlongequal{\text { def }} f\left(x_{n-1}\right) & \text { if } n \text { is a successor ordinal } \\ x_{n} \stackrel{\text { def }}{=} \sqcup\left\{x_{m} \mid m<n\right\} & \text { if } n \text { is a limit ordinal }\end{cases}
$$

Constructive Tarski theorem
If $f: X \rightarrow X$ is monotonic in a CPO X and $a \sqsubseteq f(a)$, then Ifp ${ }_{a} f=x_{\delta}$ for some ordinal δ.

Generalisation of "Kleene" fixpoint theorem, from [Cous79].

Proof

f is monotonic in a CPO X,
$\left\{\begin{array}{l}x_{0} \xlongequal{\text { def }} a \sqsubseteq f(a) \\ x_{n} \stackrel{\text { def }}{=} f\left(x_{n-1}\right)\end{array}\right.$
if n is a successor ordinal
$x_{n} \stackrel{\text { def }}{=} \sqcup\left\{x_{m} \mid m<n\right\} \quad$ if n is a limit ordinal

Proof:

We prove that $\exists \delta, x_{\delta}=x_{\delta+1}$.
We note that $m \leq n \Longrightarrow x_{m} \sqsubseteq x_{n}$.
Assume by contradiction that $\nexists \delta, x_{\delta}=x_{\delta+1}$.
If n is a successor ordinal, then $x_{n-1} \sqsubset x_{n}$.
If n is a limit ordinal, then $\forall m<n, x_{m} \sqsubset x_{n}$.
Thus, all the x_{n} are distinct.
By choosing $n>|X|$, we arrive at a contradiction.
Thus δ exists.

Proof

f is monotonic in a CPO X,
$\left\{\begin{array}{l}x_{0} \stackrel{\text { def }}{=} a \sqsubseteq f(a) \\ x_{n} \stackrel{\text { def }}{=} f\left(x_{n-1}\right)\end{array}\right.$
if n is a successor ordinal
$x_{n} \stackrel{\text { def }}{=} \sqcup\left\{x_{m} \mid m<n\right\} \quad$ if n is a limit ordinal
Proof:
Given δ such that $x_{\delta+1}=x_{\delta}$, we prove that $x_{\delta}=\operatorname{Ifp}_{a} f$.
$f\left(x_{\delta}\right)=x_{\delta+1}=x_{\delta}$, so $x_{\delta} \in \mathfrak{f p}(f)$.
Given any $y \in \operatorname{fp}(f), y \sqsupseteq a$, we prove by transfinite induction that $\forall n, x_{n} \sqsubseteq y$.
By definition $x_{0}=a \sqsubseteq y$.
If n is a successor ordinal, by monotony,
$x_{n-1} \sqsubseteq y \Longrightarrow f\left(x_{n-1}\right) \sqsubseteq f(y)$, i.e., $x_{n} \sqsubseteq y$.
If n is a limit ordinal, $\forall m<n, x_{m} \sqsubseteq y$ implies
$x_{n}=\sqcup\left\{x_{m} \mid m<n\right\} \sqsubseteq y$.
Hence, $x_{\delta} \sqsubseteq y$ and $x_{\delta}=\operatorname{lfp}_{\mathrm{a}} f$.

Ascending chain condition (ACC)

An ascending chain C in (X, \sqsubseteq) is a sequence $c_{i} \in X$ such that $i \leq j \Longrightarrow c_{i} \sqsubseteq c_{j}$.

A poset (X, \sqsubseteq) satisfies the ascending chain condition (ACC) iff for every ascending chain $C, \exists i \in \mathbb{N}, \forall j \geq i, c_{i}=c_{j}$.
Similarly, we can define the descending chain condition (DCC).
Examples:

- the powerset poset $(\mathcal{P}(X), \subseteq)$ is ACC when X is finite

■ the pointed integer poset $(\mathbb{Z} \cup\{\perp\}$, $\sqsubseteq)$ where $x \sqsubseteq y \Longleftrightarrow x=\perp \vee x=y$ is ACC and DCC

- the divisibility poset $\left(\mathbb{N}^{*}, \mid\right)$ is DCC but not ACC.

