Program Semantics and Properties

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

Year 2023-2024

Course 2 21 September 2023

Programs and executions

Language syntax

```
^{\ell}stat^{\ell} ::= ^{\ell}X \leftarrow \exp^{\ell}
                                                                                                      (assignment)
                         ^{\ell}if \exp \bowtie 0 then ^{\ell}stat^{\ell}
                                                                                                      (conditional)
                         ^{\ell}while ^{\ell}exp \bowtie 0 do ^{\ell}stat^{\ell} done^{\ell}
                                                                                                              (loop)
                          <sup>l</sup>stat: <sup>l</sup>stat<sup>l</sup>
                                                                                                        (sequence)
               ::= X
                                                                                                          (variable)
exp
                         -exp
                                                                                                         (negation)
                          exp ◊ exp
                                                                                               (binary operation)
                                                                                                (constant c \in \mathbb{Z})
                          [c,c']
                                                                     (random input, c, c' \in \mathbb{Z} \cup \{\pm \infty\})
```

Simple structured, numeric language

- $X \in V$, where V is a finite set of program variables
- $\ell \in \mathcal{L}$, where \mathcal{L} is a finite set of control points
- numeric expressions: \bowtie \in {=, \leq , ...}, \diamond \in {+, -, \times , /}
- random inputs: $X \leftarrow [c, c']$ model environment, parametric programs, unknown functions, ...

Example

Example $^aX \leftarrow [-\infty,\infty]; \\ ^b \text{while } ^cX \ \neq \ 0 \ \text{do} \ ^dX \leftarrow X - 1 \ \text{done} \ ^e$

Where:

- control points $\mathcal{L} = \{a, b, c, d, e\}$
- variables $V = \{X\}$

We also define:

- the entry control point: $a \in \mathcal{L}$
- the exit control point: $e \in \mathcal{L}$
- \blacksquare the memory states: $\mathcal{E} \stackrel{\text{def}}{=} \mathbb{V} \to \mathbb{Z}$
- the program states: $\Sigma \stackrel{\text{def}}{=} \mathcal{L} \times \mathcal{E}$ (control and memory state)

Transition systems

Program execution modeled as discrete transitions between states

- Σ: set of states
- \bullet $\tau \subseteq \Sigma \times \Sigma$: a transition relation, written $\sigma \to_{\tau} \sigma'$, or $\sigma \to \sigma'$
- ⇒ a form of small-step semantics.

and also sometimes:

- distinguished set of initial states $\mathcal{I} \subseteq \Sigma$
- lacksquare distinguished set of final states $\mathcal{F}\subseteq\Sigma$
- labelled transition systems: $\tau \subseteq \Sigma \times \mathcal{A} \times \Sigma$, $\sigma \stackrel{\text{a}}{\to} \sigma'$ where \mathcal{A} is a set of labels, or actions

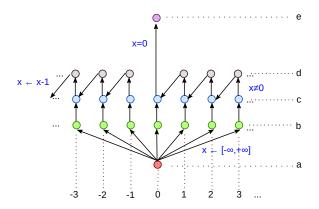
Transition system on our language

Application: on our programming language

- $\sum \stackrel{\mathrm{def}}{=} \mathcal{L} \times \mathcal{E}$ (a program state = a control point and a memory state) where $\mathcal{E} \stackrel{\mathrm{def}}{=} \mathbb{V} \to \mathbb{Z}$
- initial states $\mathcal{I} \stackrel{\text{def}}{=} \{\ell\} \times \mathcal{E}$ and final states $\mathcal{F} \stackrel{\text{def}}{=} \{\ell'\} \times \mathcal{E}$ for program ℓ stat ℓ'
- $\blacksquare \tau$ is defined by structural induction on ℓ stat ℓ' (next slides)
- τ is non-deterministic (several possible successors for $X \leftarrow [a, b]$)

Transition semantics example

```
Example {}^a X \leftarrow [-\infty, \infty]; {}^b \text{while } {}^c X \neq 0 \text{ do } {}^d X \leftarrow X - 1 \text{ done } {}^e
```



From programs to transition relations

```
Transitions: \tau[\ell stat^{\ell'}] \subseteq \Sigma \times \Sigma
             \tau^{[\ell 1}X \leftarrow e^{\ell 2}] \stackrel{\text{def}}{=} \{ (\ell 1, \rho) \rightarrow (\ell 2, \rho[X \mapsto v]) \mid \rho \in \mathcal{E}, v \in E[\![e]\!] \rho \}
               \tau[\ell^1] if e \bowtie 0 then \ell^2 s^{\ell^3}
                                                                            \{(\ell 1, \rho) \rightarrow (\ell 2, \rho) \mid \rho \in \mathcal{E}, \exists v \in \mathsf{E} \llbracket e \rrbracket \rho : v \bowtie 0 \} \cup
                                                                            \{(\ell 1, \rho) \rightarrow (\ell 3, \rho) \mid \rho \in \mathcal{E}, \exists v \in \mathsf{E} \llbracket e \rrbracket \rho : v \not\bowtie 0 \} \cup \tau \lceil \ell^2 s^{\ell 3} \rceil
               \tau[1] while \epsilon^{2}e \bowtie 0 do \epsilon^{3}s^{4} done \epsilon^{5}]
                                                                         \{(\ell 1, \rho) \rightarrow (\ell 2, \rho) \mid \rho \in \mathcal{E}\} \cup
                                                                            \{(\ell 2, \rho) \rightarrow (\ell 3, \rho) \mid \rho \in \mathcal{E}, \exists v \in \mathsf{E} \llbracket e \rrbracket \rho : v \bowtie 0 \} \cup \tau \lceil^{\ell 3} s^{\ell 4} \rceil \cup \{\ell 2, \rho\} \rightarrow (\ell 3, \rho) \mid \rho \in \mathcal{E}, \exists v \in \mathsf{E} \llbracket e \rrbracket \rho : v \bowtie 0 \} \cup \tau \lceil^{\ell 3} s^{\ell 4} \rceil \cup \{\ell 2, \rho\} \rightarrow (\ell 3, \rho) \mid \rho \in \mathcal{E}, \exists v \in \mathsf{E} \llbracket e \rrbracket \rho : v \bowtie 0 \} \cup \tau \lceil^{\ell 3} s^{\ell 4} \rceil \cup \{\ell 3, \rho\} \rightarrow (\ell 3, \rho) \mid \rho \in \mathcal{E}, \exists v \in \mathsf{E} \llbracket e \rrbracket \rho : v \bowtie 0 \} \cup \tau \lceil^{\ell 3} s^{\ell 4} \rceil \cup \{\ell 3, \rho\} \rightarrow (\ell 3, \rho) \mid \rho \in \mathcal{E}, \exists v \in \mathsf{E} \llbracket e \rrbracket \rho : v \bowtie 0 \} \cup \tau \lceil^{\ell 3} s^{\ell 4} \rceil \cup \{\ell 3, \rho\} \cup \tau \lceil^{\ell 3} s^{\ell 4} \rceil \cup \tau \rceil \cup \tau \lceil^{\ell 3} s^{\ell 4} \rceil \cup \tau \rceil \cup \tau \lceil^{\ell 3} s^{\ell 4} \rceil \cup \tau \rceil \cup
                                                                            \{(\ell 4, \rho) \rightarrow (\ell 2, \rho) \mid \rho \in \mathcal{E}\} \cup
                                                                            \{(\ell 2, \rho) \rightarrow (\ell 5, \rho) \mid \rho \in \mathcal{E}, \exists v \in \mathsf{E} \llbracket e \rrbracket \rho : v \not\bowtie 0 \}
             \tau[{}^{\ell 1}s_1; {}^{\ell 2}s_2{}^{\ell 3}] \stackrel{\text{def}}{=} \tau[{}^{\ell 1}s_1{}^{\ell 2}] \cup \tau[{}^{\ell 2}s_2{}^{\ell 3}]
  (expression semantics \mathbb{E}[\![e]\!] on next slide)
```

Expression semantics

```
\underline{\mathsf{E}[\![\![}\,e\,]\!]}\colon\left(\mathbb{V}\to\mathbb{Z}\right)\to\mathcal{P}(\mathbb{Z})
```

- lacksquare semantics of an expression in a memory state $ho \in \mathcal{E} \stackrel{\mathrm{def}}{=} \mathbb{V} o \mathbb{Z}$
- outputs a set of values in $\mathcal{P}(\mathbb{Z})$
 - random inputs lead to several values (non-determinism)
 - divisions by zero return no result (omit error states for simplicity)
- defined by structural induction

```
\begin{split} \mathbb{E} \big[ \big[ [c,c'] \big] \big] \, \rho & \stackrel{\mathrm{def}}{=} & \big\{ \, x \in \mathbb{Z} \, | \, c \leq x \leq c' \, \big\} \\ \mathbb{E} \big[ \big[ X \big] \big] \, \rho & \stackrel{\mathrm{def}}{=} & \big\{ \, \rho(X) \, \big\} \\ \mathbb{E} \big[ \big[ -e \big] \big] \, \rho & \stackrel{\mathrm{def}}{=} & \big\{ \, -v \, | \, v \in \mathbb{E} \big[ \, e \, \big] \, \rho \, \big\} \\ \mathbb{E} \big[ \, e_1 + e_2 \, \big] \, \rho & \stackrel{\mathrm{def}}{=} & \big\{ \, v_1 + v_2 \, | \, v_1 \in \mathbb{E} \big[ \, e_1 \, \big] \, \rho, \, v_2 \in \mathbb{E} \big[ \, e_2 \, \big] \, \rho \, \big\} \\ \mathbb{E} \big[ \, e_1 - e_2 \, \big] \, \rho & \stackrel{\mathrm{def}}{=} & \big\{ \, v_1 - v_2 \, | \, v_1 \in \mathbb{E} \big[ \, e_1 \, \big] \, \rho, \, v_2 \in \mathbb{E} \big[ \, e_2 \, \big] \, \rho \, \big\} \\ \mathbb{E} \big[ \, e_1 \times e_2 \, \big] \, \rho & \stackrel{\mathrm{def}}{=} & \big\{ \, v_1 \times v_2 \, | \, v_1 \in \mathbb{E} \big[ \, e_1 \, \big] \, \rho, \, v_2 \in \mathbb{E} \big[ \, e_2 \, \big] \, \rho \, \big\} \\ \mathbb{E} \big[ \, e_1 \, \big] \, \rho & \stackrel{\mathrm{def}}{=} & \big\{ \, v_1 / v_2 \, | \, v_1 \in \mathbb{E} \big[ \, e_1 \, \big] \, \rho, \, v_2 \in \mathbb{E} \big[ \, e_2 \, \big] \, \rho \, \big\} \\ \mathbb{E} \big[ \, e_1 \, \big] \, \rho & \stackrel{\mathrm{def}}{=} & \big\{ \, v_1 / v_2 \, | \, v_1 \in \mathbb{E} \big[ \, e_1 \, \big] \, \rho, \, v_2 \in \mathbb{E} \big[ \, e_2 \, \big] \, \rho \, \big\} \\ \mathbb{E} \big[ \, e_1 \, \big] \, \rho & \stackrel{\mathrm{def}}{=} & \big\{ \, v_1 / v_2 \, | \, v_1 \in \mathbb{E} \big[ \, e_1 \, \big] \, \rho, \, v_2 \in \mathbb{E} \big[ \, e_2 \, \big] \, \rho \, \big\} \\ \mathbb{E} \big[ \, e_1 \, \big] \, \rho & \stackrel{\mathrm{def}}{=} & \big\{ \, v_1 / v_2 \, | \, v_1 \in \mathbb{E} \big[ \, e_1 \, \big] \, \rho, \, v_2 \in \mathbb{E} \big[ \, e_2 \, \big] \, \rho \, \big\} \\ \mathbb{E} \big[ \, e_1 \, \big] \, \rho & \stackrel{\mathrm{def}}{=} & \big\{ \, v_1 / v_2 \, | \, v_1 \in \mathbb{E} \big[ \, e_1 \, \big] \, \rho, \, v_2 \in \mathbb{E} \big[ \, e_2 \, \big] \, \rho \, \big\} \\ \mathbb{E} \big[ \, e_1 \, \big] \, \rho & \stackrel{\mathrm{def}}{=} & \big\{ \, v_1 / v_2 \, | \, v_1 \in \mathbb{E} \big[ \, e_1 \, \big] \, \rho, \, v_2 \in \mathbb{E} \big[ \, e_2 \, \big] \, \rho \, \big\} \\ \mathbb{E} \big[ \, e_1 \, \big] \, \rho & \stackrel{\mathrm{def}}{=} & \big\{ \, v_1 / v_2 \, | \, v_1 \in \mathbb{E} \big[ \, e_1 \, \big] \, \rho, \, v_2 \in \mathbb{E} \big[ \, e_2 \, \big] \, \rho \, \big\} \\ \mathbb{E} \big[ \, e_1 \, \big] \, \rho & \stackrel{\mathrm{def}}{=} & \big\{ \, v_1 \, v_2 \, | \, v_1 \in \mathbb{E} \big[ \, e_1 \, \big] \, \rho, \, v_2 \in \mathbb{E} \big[ \, e_2 \, \big] \, \rho \, \big\} \\ \mathbb{E} \big[ \, e_1 \, \big] \, \rho & \stackrel{\mathrm{def}}{=} & \big\{ \, v_1 \, v_2 \, | \, v_1 \in \mathbb{E} \big[ \, e_1 \, \big] \, \rho \, \big\} \\ \mathbb{E} \big[ \, e_1 \, \big] \, \rho & \stackrel{\mathrm{def}}{=} & \big\{ \, v_1 \, v_2 \, | \, v_1 \in \mathbb{E} \big[ \, e_1 \, \big] \, \rho \, \big\} \\ \mathbb{E} \big[ \, e_1 \, \big] \, \rho & \stackrel{\mathrm{def}}{=} & \big\{ \, v_1 \, v_2 \, | \, v_1 \in \mathbb{E} \big[ \, e_1 \, \big] \, \rho \, \big\} \\ \mathbb{E} \big[ \, e_1 \, \big] \, \rho & \stackrel{\mathrm{def}}{=} & \big\{ \, v_1 \, v_2 \, | \, v_1 \in \mathbb{E} \big[ \, e_1 \, \big] \,
```