Kleene fixpoints in ACC posets

"Kleene" finite fixpoint theorem

If $f: X \rightarrow X$ is monotonic in an ACC poset X and $a \sqsubseteq f(a)$ then $\operatorname{lfp}_{\mathrm{a}} f$ exists.

Proof:

We prove $\exists n \in \mathbb{N}, \operatorname{lfp}_{a} f=f^{n}(a)$.
By monotony of f, the sequence $x_{n}=f^{n}(a)$ is an increasing chain.
By definition of ACC, $\exists n \in \mathbb{N}, x_{n}=x_{n+1}=f\left(x_{n}\right)$.
Thus, $x_{n} \in \mathrm{fp}(f)$.
Obviously, $a=x_{0} \sqsubseteq f\left(x_{n}\right)$.
Moreover, if $y \in \mathrm{fp}(f)$ and $y \sqsupseteq a$, then $\forall i, y \sqsupseteq f^{i}(a)=x_{i}$.
Hence, $y \sqsupseteq x_{n}$ and $x_{n}=\operatorname{Ifp}_{a}(f)$.

Comparison of fixpoint theorems

theorem	function	domain	fixpoint	method
Tarski	monotonic	complete lattice	$\mathrm{fp}(f)$	meet of post-fixpoints
Kleene	continuous	CPO	Ifp $_{a}(f)$	countable iterations
constructive Tarski	monotonic	CPO	Ifp $_{a}(f)$	transfinite iteration
ACC Kleene	monotonic	poset	Ifp $_{a}(f)$	finite iteration

Galois connections

Galois connections

Given two posets (C, \leq) and (A, \sqsubseteq), the pair $(\alpha: C \rightarrow A, \gamma: A \rightarrow C)$ is a Galois connection iff:

$$
\forall a \in A, c \in C, \alpha(c) \sqsubseteq a \Longleftrightarrow c \leq \gamma(a)
$$

which is noted $(C, \leq) \underset{\alpha}{\stackrel{\gamma}{\hookrightarrow}}(A, \sqsubseteq)$.

- α is the upper adjoint or abstraction; A is the abstract domain.
- γ is the lower adjoint or concretization; C is the concrete domain.

Galois connection example

Abstract domain of intervals of integers \mathbb{Z} represented as pairs of bounds (a, b).
We have: $(\mathcal{P}(\mathbb{Z}), \subseteq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(I, \sqsubseteq)$
$■ I \stackrel{\text { def }}{=}(\mathbb{Z} \cup\{-\infty\}) \times(\mathbb{Z} \cup\{+\infty\})$
$\square(a, b) \sqsubseteq\left(a^{\prime}, b^{\prime}\right) \Longleftrightarrow\left(a \geq a^{\prime}\right) \wedge\left(b \leq b^{\prime}\right)$

- $\gamma(a, b) \stackrel{\text { def }}{=}\{x \in \mathbb{Z} \mid a \leq x \leq b\}$
$-\alpha(X) \stackrel{\text { def }}{=}(\min X, \max X)$
proof:

Galois connection example

Abstract domain of intervals of integers \mathbb{Z} represented as pairs of bounds (a, b).
We have: $(\mathcal{P}(\mathbb{Z}), \subseteq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(I, \sqsubseteq)$
$\square I \stackrel{\text { def }}{=}(\mathbb{Z} \cup\{-\infty\}) \times(\mathbb{Z} \cup\{+\infty\})$
$\square(a, b) \sqsubseteq\left(a^{\prime}, b^{\prime}\right) \Longleftrightarrow\left(a \geq a^{\prime}\right) \wedge\left(b \leq b^{\prime}\right)$