Another example: λ -calculus

Small-step operational semantics: (call-by-value)

$$\frac{M \rightsquigarrow M'}{(\lambda x.M)N \rightsquigarrow M[x/N]} \qquad \frac{M \rightsquigarrow M'}{M N \rightsquigarrow M' N} \qquad \frac{N \rightsquigarrow N'}{M N \rightsquigarrow M N'}$$

Models program execution as a sequence of term-rewriting \rightsquigarrow exposing each transition (low level).

$$\ \ \, \mathbf{\Sigma} \, \stackrel{\mathrm{def}}{=} \, \{\lambda\mathrm{-terms}\}$$

$$\tau \stackrel{\text{def}}{=} \rightsquigarrow$$

Program executions

Intuitive model of executions:

- program traces
 sequences of states encountered during execution
 sequences are possibly unbounded
- a program can have several traces due to non-determinism

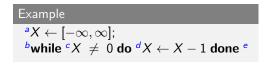
Trace semantics:

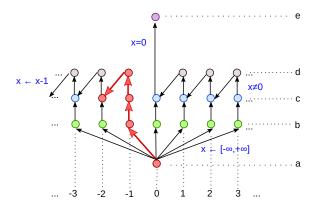
- the domain is $\mathcal{D} \stackrel{\text{def}}{=} \mathcal{P}(\Sigma^*)$
- the semantics is:

$$\mathcal{T}_{p}(\mathcal{I}) \stackrel{\text{def}}{=} \big\{ \sigma_{0}, \ldots, \sigma_{n} \, | \, n \geq 0, \sigma_{0} \in \mathcal{I}, \forall i : \sigma_{i} \rightarrow \sigma_{i+1} \big\}$$

actually, we defined here finite execution prefixes, observable in finite time

Trace semantics example





Semantics and abstract interpretation

Other choices of semantics are possible:

- reachable states (later in this course)
- going backward as well as forward (later in this course)
- relations between input and output (relational, or denotational semantics)
-

these are all uncomputable concrete semantics

(next course will consider computable approximations)

Goal: use abstract interpretation to

- express all these semantics uniformly as fixpoints (staying at the level of transition systems for generality, not program syntax)
- relate these semantics by abstraction relations
- study which semantics to choose for each class of properties to prove

Finite prefix trace semantics

Finite traces

Finite trace: finite sequence of elements from Σ

- lacksquare ϵ : empty trace (unique)
- lacksquare σ : trace of length 1 (assimilated to a state)
- $\sigma_0, \ldots, \sigma_{n-1}$: trace of length n
- Σ^n : the set of traces of length *n*
- $\Sigma^{\leq n} \stackrel{\text{def}}{=} \bigcup_{i \leq n} \Sigma^i$: the set of traces of length at most n
- $\Sigma^* \stackrel{\text{def}}{=} \cup_{i \in \mathbb{N}} \Sigma^i$: the set of finite traces

Note: we assimilate

- lacksquare a set of states $S\subseteq\Sigma$ with a set of traces of length 1
- a relation $R \subseteq \Sigma \times \Sigma$ with a set of traces of length 2

so,
$$\mathcal{I}, \mathcal{F}, \tau \in \mathcal{P}(\Sigma^*)$$

Trace operations

Operations on traces:

- length $|t| \in \mathbb{N}$ of a trace $t \in \Sigma^*$
- concatenation ·

$$(\sigma_0,\ldots,\sigma_n)\cdot(\sigma'_0,\ldots,\sigma'_m)\stackrel{\text{def}}{=} \sigma_0,\ldots,\sigma_n,\sigma'_0,\ldots,\sigma'_m$$

 $\epsilon\cdot t\stackrel{\text{def}}{=} t\cdot \epsilon\stackrel{\text{def}}{=} t$

■ junction [^]

$$(\sigma_0,\ldots,\sigma_n)^{\frown}(\sigma_0',\sigma_1',\ldots,\sigma_m')\stackrel{\text{def}}{=} \sigma_0,\ldots,\sigma_n,\sigma_1',\ldots,\sigma_m'$$

when $\sigma_n=\sigma_0'$

undefined if $\sigma_n \neq \sigma'_0$, and for ϵ

join two consecutive traces, the common element $\sigma_n=\sigma_0'$ is not repeated

Trace operations (cont.)

Extension to sets of traces:

- $A \cdot B \stackrel{\text{def}}{=} \{ a \cdot b \mid a \in A, b \in B \}$ $\{\epsilon\}$ is the neutral element for \cdot
- $A \cap B \stackrel{\text{def}}{=} \{ a \cap b \mid a \in A, b \in B, a \cap b \text{ defined} \}$ ∑ is the neutral element for \cap

Note:
$$A^n \neq \{ a^n \mid a \in A \}$$
, $A^{\frown n} \neq \{ a^{\frown n} \mid a \in A \}$ when $|A| > 1$

Note:
$$\cdot$$
 and \cap distribute \cup and \cap $(\cup_{i \in I} A_i) \cap (\cup_{j \in J} B_j) = \cup_{i \in I, j \in J} (A_i \cap B_j)$, etc.

Prefix trace semantics

$\mathcal{T}_p(\mathcal{I})$: finite partial execution traces starting in \mathcal{I}

$$\mathcal{T}_{p}(\mathcal{I}) \stackrel{\text{def}}{=} \{ \sigma_{0}, \dots, \sigma_{n} \mid n \geq 0, \sigma_{0} \in \mathcal{I}, \forall i : \sigma_{i} \to \sigma_{i+1} \}
= \bigcup_{n \geq 0} \mathcal{I}^{\frown}(\tau^{\frown n})$$

(traces of length n, for any n, starting in \mathcal{I} and following τ)

$\mathcal{T}_p(\mathcal{I})$ can be expressed in fixpoint form:

$$\mathcal{T}_p(\mathcal{I}) = \mathsf{lfp}\, F_p$$
 where $F_p(\mathcal{T}) \stackrel{\scriptscriptstyle \mathrm{def}}{=} \mathcal{I} \cup \mathcal{T}^\frown au$

 $(F_p$ appends a transition to each trace, and adds back $\mathcal{I})$

Alternate characterization:
$$\mathcal{T}_p(\mathcal{I}) = \mathsf{lfp}_{\mathcal{I}} \, G_p \text{ where } G_p(T) = T \cup T \cap \tau.$$

 G_p extends T by τ and accumulates the result with T

(proofs on next slides)

Prefix trace semantics: graphical illustration

$$a \xrightarrow{b} c$$

$$\mathcal{I} \stackrel{\text{def}}{=} \{a\}$$

$$\tau \stackrel{\text{def}}{=} \{(a,b),(b,b),(b,c)\}$$

<u>Iterates:</u> $\mathcal{T}_p(\mathcal{I}) = \text{Ifp } F_p \text{ where } F_p(\mathcal{I}) \stackrel{\text{def}}{=} \mathcal{I} \cup \mathcal{I} \cap \tau.$

- $F_p^0(\emptyset) = \emptyset$
- $F_p^1(\emptyset) = \mathcal{I} = \{a\}$
- $F_p^2(\emptyset) = \{a, ab\}$
- $F_p^3(\emptyset) = \{a, ab, abb, abc\}$
- $F_{p}^{n}(\emptyset) = \{ a, ab^{i}, ab^{j}c \mid i \in [1, n-1], j \in [1, n-2] \}$
- $T_p(\mathcal{I}) = \bigcup_{n>0} F_p^n(\emptyset) = \{ a, ab^i, ab^i c \mid i \geq 1 \}$

Prefix trace semantics: proof

<u>proof of:</u> $\mathcal{T}_p(\mathcal{I}) = \operatorname{lfp} F_p \text{ where } F_p(T) = \mathcal{I} \cup T \cap \tau$

 F_p is continuous in a CPO $(\mathcal{P}(\Sigma^*), \subseteq)$: $F_p(\cup_{i \in I} T_i)$

$$= \mathcal{I} \cup (\bigcup_{i \in I} T_i) \cap \tau$$

$$= \mathcal{I} \cup (\bigcup_{i \in I} T_i \cap \tau) = \bigcup_{i \in I} (\mathcal{I} \cup T_i \cap \tau)$$

hence (Kleene), Ifp $F_p = \bigcup_{n \geq 0} F_p^n(\emptyset)$

 $= \bigcup_{i \leq n+1} \mathcal{I}^{\frown} \tau^{\frown}$

We prove by recurrence on n that $\forall n: F_p^n(\emptyset) = \bigcup_{i < n} \mathcal{I}^{\frown} \tau^{\frown i}$:

$$\begin{split} \bullet & F_{\rho}^{0}(\emptyset) = \emptyset, \\ \bullet & F_{\rho}^{n+1}(\emptyset) \\ &= \mathcal{I} \cup F_{\rho}^{n}(\emptyset) \cap \tau \\ &= \mathcal{I} \cup (\cup_{i < n} \mathcal{I} \cap \tau^{-i}) \cap \tau \\ &= \mathcal{I} \cup \cup_{i < n} (\mathcal{I} \cap \tau^{-i}) \cap \tau \\ &= \mathcal{I} \cap \tau^{-0} \cup \cup_{i < n} (\mathcal{I} \cap \tau^{-i+1}) \end{split}$$

Thus, Ifp
$$F_p = \bigcup_{n \in \mathbb{N}} F_p^n(\emptyset) = \bigcup_{n \in \mathbb{N}} \bigcup_{i < n} \mathcal{I}^{\frown} \tau^{\frown i} = \bigcup_{i \in \mathbb{N}} \mathcal{I}^{\frown} \tau^{\frown i}$$
.

The proof is similar for the alternate form $\mathcal{T}_p(\mathcal{I}) = \operatorname{lfp}_{\mathcal{I}} G_p$ where $G_p(T) = T \cup T \cap \tau$ as $G_n^n(\mathcal{I}) = F_n^{n+1}(\emptyset) = \cup_{i \leq n} \mathcal{I} \cap \tau^{-i}$.

Prefix closure

Prefix partial order: \leq on Σ^*

$$x \leq y \iff \exists u \in \Sigma^* : x \cdot u = y$$

Note: (Σ^*, \preceq) is not a CPO, as $a^n, n \in \mathbb{N}$ has no limit

Prefix closure:
$$\rho_p : \mathcal{P}(\Sigma^*) \to \mathcal{P}(\Sigma^*)$$

$$\rho_{p}(T) \stackrel{\text{def}}{=} \{ u \in \Sigma^{+} \mid \exists t \in T : u \leq t \}$$

$$\rho_p$$
 is an upper closure operator on $\mathcal{P}(\Sigma^* \setminus \{\epsilon\})$ (monotonic, extensive $T \subseteq \rho_p(T)$, idempotent $\rho_p \circ \rho_p = \rho_p$)

The prefix trace semantics is closed by prefix:

$$\rho_{p}(\mathcal{T}_{p}(\mathcal{I})) = \mathcal{T}_{p}(\mathcal{I})$$

(note that $\epsilon \notin \mathcal{T}_p(\mathcal{I})$, which is why we disallowed ϵ in ρ_p)

Collecting semantics and properties

General properties

General setting:

- given a program $prog \in Prog$
- lacksquare its semantics: $[\![\cdot]\!]: Prog o \mathcal{P}(\Sigma^*)$ is a set of finite traces
- a property *P* is the set of correct program semantics

```
i.e., a set of sets of traces P \in \mathcal{P}(\mathcal{P}(\Sigma^*))
```

⊆ gives an information order on properties

 $P \subseteq P'$ means that P' is weaker than P (allows more semantics)

General collecting semantics

```
The collecting semantics \mathit{Col} : \mathit{Prog} \to \mathcal{P}(\mathcal{P}(\Sigma^*)) is the strongest property of a program
```

```
Hence: Col(prog) \stackrel{\text{def}}{=} \{ [prog] \}
```

Benefits: uniformity of semantics and properties, \subseteq information order

■ given a program *prog* and a property $P \in \mathcal{P}(\mathcal{P}(\Sigma^*))$ the verification problem is an inclusion check:

$$Col(prog) \subseteq P$$

- lacktriangle generally, the collecting semantics cannot be computed, we settle for a weaker property S^{\sharp} that
 - is sound: $Col(prog) \subseteq S^{\sharp}$
 - implies the desired property: $S^{\sharp} \subseteq P$

Restricted properties

Reasoning on (and abstracting) $\mathcal{P}(\mathcal{P}(\Sigma^*))$ is hard!

In the following, we use a simpler setting:

- lacksquare a property is a set of traces $P \in \mathcal{P}(\Sigma^*)$
- the collecting semantics is a set of traces: $Col(prog) \stackrel{\text{def}}{=} [prog]$
- the verification problem remains an inclusion check: $\llbracket prog \rrbracket \subseteq P$
- abstractions will over-approximate the set of traces ¶ prog ¶

Example properties:

- state property $P \stackrel{\text{def}}{=} S^*$ (remains in the set S of safe states)
- maximal execution time: $P \stackrel{\text{def}}{=} S^{\leq k}$
- ordering: $P \stackrel{\text{def}}{=} (\Sigma \setminus \{b\})^* \cdot a \cdot \Sigma^* \cdot b \cdot \Sigma^*$ (a occurs before b)

Proving restricted properties

Invariance proof method: find an inductive invariant *I*

- set of finite traces $I \subseteq \Sigma^*$
- $\mathcal{I} \subseteq I$ (contains traces reduced to an initial state)
- $\forall \sigma_0, \ldots, \sigma_n \in I : \sigma_n \to \sigma_{n+1} \implies \sigma_0, \ldots, \sigma_n, \sigma_{n+1} \in I$ (invariant by program transition)
- implies the desired property: I ⊆ P

Link with the finite prefix trace semantics $\mathcal{T}_p(\mathcal{I})$:

An inductive invariant is a post-fixpoint of F_p : $F_p(I) \subseteq I$ where $F_p(T) \stackrel{\text{def}}{=} \mathcal{I} \cup T \cap \tau$.

 $\mathcal{T}_p(\mathcal{I}) = \operatorname{lfp} F_p$ is the most precise inductive invariant

Limitations

- Our semantics is closed by prefix It cannot distinguish between:
 - non-terminating executions (infinite loops)
 - and unbounded executions
 - ⇒ we cannot prove termination and, more generally, liveness

(this will be solved using maximal trace semantics later in this course)

Some properties, such as non-interferences, cannot be expressed as sets of traces, we need sets of sets of traces

$$P \stackrel{\text{def}}{=} \{ T \in \mathcal{P}(\Sigma^*) \mid \forall \sigma_0, \dots, \sigma_n \in T : \forall \sigma'_0 : \sigma_0 \equiv \sigma'_0 \implies \exists \sigma'_0, \dots, \sigma'_m \in T : \sigma'_m \equiv \sigma_n \}$$

where
$$(\ell, \rho) \equiv (\ell', \rho') \iff \ell = \ell' \land \forall V \neq X : \rho(V) = \rho'(V)$$

changing the initial value of X does not affect the set of final environments up to the value of X

Forward state reachability semantics

State semantics and properties

Principle: reason on sets of states instead of sets of traces

- lacksquare simpler semantic *Col* : $Prog
 ightarrow \mathcal{P}(\Sigma)$
- state properties are also sets of states $P \in \mathcal{P}(\Sigma)$
 - ⇒ sufficient for many purposes
- easier to abstract
- can be seen as an abstraction of traces (forgets the ordering of states)

Forward reachability

Forward image: $\mathsf{post}_{\tau}: \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$

$$\mathsf{post}_\tau(\mathcal{S}) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \{\, \sigma' \,|\, \exists \sigma \in \mathcal{S} \colon\! \sigma \to \sigma' \,\}$$

post_{τ} is a strict, complete \cup -morphism in $(\mathcal{P}(\Sigma), \subseteq, \cup, \cap, \emptyset, \Sigma)$ post_{τ} $(\cup_{i \in I} S_i) = \cup_{i \in I} \operatorname{post}_{\tau}(S_i), \operatorname{post}_{\tau}(\emptyset) = \emptyset$

Blocking states: $\mathcal{B} \stackrel{\text{def}}{=} \{ \sigma \mid \forall \sigma' \in \Sigma : \sigma \not\to \sigma' \}$

(states with no successor: valid final states but also errors)

 $\mathcal{R}(\mathcal{I})$: states reachable from \mathcal{I} in the transition system

$$\mathcal{R}(\mathcal{I}) \stackrel{\text{def}}{=} \left\{ \sigma \mid \exists n \geq 0, \sigma_0, \dots, \sigma_n : \sigma_0 \in \mathcal{I}, \sigma = \sigma_n, \forall i : \sigma_i \to \sigma_{i+1} \right\} \\
= \bigcup_{n \geq 0} \mathsf{post}_{\tau}^n(\mathcal{I})$$

(reachable \iff reachable from \mathcal{I} in n steps of τ for some $n \geq 0$)

Fixpoint formulation of forward reachability

 $\mathcal{R}(\mathcal{I})$ can be expressed in fixpoint form:

$$\mathcal{R}(\mathcal{I}) = \mathsf{lfp} \; F_{\mathcal{R}} \; \mathsf{where} \; F_{\mathcal{R}}(S) \stackrel{\mathrm{def}}{=} \mathcal{I} \cup \mathsf{post}_{\tau}(S)$$

 $F_{\mathcal{R}}$ shifts S and adds back \mathcal{I}

Alternate characterization:
$$\mathcal{R} = \mathsf{lfp}_{\mathcal{I}} \ G_{\mathcal{R}} \ \mathsf{where} \ G_{\mathcal{R}}(S) \stackrel{\mathrm{def}}{=} S \cup \mathsf{post}_{\tau}(S).$$

 $G_{\mathcal{R}}$ shifts S by au and accumulates the result with S

(proofs on next slide)

Fixpoint formulation proof

```
<u>proof:</u> of \mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}} where F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \operatorname{post}_{\tau}(S)
```

 $(\mathcal{P}(\Sigma),\subseteq)$ is a CPO and post_{τ} is continuous, hence $F_{\mathcal{R}}$ is continuous: $F_{\mathcal{R}}(\cup_{i\in I}A_i)=\cup_{i\in I}F_{\mathcal{R}}(A_i)$.

By Kleene's theorem, Ifp $F_{\mathcal{R}} = \bigcup_{n \in \mathbb{N}} F_{\mathcal{R}}^n(\emptyset)$.

We prove by recurrence on n that: $\forall n: F_{\mathcal{R}}^n(\emptyset) = \bigcup_{i < n} \mathsf{post}_{\tau}^i(\mathcal{I}).$ (states reachable in less than n steps)

$$F_{\mathcal{R}}^{0}(\emptyset) = \emptyset$$

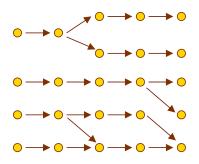
assuming the property at n,

$$\begin{array}{lll} F_{\mathcal{R}}^{n+1}(\emptyset) & = & F_{\mathcal{R}}(\bigcup_{i < n} \mathsf{post}_{\tau}^{i}(\mathcal{I})) \\ & = & \mathcal{I} \cup \mathsf{post}_{\tau}(\bigcup_{i < n} \mathsf{post}_{\tau}^{i}(\mathcal{I})) \\ & = & \mathcal{I} \cup \bigcup_{i < n} \mathsf{post}_{\tau}(\mathsf{post}_{\tau}^{i}(\mathcal{I})) \\ & = & \mathcal{I} \cup \bigcup_{1 \leq i < n+1} \mathsf{post}_{\tau}^{i}(\mathcal{I}) \\ & = & \bigcup_{i < n+1} \mathsf{post}_{\tau}^{i}(\mathcal{I}) \end{array}$$

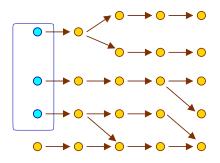
Hence: Ifp $F_{\mathcal{R}} = \bigcup_{n \in \mathbb{N}} F_{\mathcal{R}}^n(\emptyset) = \bigcup_{i \in \mathbb{N}} \mathsf{post}_{\tau}^i(\mathcal{I}) = \mathcal{R}(\mathcal{I}).$

The proof is similar for the alternate form, given that $\mathrm{lfp}_{\mathcal{I}} \ G_{\mathcal{R}} = \cup_{n \in \mathbb{N}} \ G_{\mathcal{R}}^n(\mathcal{I})$ and

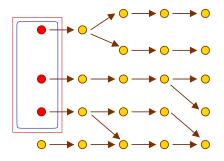
$$G^n_{\mathcal{R}}(\mathcal{I}) = F^{n+1}_{\mathcal{R}}(\emptyset) = \cup_{i \leq n} \operatorname{post}_{\tau}^i(\mathcal{I}).$$



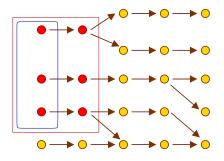
Transition system



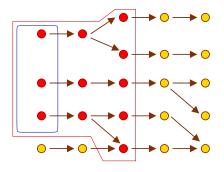
Initial states ${\cal I}$



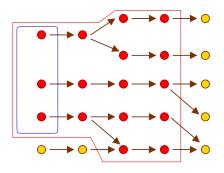
Iterate $F^1_{\mathcal{R}}(\mathcal{I})$



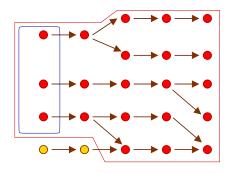
Iterate $F^2_{\mathcal{R}}(\mathcal{I})$



Iterate $F^3_{\mathcal{R}}(\mathcal{I})$



Iterate $F^4_{\mathcal{R}}(\mathcal{I})$



Iterate $F^5_{\mathcal{R}}(\mathcal{I})$

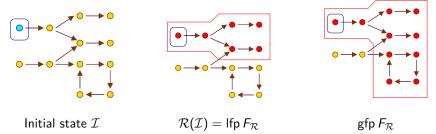
$$F^6_{\mathcal{R}}(\mathcal{I})=F^5_{\mathcal{R}}(\mathcal{I})\Rightarrow$$
 we reached a fixpoint $\mathcal{R}(\mathcal{I})=F^5_{\mathcal{R}}(\mathcal{I})$

Multiple forward fixpoints

Recall: $\mathcal{R}(\mathcal{I}) = \mathsf{lfp}\,F_{\mathcal{R}}$ where $F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \mathsf{post}_{\tau}(S)$

Note that F_R may have several fixpoints

Example:



Exercise:

Compute all the fixpoints of $G_{\mathcal{R}}(S) \stackrel{\text{def}}{=} S \cup \mathsf{post}_{\tau}(S)$ on this example

Example application of forward reachability

■ Infer the set of possible states at program end: $\mathcal{R}(\mathcal{I}) \cap \mathcal{F}$

```
 \begin{array}{l} \bullet \quad i \leftarrow 0; \\ \textbf{while } i < 100 \ \textbf{do} \\ i \leftarrow i+1; \\ j \leftarrow j+[0,1] \\ \textbf{done} \ \bullet \end{array}
```

- initial states \mathcal{I} : $j \in [0, 10]$ at control point •
- final states F: any memory state at control point •
- $\blacksquare \Longrightarrow \mathcal{R}(\mathcal{I}) \cap \mathcal{F}$: control at \bullet , i = 100, and $j \in [0, 110]$
- Prove the absence of run-time error: $\mathcal{R}(\mathcal{I}) \cap \mathcal{B} \subseteq \mathcal{F}$ (never block except when reaching the end of the program)

To ensure soundness, over-approximations are sufficient (if $\mathcal{R}^{\sharp}(\mathcal{I}) \supseteq \mathcal{R}(\mathcal{I})$, then $\mathcal{R}^{\sharp}(\mathcal{I}) \cap \mathcal{B} \subseteq \mathcal{F} \implies \mathcal{R}(\mathcal{I}) \cap \mathcal{B} \subseteq \mathcal{F}$)

Link with state-based invariance proof methods

Invariance proof method: find an inductive invariant $I \subseteq \Sigma$

- $\mathcal{I}\subseteq \mathcal{I}$ (contains initial states)
- $\blacksquare \ \forall \sigma \in \textit{\textbf{I}} : \sigma \to \sigma' \implies \sigma' \in \textit{\textbf{I}}$ (invariant by program transition)
- that implies the desired property: I ⊆ P