- $\gamma(a, b) \stackrel{\text { def }}{=}\{x \in \mathbb{Z} \mid a \leq x \leq b\}$
- $\alpha(X) \stackrel{\text { def }}{=}(\min X, \max X)$

```
proof:
    \alpha(X)\sqsubseteq(a,b)
    \Longleftrightarrowmin X\geqa^max X\leqb
    \Longleftrightarrow\forallx\inX:a\leqx\leqb
```



```
    \Longleftrightarrow\forallx\inX:x\in\gamma(a,b)
    \LongleftrightarrowX\subseteq\gamma(a,b)
```


Properties of Galois connections

Assuming $\forall a, c, \alpha(c) \sqsubseteq a \Longleftrightarrow c \leq \gamma(a)$, we have:
$1 \gamma \circ \alpha$ is extensive: $\forall c, c \leq \gamma(\alpha(c))$ proof: $\alpha(c) \sqsubseteq \alpha(c) \Longrightarrow c \leq \gamma(\alpha(c))$

Z $\alpha \circ \gamma$ is reductive: $\forall a, \alpha(\gamma(a)) \sqsubseteq a$
(3) α is monotonic proof: $c \leq c^{\prime} \Longrightarrow c \leq \gamma\left(\alpha\left(c^{\prime}\right)\right) \Longrightarrow \alpha(c) \sqsubseteq \alpha\left(c^{\prime}\right)$
4γ is monotonic
[5 $\gamma \circ \alpha \circ \gamma=\gamma$ proof: $\alpha(\gamma(a)) \sqsubseteq \alpha(\gamma(a)) \Longrightarrow \gamma(a) \leq \gamma(\alpha(\gamma(a)))$ and $a \sqsupseteq \alpha(\gamma(a)) \Longrightarrow \gamma(a) \geq \gamma(\alpha(\gamma(a)))$

6 $\alpha \circ \gamma \circ \alpha=\alpha$
$7 \alpha \circ \gamma$ is idempotent: $\alpha \circ \gamma \circ \alpha \circ \gamma=\alpha \circ \gamma$
$8 \gamma \circ \alpha$ is idempotent

Alternate characterization

If the pair $(\alpha: C \rightarrow A, \gamma: A \rightarrow C)$ satisfies:
11γ is monotonic

- α is monotonic

3 $\gamma \circ \alpha$ is extensive
4 $\alpha \circ \gamma$ is reductive
then (α, γ) is a Galois connection.
(proof left as exercise)

Uniqueness of the adjoint

Given $(C, \leq) \underset{\alpha}{\stackrel{\gamma}{\hookrightarrow}}(A, \sqsubseteq)$,
each adjoint can be uniquely defined in term of the other:
$\| \alpha(c)=\sqcap\{a \mid c \leq \gamma(a)\}$
(2 $\gamma(a)=\vee\{c \mid \alpha(c) \sqsubseteq a\}$
Proof: of 1
$\forall a, c \leq \gamma(a) \Longrightarrow \alpha(c) \sqsubseteq a$.
Hence, $\alpha(c)$ is a lower bound of $\{a \mid c \leq \gamma(a)\}$.
Assume that a^{\prime} is another lower bound.
Then, $\forall a, c \leq \gamma(a) \Longrightarrow a^{\prime} \sqsubseteq a$.
By Galois connection, we have then $\forall a, \alpha(c) \sqsubseteq a \Longrightarrow a^{\prime} \sqsubseteq a$.
This implies $a^{\prime} \sqsubseteq \alpha(c)$.
Hence, the greatest lower bound of $\{a \mid c \leq \gamma(a)\}$ exists, and equals $\alpha(c)$.

The proof of 2 is similar (by duality).

Properties of Galois connections (cont.)