Link with the state semantics $\mathcal{R}(\mathcal{I})$:

- if I is an inductive invariant, then $F_{\mathcal{R}}(I) \subseteq I$ $F_{\mathcal{R}}(I) = \mathcal{I} \cup \mathsf{post}_{\tau}(I) \subseteq I \cup I = I$ \Longrightarrow an inductive invariant is a post-fixpoint of $F_{\mathcal{R}}$
- $\mathcal{R}(\mathcal{I}) = \text{lfp } F_{\mathcal{R}}$ $\Longrightarrow \mathcal{R}(\mathcal{I})$ is the tightest inductive invariant

Link with the equational semantics

By partitioning forward reachability wrt. control points, we retrieve the equation system form of program semantics

Grouping by control location:
$$\mathcal{P}(\Sigma) = \mathcal{P}(\mathcal{L} \times \mathcal{E}) \simeq \mathcal{L} \to \mathcal{P}(\mathcal{E})$$

We have a Galois isomorphism:

$$(\mathcal{P}(\Sigma),\subseteq) \xrightarrow[\alpha_{\mathcal{L}}]{\gamma_{\mathcal{L}}} (\mathcal{L} \to \mathcal{P}(\mathcal{E}),\dot{\subseteq})$$

- $\blacksquare \ \ X \subseteq Y \ \stackrel{\text{def}}{\Longleftrightarrow} \ \ \forall \ell \in \mathcal{L} : X(\ell) \subseteq Y(\ell)$
- $\bullet \alpha_{\mathcal{L}}(S) \stackrel{\text{def}}{=} \lambda \ell . \{ \rho \, | \, (\ell, \rho) \in S \}$
- given $F_{eq} \stackrel{\text{def}}{=} \alpha_{\mathcal{L}} \circ F_{\mathcal{R}} \circ \gamma_{\mathcal{L}}$ we get back an equation system $\bigwedge_{\ell \in \mathcal{L}} \mathcal{X}_{\ell} = F_{eq,\ell}(\mathcal{X}_1, \dots, \mathcal{X}_n)$
- $\alpha_{\mathcal{L}} \circ \gamma_{\mathcal{L}} = \gamma_{\mathcal{L}} \circ \alpha_{\mathcal{L}} = id$ (no abstraction) simply reorganize the states by control point after actual abstraction, partitioning makes a difference (flow-sensitivity)

Example equation system

```
 \begin{cases} \mathcal{X}_{1} = \mathcal{E} \\ \mathbf{Y} \leftarrow 100; \\ \mathbf{While} \overset{\ell 3}{\times} \mathbf{X} \geq 0 \text{ do }^{\ell 4} \\ \mathbf{X} \leftarrow \mathbf{X} - 1; \overset{\ell 5}{\times} \mathbf{X} \leftarrow \mathbf{X} - 1; \overset{\ell 5}{\times} \mathbf{X} \leftarrow \mathbf{X} - 1 \end{cases} 
 \begin{cases} \mathcal{X}_{1} = \mathcal{E} \\ \mathcal{X}_{2} = \mathbb{C} \llbracket \mathbf{X} \leftarrow [0, 10] \rrbracket \mathcal{X}_{1} \\ \mathcal{X}_{3} = \mathbb{C} \llbracket \mathbf{Y} \leftarrow 100 \rrbracket \mathcal{X}_{2} \cup \mathbb{C} \llbracket \mathbf{Y} \leftarrow \mathbf{Y} + 10 \rrbracket \mathcal{X}_{5} \\ \mathcal{X}_{4} = \mathbb{C} \llbracket \mathbf{X} \geq 0 \rrbracket \mathcal{X}_{3} \\ \mathcal{X}_{5} = \mathbb{C} \llbracket \mathbf{X} \leftarrow \mathbf{X} - 1 \rrbracket \mathcal{X}_{4} \\ \mathcal{X}_{6} = \mathbb{C} \llbracket \mathbf{X} < 0 \rrbracket \mathcal{X}_{3} \end{cases}
```

- $X_i \in \mathcal{P}(\mathcal{E})$: set of memory states at program point $i \in \mathcal{L}$ e.g.: $\mathcal{X}_3 = \{ \rho \in \mathcal{E} \mid \rho(X) \in [0, 10], \ 10\rho(X) + \rho(Y) \in [100, 200] \cap 10\mathbb{Z} \}$
- $\blacksquare \mathcal{R}$ corresponds to the smallest solution $(\mathcal{X}_i)_{i \in \mathcal{L}}$ of the system
- $I \subseteq \mathcal{E}$ is invariant at i if $\mathcal{X}_i \subseteq I$

Systematic derivation of equations

```
Atomic commands: \mathbb{C}[\![ com ]\!] : \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})
\operatorname{\mathsf{com}} \stackrel{\text{def}}{=} \{ V \leftarrow \exp, \exp \bowtie 0 \} : \text{ assignments and tests} 
      \blacksquare \ \mathsf{C} \llbracket \ \mathsf{V} \leftarrow \mathsf{e} \ \rrbracket \ \mathcal{X} \stackrel{\mathrm{def}}{=} \left\{ \ \rho [\ \mathsf{V} \mapsto \mathsf{v}] \ | \ \rho \in \mathcal{X}, \ \mathsf{v} \in \mathsf{E} \llbracket \ \mathsf{e} \ \rrbracket \ \rho \right\}
        C[\![e \bowtie 0]\!] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho \in \mathcal{X} \mid \exists v \in E[\![\rho]\!] \rho : v \bowtie 0 \} 
\mathbb{C}[\![\cdot]\!] are \cup-morphisms: \mathbb{C}[\![s]\!]\mathcal{X} = \bigcup_{\rho \in \mathcal{X}} \mathbb{C}[\![s]\!]\{\rho\}, monotonic, continuous
                                                                                                                                            eq(^{\ell}stat^{\ell'})
Systematic derivation of the equation system:
by structural induction:
eq(^{\ell 1}X \leftarrow e^{\ell 2}) \stackrel{\text{def}}{=} \{ \mathcal{X}_{\ell 2} = \mathbb{C} [X \leftarrow e] \mathcal{X}_{\ell 1} \}
eq({}^{\ell 1}s_1; {}^{\ell 2}s_2{}^{\ell 3}) \stackrel{\text{def}}{=} eq({}^{\ell 1}s_1{}^{\ell 2}) \cup ({}^{\ell 2}s_2{}^{\ell 3})
eq(^{\ell 1}if \ e \bowtie 0 \ then ^{\ell 2}s^{\ell 3}) \stackrel{\text{def}}{=}
      \{\mathcal{X}_{\ell 2} = \mathsf{C} \mathbb{I} e \bowtie \mathsf{0} \mathbb{I} \mathcal{X}_{\ell 1} \} \cup ea(^{\ell 2} \mathsf{s}^{\ell 3'}) \cup \{\mathcal{X}_{\ell 3} = \mathcal{X}_{\ell 3'} \cup \mathsf{C} \mathbb{I} e \bowtie \mathsf{0} \mathbb{I} \mathcal{X}_{\ell 1} \}
eq(^{\ell 1}while ^{\ell 2}e\bowtie 0 do ^{\ell 3}s^{\ell 4} done ^{\ell 5})\stackrel{\text{def}}{=}
      \{\mathcal{X}_{\ell,2} = \mathcal{X}_{\ell,1} \cup \mathcal{X}_{\ell,4}, \mathcal{X}_{\ell,3} = \mathbb{C}[[e \bowtie 0]] \mathcal{X}_{\ell,2}\} \cup ea(\ell^3 s^{\ell 4}) \cup \{\mathcal{X}_{\ell,5} = \mathbb{C}[[e \bowtie 0]] \mathcal{X}_{\ell,2}\}
where: \mathcal{X}^{\ell 3'} is a fresh variable storing intermediate results
```

Solving the equational semantics

Solve
$$\bigwedge_{i \in [1,n]} \ \mathcal{X}_i = F_i(\mathcal{X}_1, \dots, \mathcal{X}_n)$$

Each F_i is continuous in $\mathcal{P}(\mathcal{E})^n \to \mathcal{P}(\mathcal{E})$ (complete \cup -morphism) aka $\vec{F} \stackrel{\text{def}}{=} (F_1, \dots, F_n)$ is continuous in $\mathcal{P}(\mathcal{E})^n \to \mathcal{P}(\mathcal{E})^n$

By Kleene's fixpoint theorem, Ifp \vec{F} exists

Kleene's theorem: Jacobi iterations $\begin{cases} \mathcal{X}_{1}^{0} \stackrel{\text{def}}{=} \emptyset & \mathcal{X}_{1}^{k+1} \stackrel{\text{def}}{=} F_{1}(\mathcal{X}_{1}^{k}, \dots, \mathcal{X}_{n}^{k}) \\ \dots & \mathcal{X}_{i}^{0} \stackrel{\text{def}}{=} \emptyset & \mathcal{X}_{i}^{k+1} \stackrel{\text{def}}{=} F_{i}(\mathcal{X}_{1}^{k}, \dots, \mathcal{X}_{n}^{k}) \\ \dots & \mathcal{X}_{n}^{0} \stackrel{\text{def}}{=} \emptyset & \mathcal{X}_{n}^{k+1} \stackrel{\text{def}}{=} F_{n}(\mathcal{X}_{1}^{k}, \dots, \mathcal{X}_{n}^{k}) \end{cases}$

The limit of $(\mathcal{X}_1^k, \dots, \mathcal{X}_n^k)$ is Ifp \vec{F}

Naïve application of Kleene's theorem called Jacobi iterations by analogy with linear algebra

Solving the equational semantics (cont.)

Other iteration techniques exist [Cous92].

Gauss-Seidl iterations

$$\left\{ \begin{array}{l} \mathcal{X}_{1}^{k+1} \stackrel{\mathrm{def}}{=} F_{1}(\mathcal{X}_{1}^{k}, \ldots, \mathcal{X}_{n}^{k}) \\ \ldots \\ \mathcal{X}_{i}^{k+1} \stackrel{\mathrm{def}}{=} F_{i}(\mathcal{X}_{1}^{k+1}, \ldots, \mathcal{X}_{i-1}^{k+1}, \mathcal{X}_{i}^{k}, \ldots, \mathcal{X}_{n}^{k}) \\ \ldots \\ \mathcal{X}_{n}^{k+1} \stackrel{\mathrm{def}}{=} F_{n}(\mathcal{X}_{1}^{k+1}, \ldots, \mathcal{X}_{n-1}^{k+1}, \mathcal{X}_{n}^{k}) \end{array} \right.$$
use new results as soon as available

use new results as soon as available

Chaotic iterations

$$\mathcal{X}_{i}^{k+1} \stackrel{\text{def}}{=} \begin{cases} F_{i}(\mathcal{X}_{1}^{k}, \dots, \mathcal{X}_{n}^{k}) & \text{if } i = \phi(k+1) \\ \mathcal{X}_{i}^{k} & \text{otherwise} \end{cases}$$
w.r.t. a fair schedule $\phi : \mathbb{N} \to [1, n]$

$$\forall i \in [1, n]; \forall N > 0; \exists k > N; \phi(k) = i$$

- worklist algorithms
- asynchonous iterations (parallel versions of chaotic iterations)

all give the same limit! (this will not be the case for abstract static analyses...)

Alternate view: inductive abstract interpreter

Principle:

- follow the control-flow of the program
- replace the global fixpoint with local fixpoints (loops)

```
C[\![V \leftarrow e]\!] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho[V \mapsto v] \mid \rho \in \mathcal{X}, \ v \in E[\![e]\!] \rho \}
C[\![e \bowtie 0]\!] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho \in \mathcal{X} \mid \exists v \in E[\![\rho]\!] \rho : v \bowtie 0 \}
C[\![s_1; s_2]\!] \mathcal{X} \stackrel{\text{def}}{=} C[\![s_2]\!] (C[\![s_1]\!] \mathcal{X})
C[\![if e \bowtie 0 \text{ then } s]\!] \mathcal{X} \stackrel{\text{def}}{=} (C[\![s]\!] (C[\![e \bowtie 0]\!] \mathcal{X})) \cup (C[\![e \bowtie 0]\!] \mathcal{X})
C[\![while e \bowtie 0 \text{ do } s \text{ done}\!] \mathcal{X} \stackrel{\text{def}}{=} C[\![e \bowtie 0]\!] \mathcal{X})
\text{where } F(\mathcal{Y}) \stackrel{\text{def}}{=} \mathcal{X} \cup C[\![s]\!] (C[\![e \bowtie 0]\!] \mathcal{Y})
```

informal justification for the loop semantics:

All the C[[s]] functions are continuous, hence the fixpoints exist. By induction on k, $F^k(\emptyset) = \cup_{i \leq k} (C[s] \circ C[e \bowtie 0])^i \mathcal{X}$ hence, Ifp $F = \cup_i (C[s] \circ C[e \bowtie 0])^i \mathcal{X}$

We fall back to a special case of (transfinite) chaotic iteration that stabilizes loops depth-first.

From finite traces to reachability

Abstracting traces into states

<u>Idea:</u> view state semantics as abstractions of traces semantics.

A state in the state semantics corresponds to any partial execution trace terminating in this state.

We have a Galois embedding between finite traces and states:

$$(\mathcal{P}(\Sigma^*),\subseteq) \stackrel{\gamma_p}{\longleftarrow} (\mathcal{P}(\Sigma),\subseteq)$$

(proof on next slide)

Abstracting traces into states (proof)

proof of: (α_p, γ_p) forms a Galois embedding.

Instead of the definition $\alpha(c) \subseteq a \iff c \subseteq \gamma(a)$, we use the alternate characterization of Galois connections: α and γ are monotonic, $\gamma \circ \alpha$ is extensive, and $\alpha \circ \gamma$ is reductive. Embedding means that, additionally, $\alpha \circ \gamma = id$.

- $\alpha_p, \ \gamma_p \ \text{are} \cup -\text{morphisms}, \ \text{hence monotonic}$
- $\begin{aligned} & \bullet & (\gamma_p \circ \alpha_p)(T) \\ & = \{ \sigma_0, \dots, \sigma_n \mid \sigma_n \in \alpha_p(T) \} \\ & = \{ \sigma_0, \dots, \sigma_n \mid \exists \sigma'_0, \dots, \sigma'_m \in T : \sigma_n = \sigma'_m \} \\ & \supset T \end{aligned}$
- $\begin{aligned} \bullet & (\alpha_p \circ \gamma_p)(S) \\ &= \{ \sigma \mid \exists \sigma_0, \dots, \sigma_n \in \gamma_p(S) : \sigma = \sigma_n \} \\ &= \{ \sigma \mid \exists \sigma_0, \dots, \sigma_n : \sigma_n \in S, \sigma = \sigma_n \} \\ &= S \end{aligned}$

Abstracting prefix trace semantics into reachability

We can abstract semantic operators and their least fixpoint

Recall that:

- $\blacksquare \mathcal{T}_p(\mathcal{I}) = \operatorname{lfp} F_p \text{ where } F_p(\mathcal{I}) \stackrel{\text{def}}{=} \mathcal{I} \cup \mathcal{T} \cap \tau$
- $\blacksquare \mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}} \text{ where } F_{\mathcal{R}}(S) \stackrel{\text{def}}{=} \mathcal{I} \cup \operatorname{post}_{\tau}(S)$
- $\blacksquare (\mathcal{P}(\Sigma^*),\subseteq) \xrightarrow{\gamma_p} (\mathcal{P}(\Sigma),\subseteq)$

We have: $\alpha_p \circ F_p = F_R \circ \alpha_p$

by fixpoint transfer, we get: $\alpha_p(\mathcal{T}_p(\mathcal{I})) = \mathcal{R}(\mathcal{I})$

(proof on next slide)

Abstracting prefix traces into reachability (proof)

```
\underline{\operatorname{proof:}} \text{ of } \alpha_{p} \circ F_{p} = F_{\mathcal{R}} \circ \alpha_{p} \\
(\alpha_{p} \circ F_{p})(T) \\
= \alpha_{p}(\mathcal{I} \cup T \cap \tau) \\
= \{\sigma \mid \exists \sigma_{0}, \dots, \sigma_{n} \in \mathcal{I} \cup T \cap \tau : \sigma = \sigma_{n}\} \\
= \mathcal{I} \cup \{\sigma \mid \exists \sigma_{0}, \dots, \sigma_{n} \in T \cap \tau : \sigma = \sigma_{n}\} \\
= \mathcal{I} \cup \{\sigma \mid \exists \sigma_{0}, \dots, \sigma_{n} \in T : \sigma_{n} \to \sigma\} \\
= \mathcal{I} \cup \operatorname{post}_{\tau}(\{\sigma \mid \exists \sigma_{0}, \dots, \sigma_{n} \in T : \sigma = \sigma_{n}\}) \\
= \mathcal{I} \cup \operatorname{post}_{\tau}(\alpha_{p}(T)) \\
= (F_{\mathcal{R}} \circ \alpha_{p})(T)
```

Abstracting traces into states (example)

$\begin{array}{l} \mathsf{program} \\ j \leftarrow 0; \\ i \leftarrow 0; \\ \mathsf{while} \ i < 100 \ \mathsf{do} \\ i \leftarrow i + 1; \\ j \leftarrow j + [0, 1] \\ \mathsf{done} \end{array}$

- prefix trace semantics: i and j are increasing and $0 \le j \le i \le 100$
- forward reachable state semantics: 0 < i < i < 100

⇒ the abstraction forgets the ordering of states

Another state/trace abstraction: ordering abstraction

Another Galois embedding between finite traces and states:

$$(\mathcal{P}(\Sigma^*),\subseteq) \xrightarrow{\gamma_o} (\mathcal{P}(\Sigma),\subseteq)$$

proof sketch:

 α_o and γ_o are monotonic, and $\alpha_o \circ \gamma_o = id$.

$$(\gamma_o \circ \alpha_o)(T) = \{ \sigma_0, \ldots, \sigma_n \mid \forall i \leq n: \exists \sigma'_0, \ldots, \sigma'_m \in T, j \leq m: \sigma_i = \sigma'_i \} \supseteq T.$$

Semantic correspondence by ordering abstraction

We have:
$$\alpha_o(\mathcal{T}_p(\mathcal{I})) = \mathcal{R}(\mathcal{I})$$

proof:

We have $\alpha_o = \alpha_p \circ \rho_p$ (i.e.: a state is in a trace if it is the last state of one of its prefix).

Recall the prefix trace abstraction into states: $\mathcal{R}(\mathcal{I}) = \alpha_p(\mathcal{T}_p(\mathcal{I}))$ and the fact that the prefix trace semantics is closed by prefix: $\rho_n(\mathcal{T}_p(\mathcal{I})) = \mathcal{T}_p(\mathcal{I})$.

We get $\alpha_{\rho}(\mathcal{T}_{\rho}(\mathcal{I})) = \alpha_{\rho}(\rho_{\rho}(\mathcal{T}_{\rho}(\mathcal{I}))) = \alpha_{\rho}(\mathcal{T}_{\rho}(\mathcal{I})) = \mathcal{R}(\mathcal{I}).$

This is a direct proof, not a fixpoint transfer proof (our theorems do not apply...)

alternate proof: generalized fixpoint transfer

Recall that $\mathcal{T}_p(\mathcal{I}) = \operatorname{lfp} F_p$ where $F_p(\mathcal{T}) \stackrel{\operatorname{def}}{=} \mathcal{I} \cup \mathcal{T} \cap \tau$ and $\mathcal{R}(\mathcal{I}) = \operatorname{lfp} F_{\mathcal{R}}$ where

 $F_{\mathcal{R}}(S) \stackrel{\mathrm{def}}{=} \mathcal{I} \cup \mathsf{post}_{\tau}(S)$, but $\alpha_o \circ F_p = F_{\mathcal{R}} \circ \alpha_o$ does not hold in general, so, fixpoint transfer theorems do not apply directly.

However, $\alpha_o \circ F_p = F_{\mathcal{R}} \circ \alpha_o$ holds for sets of traces closed by prefix. By induction, the Kleene iterates a_p^n and $a_{\mathcal{R}}^n$ involved in the computation of Ifp F_p and Ifp $F_{\mathcal{R}}$ satisfy $\forall n : \alpha_o(a_p^n) = a_{\mathcal{R}}^n$, and so

$$\alpha_o(\operatorname{lfp} F_p) = \operatorname{lfp} F_R$$
.

Backward state co-reachability semantics

Backward state co-reachability

 $\mathcal{C}(\mathcal{F})$: states co-reachable from \mathcal{F} in the transition system:

$$\mathcal{C}(\mathcal{F}) \stackrel{\text{def}}{=} \{ \sigma \mid \exists n \geq 0, \sigma_0, \dots, \sigma_n : \sigma = \sigma_0, \sigma_n \in \mathcal{F}, \forall i : \sigma_i \to \sigma_{i+1} \} \\
= \bigcup_{n \geq 0} \operatorname{pre}_{\tau}^n(\mathcal{F})$$

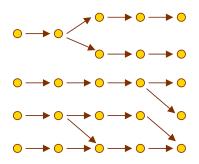
where
$$\operatorname{pre}_{\tau}(S) \stackrel{\text{def}}{=} \{ \sigma \mid \exists \sigma' \in S : \sigma \to \sigma' \} \quad (\operatorname{pre}_{\tau} = \operatorname{post}_{\tau^{-1}})$$

 $\mathcal{C}(\mathcal{F})$ can also be expressed in fixpoint form:

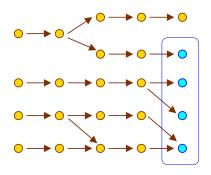
$$\mathcal{C}(\mathcal{F}) = \mathsf{lfp}\, F_{\mathcal{C}} \; \mathsf{where} \; F_{\mathcal{C}}(S) \stackrel{\scriptscriptstyle \mathrm{def}}{=} \; \mathcal{F} \cup \mathsf{pre}_{\tau}(S)$$

<u>Justification:</u> $C(\mathcal{F})$ in τ is exactly $\mathcal{R}(\mathcal{F})$ in τ^{-1}

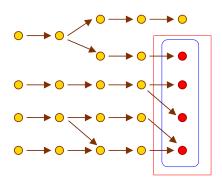
Alternate characterization: $C(\mathcal{F}) = \mathsf{lfp}_{\mathcal{F}} \ G_{\mathcal{C}} \ \mathsf{where} \ G_{\mathcal{C}}(S) = S \cup \mathsf{pre}_{\tau}(S)$

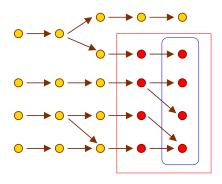


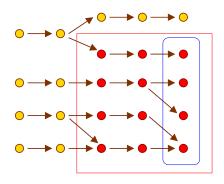
Transition system

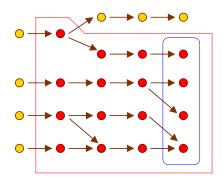


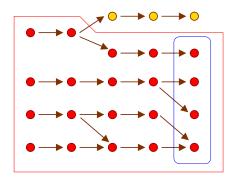
Final states $\mathcal F$











States co-reachable from ${\mathcal F}$

Application of backward co-reachability

■ $\mathcal{I} \cap \mathcal{C}(\mathcal{B} \setminus \mathcal{F})$ Initial states that have at least one erroneous execution

```
• j \leftarrow 0;

while i > 0 do

i \leftarrow i - 1;

j \leftarrow j + [0, 10]

assert (j \le 200)

done •
```

```
initial states I: i ∈ [0, 100] at •
final states F: any memory state at •
blocking states B: final, or j > 200 (assertion failure)
I∩C(B\F): at •, i > 20
```

- lacktriangledown Over-approximating $\mathcal C$ is useful to isolate possibly incorrect executions from those guaranteed to be correct
- Iterate forward and backward analyses interactively ⇒ abstract debugging [Bour93]

Backward co-reachability in equational form

Principle:

As before, reorganize transitions by label $\ell \in \mathcal{L}$, to get an equation system on $(\mathcal{X}_{\ell})_{\ell}$, with $\mathcal{X}_{\ell} \subseteq \mathcal{E}$

Example:

```
\begin{array}{c} {}^{\ell 1} j \leftarrow 0; \\ {}^{\ell 2} \text{ while } {}^{\ell 3} i > 0 \text{ do} \\ {}^{\ell 4} i \leftarrow i - 1; \\ {}^{\ell 5} j \leftarrow j + [0, 10] \end{array}
```

$$\begin{split} &\mathcal{X}_{1} = \overleftarrow{C} \, \llbracket \, j \to 0 \, \rrbracket \, \mathcal{X}_{2} \\ &\mathcal{X}_{2} = \mathcal{X}_{3} \\ &\mathcal{X}_{3} = \overleftarrow{C} \, \llbracket \, i > 0 \, \rrbracket \, \mathcal{X}_{4} \cup \overleftarrow{C} \, \llbracket \, i \leq 0 \, \rrbracket \, \mathcal{X}_{6} \\ &\mathcal{X}_{4} = \overleftarrow{C} \, \llbracket \, i \leftarrow i - 1 \, \rrbracket \, \mathcal{X}_{5} \\ &\mathcal{X}_{5} = \overleftarrow{C} \, \llbracket \, j \leftarrow j + [0, 10] \, \rrbracket \, \mathcal{X}_{3} \\ &\mathcal{X}_{6} = \mathcal{F} \end{split}$$

- final states $\{\ell 6\} \times \mathcal{F}$.
- $\bullet \quad \overleftarrow{C} \llbracket V \leftarrow e \rrbracket \mathcal{X} \stackrel{\text{def}}{=} \{ \rho \mid \exists v \in E \llbracket e \rrbracket \rho : \rho [V \mapsto v] \in \mathcal{X} \}$
- $\bullet \overleftarrow{C} \llbracket e \bowtie 0 \rrbracket \mathcal{X} \stackrel{\text{def}}{=} \{ \rho \in \mathcal{X} \mid \exists v \in E \llbracket \rho \rrbracket \rho : v \bowtie 0 \} = C \llbracket e \bowtie 0 \rrbracket \mathcal{X}$

(also possible on control-flow graphs...)