If ($\alpha: C \rightarrow A, \gamma: A \rightarrow C$), then:
$1 \forall X \subseteq C$, if $\vee X$ exists, then $\alpha(\vee X)=\sqcup\{\alpha(x) \mid x \in X\}$
$\forall X \subseteq A$, if $\sqcap X$ exists, then $\gamma(\sqcap X)=\wedge\{\gamma(x) \mid x \in X\}$
Proof: of 1
By definition of lubs, $\forall x \in X, x \leq \vee X$.
By monotony, $\forall x \in X, \alpha(x) \sqsubseteq \overline{\alpha(}(\vee X)$.
Hence, $\alpha(\vee X)$ is an upper bound of $\{\alpha(x) \mid x \in X\}$.
Assume that y is another upper bound of $\{\alpha(x) \mid x \in X\}$.
Then, $\forall x \in X, \alpha(x) \sqsubseteq y$.
By Galois connection $\forall x \in X, x \leq \gamma(y)$.
By definition of lubs, $\vee X \leq \gamma(y)$.
By Galois connection, $\alpha(\vee X) \sqsubseteq y$.
Hence, $\{\alpha(x) \mid x \in X\}$ has a lub, which equals $\alpha(\vee X)$.
The proof of 2 is similar (by duality).

Deriving Galois connections

Given $(C, \leq) \underset{\alpha}{\stackrel{\gamma}{\leftrightharpoons}}(A, \sqsubseteq)$, we have:

- duality: $(A, \sqsupseteq) \underset{\gamma}{\stackrel{\alpha}{\leftrightarrows}}(C, \geq)$

$$
(\alpha(c) \sqsubseteq a \Longleftrightarrow c \leq \gamma(a) \text { is exactly } \gamma(a) \geq c \Longleftrightarrow a \sqsupseteq \alpha(c))
$$

- point-wise lifting by some set $S:(S \rightarrow C, \dot{\leq}) \underset{\dot{\alpha}}{\stackrel{\dot{\gamma}}{\leftrightarrows}}(S \rightarrow A, \dot{\sqsubseteq})$ where

$$
\begin{aligned}
& f \dot{\leq} f^{\prime} \Longleftrightarrow \forall \Delta, f(s) \leq f^{\prime}(s), \quad(\dot{\gamma}(f))(s)=\gamma(f(s)), \\
& f \dot{\sqsubseteq} f^{\prime} \Longleftrightarrow \Longleftrightarrow \forall s, f(s) \sqsubseteq f^{\prime}(s), \quad(\dot{\alpha}(f))(s)=\alpha(f(s)) .
\end{aligned}
$$

Given $\left(X_{1}, \sqsubseteq_{1}\right) \underset{\alpha_{1}}{\stackrel{\gamma_{1}}{\leftrightarrows}}\left(X_{2}, \sqsubseteq_{2}\right) \underset{\alpha_{2}}{\stackrel{\gamma_{2}}{\leftrightarrows}}\left(X_{3}, \sqsubseteq_{3}\right)$:

- composition: $\left(X_{1}, \sqsubseteq_{1}\right) \underset{\alpha_{2} \circ \alpha_{1}}{\stackrel{\gamma_{1} \circ \gamma_{2}}{\leftrightarrows}}\left(X_{3}, \sqsubseteq_{3}\right)$

$$
\left(\left(\alpha_{2} \circ \alpha_{1}\right)(c) \sqsubseteq_{3} a \Longleftrightarrow \alpha_{1}(c) \sqsubseteq_{2} \gamma_{2}(a) \Longleftrightarrow c \sqsubseteq_{1}\left(\gamma_{1} \circ \gamma_{2}\right)(a)\right)
$$

Galois embeddings

If $(C, \leq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(A, \sqsubseteq)$, the following properties are equivalent:
1α is surjective

$$
\begin{array}{r}
(\forall a \in A, \exists c \in C, \alpha(c)=a) \\
\left(\forall a, a^{\prime} \in A, \gamma(a)=\gamma\left(a^{\prime}\right) \Longrightarrow a=a^{\prime}\right) \\
(\forall a \in A, i d(a)=a)
\end{array}
$$

2 γ is injective

Such (α, γ) is called a Galois embedding, which is noted $(C, \leq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(A, \sqsubseteq)$ Proof:

Galois embeddings

If $(C, \leq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(A, \sqsubseteq)$, the following properties are equivalent:
1α is surjective

$$
\begin{array}{r}
(\forall a \in A, \exists c \in C, \alpha(c)=a) \\
\left(\forall a, a^{\prime} \in A, \gamma(a)=\gamma\left(a^{\prime}\right) \Longrightarrow a=a^{\prime}\right) \\
(\forall a \in A, i d(a)=a)
\end{array}
$$

Such (α, γ) is called a Galois embedding, which is noted $(C, \leq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(A, \sqsubseteq)$

Proof: $1 \Longrightarrow 2$
Assume that $\gamma(a)=\gamma\left(a^{\prime}\right)$.
By surjectivity, take c, c^{\prime} such that $a=\alpha(c), a^{\prime}=\alpha\left(c^{\prime}\right)$.
Then $\gamma(\alpha(c))=\gamma\left(\alpha\left(c^{\prime}\right)\right)$.
And $\alpha(\gamma(\alpha(c)))=\alpha\left(\gamma\left(\alpha\left(c^{\prime}\right)\right)\right)$.
As $\alpha \circ \gamma \circ \alpha=\alpha, \alpha(c)=\alpha\left(c^{\prime}\right)$.
Hence $a=a^{\prime}$.

Galois embeddings

If $(C, \leq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(A, \sqsubseteq)$, the following properties are equivalent:
1α is surjective

$$
\begin{array}{r}
(\forall a \in A, \exists c \in C, \alpha(c)=a) \\
\left(\forall a, a^{\prime} \in A, \gamma(a)=\gamma\left(a^{\prime}\right) \Longrightarrow a=a^{\prime}\right) \\
(\forall a \in A, i d(a)=a)
\end{array}
$$

2 γ is injective

Such (α, γ) is called a Galois embedding, which is noted $(C, \leq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(A, \sqsubseteq)$

Proof: $2 \Longrightarrow 3$
Given $a \in A$, we know that $\gamma(\alpha(\gamma(a)))=\gamma(a)$.
By injectivity of $\gamma, \alpha(\gamma(a))=a$.

Galois embeddings

If $(C, \leq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(A, \sqsubseteq)$, the following properties are equivalent:
1α is surjective

$$
\begin{array}{r}
(\forall a \in A, \exists c \in C, \alpha(c)=a) \\
\left(\forall a, a^{\prime} \in A, \gamma(a)=\gamma\left(a^{\prime}\right) \Longrightarrow a=a^{\prime}\right) \\
(\forall a \in A, i d(a)=a)
\end{array}
$$

Such (α, γ) is called a Galois embedding, which is noted $(C, \leq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(A, \sqsubseteq)$

Proof: $3 \Longrightarrow 1$
Given $a \in A$, we have $\alpha(\gamma(a))=a$.
Hence, $\exists c \in C, \alpha(c)=a$, using $c=\gamma(a)$.

Galois embeddings (cont.)

$$
(C, \leq) \underset{\alpha}{\stackrel{\gamma}{\Longrightarrow}}(A, \sqsubseteq)
$$

A Galois connection can be made into an embedding by quotienting A by the equivalence relation $a \equiv a^{\prime} \Longleftrightarrow \gamma(a)=\gamma\left(a^{\prime}\right)$.

Galois embedding example

Abstract domain of intervals of integers \mathbb{Z} represented as pairs of ordered bounds (a, b) or \perp.
We have: $(\mathcal{P}(\mathbb{Z}), \subseteq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(I, \sqsubseteq)$
$■ I \stackrel{\text { def }}{=}\{(a, b) \mid a \in \mathbb{Z} \cup\{-\infty\}, b \in \mathbb{Z} \cup\{+\infty\}, a \leq b\} \cup\{\perp\}$

- $(a, b) \sqsubseteq\left(a^{\prime}, b^{\prime}\right) \Longleftrightarrow\left(a \geq a^{\prime}\right) \wedge\left(b \leq b^{\prime}\right), \quad \forall x: \perp \sqsubseteq x$
- $\gamma(a, b) \stackrel{\text { def }}{=}\{x \in \mathbb{Z} \mid a \leq x \leq b\}, \quad \gamma(\perp)=\emptyset$
$-\alpha(X) \stackrel{\text { def }}{=}(\min X, \max X)$, or \perp if $X=\emptyset$
proof:

Galois embedding example

Abstract domain of intervals of integers \mathbb{Z} represented as pairs of ordered bounds (a, b) or \perp.
We have: $(\mathcal{P}(\mathbb{Z}), \subseteq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(I, \sqsubseteq)$
■I $\xlongequal{\text { def }}\{(a, b) \mid a \in \mathbb{Z} \cup\{-\infty\}, b \in \mathbb{Z} \cup\{+\infty\}, a \leq b\} \cup\{\perp\}$

- $(a, b) \sqsubseteq\left(a^{\prime}, b^{\prime}\right) \Longleftrightarrow\left(a \geq a^{\prime}\right) \wedge\left(b \leq b^{\prime}\right), \quad \forall x: \perp \sqsubseteq x$
- $\gamma(a, b) \stackrel{\text { def }}{=}\{x \in \mathbb{Z} \mid a \leq x \leq b\}, \quad \gamma(\perp)=\emptyset$
$-\alpha(X) \stackrel{\text { def }}{=}(\min X, \max X)$, or \perp if $X=\emptyset$
proof:
Quotient of the "pair of bounds" domain $(\mathbb{Z} \cup\{-\infty\}) \times(\mathbb{Z} \cup\{+\infty\})$ by the relation $(a, b) \equiv\left(a^{\prime}, b^{\prime}\right) \Longleftrightarrow \gamma(a, b)=\gamma\left(a^{\prime}, b^{\prime}\right)$
i.e., $\left(a \leq b \wedge a=a^{\prime} \wedge b=b^{\prime}\right) \vee\left(a>b \wedge a^{\prime}>b^{\prime}\right)$.

Upper closures

$\rho: X \rightarrow X$ is an upper closure in the poset (X, \sqsubseteq) if it is:
\llbracket monotonic: $x \sqsubseteq x^{\prime} \Longrightarrow \rho(x) \sqsubseteq \rho\left(x^{\prime}\right)$,
$\boxed{2}$ extensive: $x \sqsubseteq \rho(x)$, and
3 idempotent: $\rho \circ \rho=\rho$.

Upper closures and Galois connections

Given $(C, \leq) \underset{\alpha}{\stackrel{\gamma}{\longleftrightarrow}}(A, \sqsubseteq)$,
$\gamma \circ \alpha$ is an upper closure on (C, \leq).
Given an upper closure ρ on (X, \sqsubseteq), we have a Galois embedding: $(X, \sqsubseteq) \underset{\rho}{\stackrel{\text { id }}{\leftrightarrows}}(\rho(X), \sqsubseteq)$
\Longrightarrow we can rephrase abstract interpretation using upper closures instead of Galois connections, but we lose:

- the notion of abstract representation
(a data-structure A representing elements in $\rho(X)$)
- the ability to have several distinct abstract representations for a single concrete object
(non-necessarily injective γ versus id)

Operator approximations

Abstractions in the concretization framework

Given a concrete (C, \leq) and an abstract (A, \sqsubseteq) poset and a monotonic concretization $\gamma: A \rightarrow C$
($\gamma(a)$ is the "meaning" of a in C; we use intervals in our examples)

- $a \in A$ is a sound abstraction of $c \in C$ if $c \leq \gamma(a)$.
(e.g.: $[0,10]$ is a sound abstraction of $\{0,1,2,5\}$ in the integer interval domain)
- $g: A \rightarrow A$ is a sound abstraction of $f: C \rightarrow C$ if $\forall a \in A:(f \circ \gamma)(a) \leq(\gamma \circ g)(a)$.
(e.g.: $\lambda([a, b] .[-\infty,+\infty]$ is a sound abstraction of $\lambda X .\{x+1 \mid x \in X\}$ in the interval domain)

■ $g: A \rightarrow A$ is an exact abstraction of $f: C \rightarrow C$ if $f \circ \gamma=\gamma \circ g$.
(e.g.: $\lambda([a, b] \cdot[a+1, b+1]$ is an exact abstraction of $\lambda X .\{x+1 \mid x \in X\}$ in the interval domain)

Abstractions in the Galois connection framework

Assume now that $(C, \leq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(A, \sqsubseteq)$.