Suffix trace semantics

Similarly to the finite prefix trace semantics from \mathcal{I} , we can build a suffix trace semantics going backwards from \mathcal{F} :

- $\mathcal{T}_s(\mathcal{F}) \stackrel{\text{def}}{=} \{ \sigma_0, \dots, \sigma_n \mid n \geq 0, \sigma_n \in \mathcal{F}, \forall i : \sigma_i \to \sigma_{i+1} \}$ (traces following τ and ending in a state in \mathcal{F})
- $T_s(\mathcal{F}) = \bigcup_{n>0} (\tau^{n}) \mathcal{F}$
- $\mathcal{T}_s(\mathcal{F}) = \text{Ifp } F_s \text{ where } F_s(T) \stackrel{\text{def}}{=} \mathcal{F} \cup \tau \cap T$ (F_s prepends a transition to each trace, and adds back \mathcal{F})

Backward state co-rechability abstracts the suffix trace semantics:

$$a \xrightarrow{b} c$$

$$\mathcal{F} \stackrel{\text{def}}{=} \{c\}$$
$$\tau \stackrel{\text{def}}{=} \{(a,b),(b,b),(b,c)\}$$

Iterates:
$$\mathcal{T}_s(\mathcal{F}) = \operatorname{lfp} F_s$$
 where $F_s(T) \stackrel{\text{def}}{=} \mathcal{F} \cup \tau ^\frown T$

- $F_{\epsilon}^{0}(\emptyset) = \emptyset$
- $F_{s}^{1}(\emptyset) = \mathcal{F} = \{c\}$
- $F_s^2(\emptyset) = \{c, bc\}$
- $F_s^3(\emptyset) = \{c, bc, bbc, abc\}$
- $F_s^n(\emptyset) = \{ c, b^i c, ab^j c \mid i \in [1, n-1], j \in [1, n-2] \}$
- $T_s(\mathcal{F}) = \bigcup_{n>0} F_s^n(\emptyset) = \{ c, b^i c, ab^i c \mid i \geq 1 \}$

Symmetric finite partial trace semantics

Symmetric finite partial trace semantics

\mathcal{T} : all the finite partial execution traces.

(not necessarily starting in \mathcal{I} nor ending in \mathcal{F})

$$\mathcal{T} \stackrel{\text{def}}{=} \left\{ \sigma_0, \dots, \sigma_n \mid n \ge 0, \forall i : \sigma_i \to \sigma_{i+1} \right\} \\
= \bigcup_{n \ge 0} \sum_{n \ge 0} \tau^{n} \\
= \bigcup_{n \ge 0} \tau^{n} \sum$$

The semantics (and iterates) are forward/backward symmetric:

- $\mathcal{T} = \mathcal{T}_p(\Sigma)$, hence $\mathcal{T} = \text{lfp } F_{p*}$ where $F_{p*}(T) \stackrel{\text{def}}{=} \Sigma \cup T \stackrel{\sim}{\tau}$ (prefix partial traces from any initial state)
- $\mathcal{T} = \mathcal{T}_s(\Sigma)$, hence $\mathcal{T} = \mathsf{lfp}\,F_{s*}$ where $F_{s*}(T) \stackrel{\text{def}}{=} \Sigma \cup \tau \cap T$ (suffix partial traces to any final state)
- $F_{p*}^n(\emptyset) = F_{s*}^n(\emptyset) = \bigcup_{i < n} \Sigma^{\frown} \tau^{\frown i} = \bigcup_{i < n} \tau^{\frown i} \cap \Sigma = \mathcal{T} \cap \Sigma^{< n}$

Abstracting partial traces into prefix traces

Prefix traces abstract partial traces

as we forget all about partial traces not starting in $\ensuremath{\mathcal{I}}$

Galois connection:

$$(\mathcal{P}(\Sigma^*),\subseteq) \xleftarrow{\gamma_{\mathcal{I}}} (\mathcal{P}(\Sigma^*),\subseteq)$$

$$\bullet \alpha_{\mathcal{I}}(T) \stackrel{\text{def}}{=} T \cap (\mathcal{I} \cdot \Sigma^*)$$

(keep only traces starting in \mathcal{I})

(add all traces not starting in \mathcal{I})

We then have: $\mathcal{T}_p(\mathcal{I}) = \alpha_{\mathcal{I}}(\mathcal{T})$

similarly for the suffix traces:
$$\mathcal{T}_s(\mathcal{F}) = \alpha_{\mathcal{F}}(\mathcal{T})$$
 where $\alpha_{\mathcal{F}}(\mathcal{T}) \stackrel{\text{def}}{=} \mathcal{T} \cap (\Sigma^* \cdot \mathcal{F})$

(proof on next slide)

Abstracting partial traces into prefix traces (proof)

proof

```
\alpha_{\mathcal{I}} and \gamma_{\mathcal{I}} are monotonic. (\alpha_{\mathcal{I}} \circ \gamma_{\mathcal{I}})(T) = (T \cup (\Sigma \setminus \mathcal{I}) \cdot \Sigma^*) \cap \mathcal{I} \cdot \Sigma^*) = T \cap \mathcal{I} \cdot \Sigma^* \subseteq T. (\gamma_{\mathcal{I}} \circ \alpha_{\mathcal{I}})(T) = (T \cap \mathcal{I} \cdot \Sigma^*) \cup (\Sigma \setminus \mathcal{I}) \cdot \Sigma^* = T \cup (\Sigma \setminus \mathcal{I}) \cdot \Sigma^* \supseteq T. So, we have a Galois connection.
```

A direct proof of $\mathcal{T}_{\rho}(\mathcal{I}) = \alpha_{\mathcal{I}}(\mathcal{T})$ is straightforward, by definition of \mathcal{T}_{ρ} , $\alpha_{\mathcal{I}}$, and \mathcal{T} .

We can also retrieve the result by fixpoint transfer.

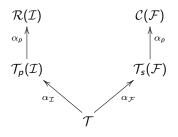
$$\mathcal{T} = \operatorname{lfp} F_{p*} \text{ where } F_{p*}(T) \stackrel{\operatorname{def}}{=} \Sigma \cup T \widehat{} \tau.$$

$$\mathcal{T}_p = \operatorname{lfp} F_p \text{ where } F_p(T) \stackrel{\operatorname{def}}{=} \mathcal{I} \cup T \widehat{} \tau.$$

We have:

$$(\alpha_{\mathcal{I}} \circ F_{p*})(T) = (\Sigma \cup T \cap \tau) \cap (\mathcal{I} \cdot \Sigma^*) = \mathcal{I} \cup ((T \cap \tau) \cap (\mathcal{I} \cdot \Sigma^*) = \mathcal{I} \cup ((T \cap (\mathcal{I} \cdot \Sigma^*)) \cap \tau) = (F_p \circ \alpha_{\mathcal{I}})(T).$$

A first hierarchy of semantics



forward/backward states

prefix/suffix traces

partial finite traces

Sufficient precondition state semantics

Sufficient preconditions

 $\mathcal{S}(\mathcal{Y})$: states with executions staying in \mathcal{Y}

$$\mathcal{S}(\mathcal{Y}) \stackrel{\text{def}}{=} \{ \sigma \mid \forall n \geq 0, \sigma_0, \dots, \sigma_n : (\sigma = \sigma_0 \land \forall i : \sigma_i \to \sigma_{i+1}) \implies \sigma_n \in \mathcal{Y} \}$$
$$= \bigcap_{n \geq 0} \widetilde{\mathsf{pre}}_{\tau}^{n}(\mathcal{Y})$$

where
$$\widetilde{\mathsf{pre}}_{\tau}(S) \stackrel{\mathrm{def}}{=} \{ \sigma \mid \forall \sigma' : \sigma \to \sigma' \implies \sigma' \in S \}$$

(states such that all successors satisfy S, \widetilde{pre} is a complete \cap -morphism)

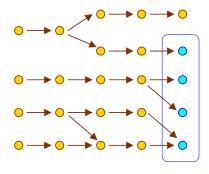
 $\mathcal{S}(\mathcal{Y})$ can be expressed in fixpoint form:

$$S(\mathcal{Y}) = \operatorname{\mathsf{gfp}} F_{\mathcal{S}} \text{ where } F_{\mathcal{S}}(S) \stackrel{\text{def}}{=} \mathcal{Y} \cap \widetilde{\operatorname{\mathsf{pre}}}_{\tau}(S)$$

proof sketch: similar to that of $\mathcal{R}(\mathcal{I})$, in the dual.

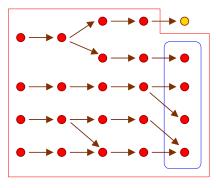
 $F_{\mathcal{S}}$ is continuous in the dual CPO $(\mathcal{P}(\Sigma),\supseteq)$, because $\widetilde{\operatorname{pre}}_{\tau}$ is: $F_{\mathcal{S}}(\cap_{i\in I}A_i)=\cap_{i\in I}F_{\mathcal{S}}(A_i)$. By Kleene's theorem in the dual, $\operatorname{gfp} F_{\mathcal{S}}=\cap_{n\in\mathbb{N}}F_{\mathcal{S}}^n(\Sigma)$.

We would prove by recurrence that $F_S^n(\Sigma) = \bigcap_{i < n} \widetilde{\operatorname{pre}}_{\tau}^i(\mathcal{Y})$.



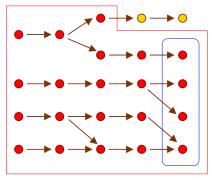
Final states ${\cal F}\,$

Goal: when stopping, stop in $\ensuremath{\mathcal{F}}$



Final states \mathcal{F} Goal: stay in $\mathcal{Y} = \mathcal{F} \cup (\Sigma \setminus \mathcal{B})$

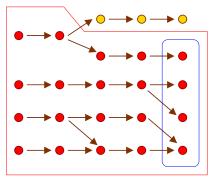
Iteration $F^0_{\mathcal{S}}(\mathcal{Y})$



Final states \mathcal{F}

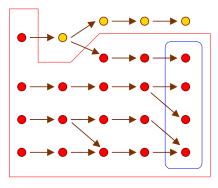
Goal: stay in $\mathcal{Y} = \mathcal{F} \cup (\Sigma \setminus \mathcal{B})$

Iteration $F^1_{\mathcal{S}}(\mathcal{Y})$

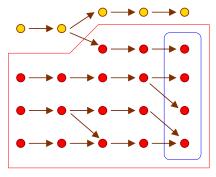


Final states \mathcal{F} Goal: stay in $\mathcal{V} = \mathcal{F}$

Goal: stay in $\mathcal{Y} = \mathcal{F} \cup (\Sigma \setminus \mathcal{B})$ Iteration $F_S^2(\mathcal{Y})$



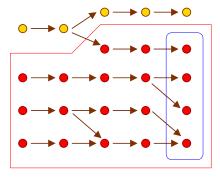
Final states \mathcal{F} Goal: stay in $\mathcal{Y} = \mathcal{F} \cup (\Sigma \setminus \mathcal{B})$ Iteration $F_S^3(\mathcal{Y})$



Final states \mathcal{F}

Goal: stay in $\mathcal{Y} = \mathcal{F} \cup (\Sigma \setminus \mathcal{B})$

Sufficient preconditions $\mathcal{S}(\mathcal{Y})$ to stop in \mathcal{F}



Final states \mathcal{F}

Goal: stay in $\mathcal{Y} = \mathcal{F} \cup (\Sigma \setminus \mathcal{B})$

Sufficient preconditions $\mathcal{S}(\mathcal{Y})$ to stop in \mathcal{F}

Note: $S(\mathcal{Y}) \subsetneq C(\mathcal{F})$

$$\mathcal{C}(\mathcal{F})$$

Sufficient preconditions and reachability

Correspondence with reachability:

We have a Galois connection:

$$(\mathcal{P}(\Sigma),\subseteq) \xleftarrow{\mathcal{S}} (\mathcal{P}(\Sigma),\subseteq)$$

- so $S(\mathcal{Y}) = \bigcup \{X \mid \mathcal{R}(X) \subseteq \mathcal{Y}\}$ by Galois connection property $S(\mathcal{Y})$ is the largest initial set whose reachability is in \mathcal{Y}

We retrieve Dijkstra's weakest liberal preconditions

(proof sketch on next slide)

Sufficient preconditions and reachability (proof)

proof sketch:

Recall that
$$\mathcal{R}(\mathcal{I}) = \mathsf{lfp}_{\mathcal{I}} \ G_{\mathcal{R}} \ \mathsf{where} \ G_{\mathcal{R}}(S) = S \cup \mathsf{post}_{\tau}(S).$$

Likewise,
$$S(\mathcal{Y}) = \mathsf{gfp}_{\mathcal{V}} G_{\mathcal{S}}$$
 where $G_{\mathcal{S}}(S) = S \cap \widetilde{\mathsf{pre}}_{\tau}(S)$.