- sound abstractions
$■ c \leq \gamma(a)$ is equivalent to $\alpha(c) \sqsubseteq a$.
$\square(f \circ \gamma)(a) \leq(\gamma \circ g)(a)$ is equivalent to $(\alpha \circ f \circ \gamma)(a) \sqsubseteq g(a)$.
- Given $c \in C$, its best abstraction is $\alpha(c)$.
(proof: recall that $\alpha(c)=\sqcap\{a \mid c \leq \gamma(a)\}$, so, $\alpha(c)$ is the smallest sound abstraction of c) (e.g.: $\alpha(\{0,1,2,5\})=[0,5]$ in the interval domain)

■ Given $f: C \rightarrow C$, its best abstraction is $\alpha \circ f \circ \gamma$
(proof: g sound $\Longleftrightarrow \forall a,(\alpha \circ f \circ \gamma)(a) \sqsubseteq g(a)$, so $\alpha \circ f \circ \gamma$ is the smallest sound abstraction of f) (e.g.: $g([a, b])=[2 a, 2 b]$ is the best abstraction in the interval domain of $f(X)=\{2 x \mid x \in X\}$; it is not an exact abstraction as $\gamma(g([0,1]))=\{0,1,2\} \supsetneq\{0,2\}=f(\gamma([0,1]))$

Composition of sound, best, and exact abstractions

If g and g^{\prime} soundly abstract respectively f and f^{\prime} then:

- if f is monotonic, then $g \circ g^{\prime}$ is a sound abstraction of $f \circ f^{\prime}$, (proof: $\left.\forall a,\left(f \circ f^{\prime} \circ \gamma\right)(a) \leq\left(f \circ \gamma \circ g^{\prime}\right)(a) \leq\left(\gamma \circ g \circ g^{\prime}\right)(a)\right)$
- if g, g^{\prime} are exact abstractions of f and f^{\prime}, then $g \circ g^{\prime}$ is an exact abstraction, (proof: $f \circ f^{\prime} \circ \gamma=f \circ \gamma \circ g^{\prime}=\gamma \circ g \circ g^{\prime}$)
- if g and g^{\prime} are the best abstractions of f and f^{\prime}, then $g \circ g^{\prime}$ is not always the best abstraction!
(e.g.: $g([a, b])=[a, \min (b, 1)]$ and $g^{\prime}([a, b])=[2 a, 2 b]$ are the best abstractions of $f(X)=\{x \in X \mid x \leq 1\}$ and $f^{\prime}(X)=\{2 x \mid x \in X\}$ in the interval domain, but $g \circ g^{\prime}$ is not the best abstraction of $f \circ f^{\prime}$ as $\left(g \circ g^{\prime}\right)([0,1])=[0,1]$ while $\left.\left(\alpha \circ f \circ f^{\prime} \circ \gamma\right)([0,1])=[0,0]\right)$

Fixpoint approximations

Fixpoint transfer

If we have:

- a Galois connection $(C, \leq) \underset{\alpha}{\stackrel{\gamma}{\longleftrightarrow}}(A, \sqsubseteq)$ between CPOs
- monotonic concrete and abstract functions

$$
f: C \rightarrow C, f^{\sharp}: A \rightarrow A
$$

- a commutation condition $\alpha \circ f=f \sharp \circ \alpha$
- an element a and its abstraction $a^{\sharp}=\alpha(a)$
then $\alpha\left(I \mathrm{fp}_{a} f\right)=\mid \mathrm{Ifp}_{a^{\sharp}} f^{\sharp}$.

Fixpoint transfer (proof)

Proof:

By the constructive Tarski theorem, Ifp ${ }_{a} f$ is the limit of transfinite iterations: $a_{0} \stackrel{\text { def }}{=} a, a_{n+1} \stackrel{\text { def }}{=} f\left(a_{n}\right)$, and $a_{n} \stackrel{\text { def }}{=} \bigvee\left\{a_{m} \mid m<n\right\}$ for limit ordinals n.
Likewise, $\operatorname{Ifp} a_{a^{\sharp}} f^{\sharp}$ is the limit of a transfinite iteration $a_{n}^{\#}$.
We prove by transfinite induction that $a_{n}^{\sharp}=\alpha\left(a_{n}\right)$ for all ordinals n :

- $a_{0}^{\#}=\alpha\left(a_{0}\right)$, by definition;
- $a_{n+1}^{\sharp}=f^{\sharp}\left(a_{n}^{\sharp}\right)=f^{\sharp}\left(\alpha\left(a_{n}\right)\right)=\alpha\left(f\left(a_{n}\right)\right)=\alpha\left(a_{n+1}\right)$ for successor ordinals, by commutation;
- $a_{n}^{\sharp}=\bigsqcup\left\{a_{m}^{\sharp} \mid m<n\right\}=\bigsqcup\left\{\alpha\left(a_{m}\right) \mid m<n\right\}=\alpha\left(\bigvee\left\{a_{m} \mid m<n\right\}\right)=\alpha\left(a_{n}\right)$ for limit ordinals, because α is always continuous in Galois connections.

Hence, $\operatorname{Ifp}_{a \sharp} f^{\sharp}=\alpha\left(\operatorname{Ifp}_{a} f\right)$.

Fixpoint approximation

If we have:

- a complete lattice ($C, \leq, \vee, \wedge, \perp, \top$)
- a monotonic concrete function f
- a sound abstraction $f^{\sharp}: A \rightarrow A$ of f $\left(\forall x^{\sharp}:(f \circ \gamma)\left(x^{\sharp}\right) \leq\left(\gamma \circ f^{\sharp}\right)\left(x^{\sharp}\right)\right)$
- a post-fixpoint a^{\sharp} of $f^{\sharp} \quad\left(f^{\sharp}\left(a^{\sharp}\right) \sqsubseteq a^{\sharp}\right)$
then a^{\sharp} is a sound abstraction of Ifp f : Ifp $f \leq \gamma\left(a^{\sharp}\right)$.
Proof:
By definition, $f^{\sharp}\left(a^{\sharp}\right) \sqsubseteq a^{\sharp}$.
By monotony, $\gamma\left(f^{\sharp}\left(a^{\#}\right)\right) \leq \gamma\left(a^{\sharp}\right)$.
By soundness, $f\left(\gamma\left(a^{\sharp}\right)\right) \leq \gamma\left(a^{\sharp}\right)$.
By Tarski's theorem Ifp $f=\wedge\{x \mid f(x) \leq x\}$.
Hence, Ifp $f \leq \gamma\left(a^{\sharp}\right)$.
Other fixpoint transfer / approximation theorems can be constructed...

Bibliography

Bibliography

[Birk76] G. Birkhoff. Lattice theory. In AMS Colloquium Pub. 25, 3rd ed., 1976.
[Cous78] P. Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. In Thèse És Sc. Math., U. Joseph Fourier, Grenoble, 1978.
[Cous79] P. Cousot \& R. Cousot. Constructive versions of Tarski's fixed point theorems. In Pacific J. of Math., 82(1):43-57, 1979.
[Cous92] P. Cousot \& R. Cousot. Abstract interpretation frameworks. In J. of Logic and Comp., 2(4):511—547, 1992.
[Klee52] S. C. Kleene. Introduction to metamathematics. In North-Holland Pub. Co., 1952.
[Tars55] A. Tarski. A lattice theoretical fixpoint theorem and its applications. In Pacific J. of Math., 5:285-310, 1955.

[^0]: "Kleene" fixpoint theorem
 If $f: X \rightarrow X$ is continuous in a CPO X and $a \sqsubseteq f(a)$ then $\operatorname{lfp}_{\mathrm{a}} f$ exists.

 Inspired by Kleene [Klee52].