We have a Galois connection: $(\mathcal{P}(\Sigma),\subseteq) \xleftarrow{\stackrel{pre_{\tau}}{pret_{\tau}}} (\mathcal{P}(\Sigma),\subseteq).$

$$\begin{array}{lll} \mathsf{post}_\tau(A) \subseteq B & \iff & \{\,\sigma' \,|\, \exists \sigma \in A \colon \sigma \to \sigma'\,\} \subseteq B \\ & \iff & (\forall \sigma \in A \colon \sigma \to \sigma' \implies \sigma' \in B) \\ & \iff & (A \subseteq \underbrace{\{\,\sigma \,|\, \forall \sigma' \colon \sigma \to \sigma' \implies \sigma' \in B\,\})} \\ & \iff & A \subseteq \mathsf{pre}_\tau(B) \end{array}$$

As a consequence
$$(\mathcal{P}(\Sigma),\subseteq) \xrightarrow{G_{\mathcal{S}}} (\mathcal{P}(\Sigma),\subseteq)$$
.

The Galois connection can be lifted to fixpoint operators:

$$(\mathcal{P}(\Sigma),\subseteq) \xrightarrow[x\mapsto \mathsf{lfp}_X G_{\mathcal{R}}]{x\mapsto \mathsf{lfp}_X G_{\mathcal{R}}} (\mathcal{P}(\Sigma),\subseteq).$$

Applications of sufficient preconditions

Initial states such that all executions are correct: $\mathcal{I} \cap \mathcal{S}(\mathcal{F} \cup (\Sigma \setminus \mathcal{B}))$ (the only blocking states reachable from initial states are final states)

program

 $\begin{aligned} & i \leftarrow 0; \\ & \text{while } i < 100 \text{ do} \\ & i \leftarrow i+1; \\ & j \leftarrow j + [0,1] \\ & \text{assert } (j \leq 105) \\ & \text{done} \ \bullet \end{aligned}$

- initial states \mathcal{I} : $j \in [0, 10]$ at •
- final states F: any memory state at •
- blocking states \mathcal{B} : either final or j > 105 (assertion failure)
- $\mathcal{I} \cap \mathcal{S}(\mathcal{F} \cup (\Sigma \setminus \mathcal{B}))$: at •, $j \in [0, 5]$ (note that $\mathcal{I} \cap \mathcal{C}(\mathcal{F} \cup (\Sigma \setminus \mathcal{B}))$ gives \mathcal{I})
- application to inferring function contracts
- application to inferring counter-examples
- requires under-approximations to build decidable abstractions but most analyses can only provide over-approximations!

Maximal trace semantics

The need for maximal traces

The partial trace semantics cannot distinguish between:

while
a
 $0 = 0$ do done

while
$$^{a}[0,1] = 0$$
 do done

we get a^* for both programs

Solution: restrict the semantics to complete executions only

- \blacksquare keep only executions finishing in a blocking state \mathcal{B}
- add infinite executions

the partial semantics took into account infinite execution by including all their finite parts, but we no longer keep them as they are not maximal!

Benefits:

- avoid confusing prefix of infinite executions with finite executions
- allow reasoning on exact execution length
- allow reasoning on infinite executions (non-termination, inevitability, liveness)

Infinite traces

Notations:

- lacksquare $\sigma_0,\ldots,\sigma_n,\ldots$: an infinite trace (length ω)
- Σ^{ω} : the set of all infinite traces
- $\Sigma^{\infty} \stackrel{\text{def}}{=} \Sigma^* \cup \Sigma^{\omega}$: the set of all traces (finite and infinite)

Extending the operators:

- $(\sigma_0, \ldots, \sigma_n) \cdot (\sigma'_0, \ldots) \stackrel{\text{def}}{=} \sigma_0, \ldots, \sigma_n, \sigma'_0, \ldots \text{ (appending to a finite trace)}$
- $lackbox{t} t \cdot t' \stackrel{
 m def}{=} t \ {
 m if} \ t \in \Sigma^\omega$ (appending to an infinite trace does nothing)
- $\bullet (\sigma_0, \ldots, \sigma_n) \widehat{} (\sigma'_0, \sigma'_1, \ldots) \stackrel{\text{def}}{=} \sigma_0, \ldots, \sigma_n, \sigma'_1, \ldots \text{ when } \sigma_n = \sigma'_0$
- $t \cap t' \stackrel{\text{def}}{=} t$, if $t \in \Sigma^{\omega}$
- prefix: $x \leq y \iff \exists u \in \Sigma^{\infty} : x \cdot u = y \quad (\Sigma^{\omega}, \preceq) \text{ is a CPO}$
- \cdot distributes infinite \cup and \cap
- distributes infinite ∪, but not infinite ∩!

$$\{a^{\omega}\} \cap (\cap_{n \in \mathbb{N}} \{a^m \mid n \ge m\}) = \{a^{\omega}\} \cap \emptyset = \emptyset \text{ but } \cap_{n \in \mathbb{N}} (\{a^{\omega}\} \cap \{a^m \mid n \ge m\}) = \cap_{n \in \mathbb{N}} \{a^{\omega}\} = \{a^{\omega}\} \text{ However } A \cap (\cap_{i \in I} B_i) = \bigcup_{i \in I} (A \cap B_i) \text{ if } A \subset \Sigma^*.$$

Maximal traces

Maximal traces: $\mathcal{M}_{\infty} \in \mathcal{P}(\Sigma^{\infty})$

- lacksquare sequences of states linked by the transition relation au
- **start in any state** ($\mathcal{I} = \Sigma$, technical requirement for the fixpoint characterization)
- \blacksquare either finite and stop in a blocking state ($\mathcal{F} = \mathcal{B}$)
- or infinite

$$\mathcal{M}_{\infty} \stackrel{\text{def}}{=} \left\{ \sigma_{0}, \dots, \sigma_{n} \in \Sigma^{*} \, | \, \sigma_{n} \in \mathcal{B}, \forall i < n: \sigma_{i} \to \sigma_{i+1} \right\} \cup \left\{ \sigma_{0}, \dots, \sigma_{n}, \dots \in \Sigma^{\omega} \, | \, \forall i < \omega: \sigma_{i} \to \sigma_{i+1} \right\}$$

(can be anchored at \mathcal{I} and \mathcal{F} as: $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \cap ((\Sigma^* \cdot \mathcal{F}) \cup \Sigma^{\omega}))$

Partitioned fixpoint formulation of maximal traces

Goal: we look for a fixpoint characterization of \mathcal{M}_{∞}

We consider separately finite and infinite maximal traces

■ Finite traces: already done!

From the suffix partial trace semantics, recall:

$$\mathcal{M}_{\infty} \cap \Sigma^* = \mathcal{T}_s(\mathcal{B}) = \operatorname{lfp} F_s$$

where $F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau \cap T$ in $(\mathcal{P}(\Sigma^*), \subseteq) \dots$

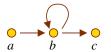
Infinite traces:

Additionally, we will prove:
$$\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{gfp} G_s$$
 where $G_s(T) \stackrel{\text{def}}{=} \tau \cap T$ in $(\mathcal{P}(\Sigma^{\omega}), \subseteq)$

Note: only backward fixpoint formulation of maximal traces exist!

(proof in following slides)

Infinite trace semantics: graphical illustration



$$\mathcal{B} \stackrel{\text{def}}{=} \{c\}$$

$$\tau \stackrel{\text{def}}{=} \{(a,b),(b,b),(b,c)\}$$

<u>Iterates:</u> $\mathcal{M}_{\infty} \cap \Sigma^{\omega} = \operatorname{\mathsf{gfp}} G_{\mathsf{s}}$ where $G_{\mathsf{s}}(T) \stackrel{\text{def}}{=} \tau^{\frown} T$

- $G_s^0(\Sigma^\omega) = \Sigma^\omega$
- $G^1_s(\Sigma^\omega) = ab\Sigma^\omega \cup bb\Sigma^\omega \cup bc\Sigma^\omega$
- $lacksquare G_s^2(\Sigma^\omega) = abb\Sigma^\omega \cup bbb\Sigma^\omega \cup abc\Sigma^\omega \cup bbc\Sigma^\omega$
- ullet $G^3_{\mathfrak{s}}(\Sigma^\omega)=abbb\Sigma^\omega\cup bbbb\Sigma^\omega\cup abbc\Sigma^\omega\cup bbbc\Sigma^\omega$
- $G_s^n(\Sigma^\omega) = \{ ab^nt, b^{n+1}t, ab^{n-1}ct, b^nct \mid t \in \Sigma^\omega \}$
- $\blacksquare \ \mathcal{M}_{\infty} \cap \Sigma^{\omega} = \cap_{n \geq 0} \ G_s^n(\Sigma^{\omega}) = \{ab^{\omega}, \ b^{\omega}\}$

Infinite trace semantics: proof

Least fixpoint formulation of maximal traces

<u>Idea:</u> To get a <u>least fixpoint</u> formulation for whole \mathcal{M}_{∞} , we merge finite and infinite maximal trace least fixpoint forms

Fixpoint fusion:

```
\mathcal{M}_{\infty} \cap \Sigma^* is best defined on (\mathcal{P}(\Sigma^*), \subseteq, \cup, \cap, \emptyset, \Sigma^*).

\mathcal{M}_{\infty} \cap \Sigma^{\omega} is best defined on (\mathcal{P}(\Sigma^{\omega}), \supseteq, \cap, \cup, \Sigma^{\omega}, \emptyset), the dual lattice.

(we transform the greatest fixpoint into a least fixpoint!)
```

We mix them into a new complete lattice $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq, \sqcup, \sqcap, \bot, \top)$:

- $\blacksquare A \sqsubseteq B \iff (A \cap \Sigma^*) \subseteq (B \cap \Sigma^*) \land (A \cap \Sigma^{\omega}) \supseteq (B \cap \Sigma^{\omega})$
- $\blacksquare A \sqcup B \stackrel{\text{def}}{=} ((A \cap \Sigma^*) \cup (B \cap \Sigma^*)) \cup ((A \cap \Sigma^{\omega}) \cap (B \cap \Sigma^{\omega}))$
- $\blacksquare A \sqcap B \stackrel{\text{def}}{=} ((A \cap \Sigma^*) \cap (B \cap \Sigma^*)) \cup ((A \cap \Sigma^{\omega}) \cup (B \cap \Sigma^{\omega}))$
- $\perp \perp \stackrel{\text{def}}{=} \Sigma^{\omega}$
- $\top \stackrel{\text{def}}{=} \Sigma^*$

In this lattice, $\mathcal{M}_{\infty} = \text{lfp } F_s$ where $F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau \cap T$

(proof on next slides)

Fixpoint fusion theorem

Theorem: fixpoint fusion

```
If X_1 = \operatorname{lfp} F_1 in (\mathcal{P}(\mathcal{D}_1), \sqsubseteq_1) and X_2 = \operatorname{lfp} F_2 in (\mathcal{P}(\mathcal{D}_2), \sqsubseteq_2)
and \mathcal{D}_1 \cap \mathcal{D}_2 = \emptyset.
then X_1 \cup X_2 = \text{Ifp } F \text{ in } (\mathcal{P}(\mathcal{D}_1 \cup \mathcal{D}_2), \sqsubseteq) \text{ where:}
```

- $F(X) \stackrel{\text{def}}{=} F_1(X \cap \mathcal{D}_1) \cup F_2(X \cap \mathcal{D}_2)$
- $\blacksquare A \sqsubseteq B \iff (A \cap \mathcal{D}_1) \sqsubseteq_1 (B \cap \mathcal{D}_1) \wedge (A \cap \mathcal{D}_2) \sqsubseteq_2 (B \cap \mathcal{D}_2)$

proof:

We have: $F(X_1 \cup X_2) = F_1((X_1 \cup X_2) \cap \mathcal{D}_1) \cup F_2((X_1 \cup X_2) \cap \mathcal{D}_2) = F_1(X_1) \cup F_2(X_2) = X_1 \cup X_2$, hence $X_1 \cup X_2$ is a fixpoint of F.

Let Y be a fixpoint. Then $Y = F(Y) = F_1(Y \cap \mathcal{D}_1) \cup F_2(Y \cap \mathcal{D}_2)$, hence, $Y \cap \mathcal{D}_1 = F_1(Y \cap \mathcal{D}_1)$ and $Y \cap \mathcal{D}_1$ is a fixpoint of F_1 . Thus, $X_1 \sqsubseteq_1 Y \cap \mathcal{D}_1$. Likewise, $X_2 \sqsubseteq_2 Y \cap \mathcal{D}_2$. We deduce that $X = X_1 \cup X_2 \subseteq (Y \cap \mathcal{D}_1) \cup (Y \cap \mathcal{D}_2) = Y$, and so, X is F's least fixpoint.

we also have $gfp F = gfp F_1 \cup gfp F_2$. note:

Least fixpoint formulation of maximal traces (proof)

We are now ready to finish the proof that $\mathcal{M}_{\infty} = \mathsf{lfp} \; F_s$ in $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$ with $F_s(T) \stackrel{\text{def}}{=} \mathcal{B} \cup \tau^{\frown} T$

proof:

We have:

•
$$\mathcal{M}_{\infty} \cap \Sigma^* = \operatorname{lfp} F_s \text{ in } (\mathcal{P}(\Sigma^*), \subseteq),$$

$$M_{\infty} \cap \Sigma^{\omega} = \text{lfp } G_s \text{ in } (\mathcal{P}(\Sigma^{\omega}), \supseteq) \text{ where } G_s(T) \stackrel{\text{def}}{=} \tau^{\frown} T,$$

$$\quad \text{in } \mathcal{P}(\Sigma^{\infty}) \text{, we have } F_s(A) = (F_s(A) \cap \Sigma^*) \cup (F_s(A) \cap \Sigma^{\omega}) = F_s(A \cap \Sigma^*) \cup G_s(A \cap \Sigma^{\omega}).$$

So, by fixpoint fusion in $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$, we have:

$$\mathcal{M}_{\infty} = (\mathcal{M}_{\infty} \cap \Sigma^*) \cup (\mathcal{M}_{\infty} \cap \Sigma^{\omega}) = \mathsf{lfp}\, F_s.$$

Note: a greatest fixpoint formulation in $(\Sigma^{\infty}, \subseteq)$ also exists!

Abstracting maximal traces into partial traces

Finite and infinite partial trace semantics

Two steps to go from maximal traces to finite partial traces:

- add all partial traces (prefixes)
- remove infinite traces (in this order!)

Partial trace semantics \mathcal{T}_{∞}

all finite and infinite sequences of states linked by the transition relation τ :

$$\mathcal{T}_{\infty} \stackrel{\text{def}}{=} \left\{ \sigma_{0}, \dots, \sigma_{n} \in \Sigma^{*} \mid \forall i < n : \sigma_{i} \to \sigma_{i+1} \right\} \cup \left\{ \sigma_{0}, \dots, \sigma_{n}, \dots \in \Sigma^{\omega} \mid \forall i < \omega : \sigma_{i} \to \sigma_{i+1} \right\}$$

(partial finite traces do not necessarily end in a blocking state)

Fixpoint form similar to \mathcal{M}_{∞} :

$$\mathcal{T}_{\infty} = \operatorname{lfp} F_{s*} \text{ in } (\mathcal{P}(\Sigma^{\infty}), \sqsubseteq) \text{ where } F_{s*}(T) \stackrel{\text{def}}{=} \Sigma \cup \tau \widehat{} T$$

<u>proof:</u> similar to the proof of $\mathcal{M}_{\infty} = \operatorname{lfp} F_s$

Prefix abstraction

<u>Idea:</u> complete maximal traces by adding (non-empty) prefixes

We have a Galois connection:

$$(\mathcal{P}(\Sigma^{\infty}\setminus\{\epsilon\}),\subseteq) \xrightarrow{\overset{\boldsymbol{\gamma}_{\preceq}}{\boldsymbol{\alpha}_{\preceq}}} (\mathcal{P}(\Sigma^{\infty}\setminus\{\epsilon\}),\subseteq)$$

- $\alpha_{\preceq}(T) \stackrel{\text{def}}{=} \{ t \in \Sigma^{\infty} \setminus \{\epsilon\} \mid \exists u \in T : t \preceq u \}$ (set of all non-empty prefixes of traces in T)

proof:

 α_{\prec} and γ_{\prec} are monotonic.

$$(\alpha_{\prec} \circ \gamma_{\prec})(T) = \{ t \in T \mid \rho_p(t) \subseteq T \} \subseteq T \text{ (prefix-closed trace sets)}.$$

$$(\gamma_{\prec} \circ \alpha_{\prec})(T) = \rho_p(T) \supseteq T.$$

Abstraction from maximal traces to partial traces

Finite and infinite partial traces \mathcal{T}_{∞} are an abstraction of maximal traces \mathcal{M}_{∞} : $\mathcal{T}_{\infty} = \alpha_{\leq}(\mathcal{M}_{\infty})$.

proof:

```
Firstly, \mathcal{T}_{\infty} and \alpha_{\prec}(\mathcal{M}_{\infty}) coincide on infinite traces.
```

Indeed, $\mathcal{T}_{\infty} \cap \Sigma^{\omega} = \mathcal{M}_{\infty} \cap \Sigma^{\omega}$ and α_{\preceq} does not add infinite traces, so: $\mathcal{T}_{\infty} \cap \Sigma^{\omega} = \alpha_{\preceq}(\mathcal{M}_{\infty}) \cap \Sigma^{\omega}$.

We now prove that they also coincide on finite traces. Assume $\sigma_0, \ldots, \sigma_n \in \alpha_{\preceq}(\mathcal{M}_{\infty})$, then $\forall i < r, \sigma_i \rightarrow \sigma_i$, so $\sigma_i \in \mathcal{T}$

 $\forall i < n: \sigma_i \to \sigma_{i+1}, \text{ so, } \sigma_0, \ldots, \sigma_n \in \mathcal{T}_{\infty}.$

Assume $\sigma_0, \ldots, \sigma_n \in \mathcal{T}_{\infty}$, then it can be completed into a maximal trace, either finite or infinite, and so, $\sigma_0, \ldots, \sigma_n \in \alpha_{\preceq}(\mathcal{M}_{\infty})$.

Note: no fixpoint transfer applies here.

Finite trace abstraction

Finite partial traces $\mathcal T$ are an abstraction of all partial traces $\mathcal T_\infty$ (forget about infinite executions)

We have a Galois embedding:

$$(\mathcal{P}(\Sigma^{\infty}),\sqsubseteq) \stackrel{\gamma_*}{\longleftarrow} (\mathcal{P}(\Sigma^*),\subseteq)$$

■ \sqsubseteq is the fused ordering on $\Sigma^* \cup \Sigma^{\omega}$:

$$A \sqsubseteq B \iff (A \cap \Sigma^*) \subseteq (B \cap \Sigma^*) \land (A \cap \Sigma^{\omega}) \supseteq (B \cap \Sigma^{\omega})$$

- $\alpha_*(T) \stackrel{\text{def}}{=} T \cap \Sigma^*$ (remove infinite traces)
- $\mathbf{T} = \alpha_*(\mathcal{T}_{\infty})$

(proof on next slide)

Finite trace abstraction (proof)

proof:

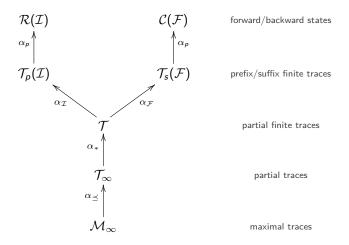
We have Galois embedding because:

- α_* and α_* are monotonic,
- \blacksquare given $T \subseteq \Sigma^*$, we have $(\alpha_* \circ \gamma_*)(T) = T \cap \Sigma^* = T$,
- $(\gamma_* \circ \alpha_*)(T) = T \cap \Sigma^* \supseteq T$, as we only remove infinite traces.

Recall that $\mathcal{T}_{\infty} = \operatorname{lfp} F_{s*}$ in $(\mathcal{P}(\Sigma^{\infty}), \sqsubseteq)$ and $\mathcal{T} = \operatorname{lfp} F_{s*}$ in $(\mathcal{P}(\Sigma^{*}), \subseteq)$, where $F_{s*}(T) \stackrel{\operatorname{def}}{=} \Sigma \cup T ^{\frown} \tau$.

As $\alpha_* \circ F_{s*} = F_{s*} \circ \alpha_*$ and $\alpha_*(\emptyset) = \emptyset$, we can apply the fixpoint transfer theorem to get $\alpha_*(\mathcal{T}_\infty) = \mathcal{T}$.

Enriched hierarchy of semantics



See [Cous02] for more semantics in this diagram.

Safety and liveness trace properties

Maximal trace properties

```
Trace property: P \in \mathcal{P}(\Sigma^{\infty})
```

```
Verification problem: \mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq P
```

or, equivalently, as $\mathcal{M}_{\infty}\subseteq P'$ where $P'\stackrel{\mathrm{def}}{=} P\cup ((\Sigma\setminus\mathcal{I})\cdot\Sigma^{\infty})$

Examples:

- termination: $P \stackrel{\text{def}}{=} \Sigma^*$
- non-termination: $P \stackrel{\text{def}}{=} \Sigma^{\omega}$
- any state property $S \subseteq \Sigma$: $P \stackrel{\text{def}}{=} S^{\infty}$
- \blacksquare maximal execution time: $P \stackrel{\text{def}}{=} \Sigma^{\leq k}$
- minimal execution time: $P \stackrel{\text{def}}{=} \Sigma^{\geq k}$
- ordering, e.g.: $P \stackrel{\text{def}}{=} (\Sigma \setminus \{b\})^* \cdot a \cdot \Sigma^* \cdot b \cdot \Sigma^{\infty}$

Safety properties for traces

<u>Idea:</u> a safety property P models that "nothing bad will ever occur"

- P is provable by exhaustive testing (observe the prefix trace semantics: $\mathcal{T}_P(\mathcal{I}) \subseteq P$)
- \blacksquare P is disprovable by finding a single finite execution not in P

Examples:

- lacksquare any state property: $P\stackrel{\mathrm{def}}{=} S^{\infty}$ for $S\subseteq\Sigma$
- ordering: $P \stackrel{\text{def}}{=} \Sigma^{\infty} \setminus ((\Sigma \setminus \{a\})^* \cdot b \cdot \Sigma^{\infty})$ no b can appear without an a before, but we can have only a, or neither a nor b (not a state property)
- but termination $P \stackrel{\text{def}}{=} \Sigma^*$ is not a safety property disproving requires exhibiting an *infinite* execution

Definition of safety properties

Reminder: finite prefix abstraction (simplified to allow ϵ)

$$(\mathcal{P}(\Sigma^{\infty}),\subseteq) \xleftarrow{\gamma_{*\preceq}} (\mathcal{P}(\Sigma^{*}),\subseteq)$$

The associated upper closure $\rho_{*\preceq} \stackrel{\text{def}}{=} \gamma_{\preceq} \circ \alpha_{\preceq}$ is: $\rho_{*\prec} = \lim \circ \rho_p$ where:

- $\blacksquare \lim(T) \stackrel{\text{def}}{=} T \cup \{ t \in \Sigma^{\omega} \mid \forall u \in \Sigma^* : u \leq t \implies u \in T \}$

<u>Definition:</u> $P \in \mathcal{P}(\Sigma^{\infty})$ is a safety property if $P = \rho_{* \preceq}(P)$

Definition of safety properties (examples)

<u>Definition:</u> $P \subseteq \mathcal{P}(\Sigma^{\infty})$ is a safety property if $P = \rho_{*} \prec (P)$

Examples and counter-examples:

■ state property $P \stackrel{\text{def}}{=} S^{\infty}$ for $S \subseteq \Sigma$:

$$\rho_p(S^\infty) = \lim(S^\infty) = S^\infty \Longrightarrow \text{safety}$$

■ termination $P \stackrel{\text{def}}{=} \Sigma^*$:

$$\rho_p(\Sigma^*) = \Sigma^*$$
, but $\lim(\Sigma^*) = \Sigma^{\infty} \neq \Sigma^* \Longrightarrow$ not safety

• even number of steps $P \stackrel{\text{def}}{=} (\Sigma^2)^{\infty}$:

$$\rho_p((\Sigma^2)^\infty) = \Sigma^\infty \neq (\Sigma^2)^\infty \Longrightarrow \text{not safety}$$

Proving safety properties

Proving that a program satisfies a safety property P is equivalent to proving that its finite prefix abstraction does

$$\mathcal{T}_p(\mathcal{I}) \subseteq P$$

proof sketch:

Soundness. Using the Galois connection between \mathcal{M}_{∞} and \mathcal{T} , we get: $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq \rho_{*\preceq}(\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty})) = \gamma_{*\preceq}(\alpha_{*\preceq}(\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}))) = \gamma_{*\preceq}(\alpha_{*\preceq}(\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}))) = \gamma_{*\preceq}(\alpha_{*\preceq}(\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}))) = \gamma_{*\preceq}(\mathcal{T}_{\rho}(\mathcal{I})).$ As $\mathcal{T}_{\rho}(\mathcal{I}) \subseteq P$, we have, by monotony, $\gamma_{*\preceq}(\mathcal{T}_{\rho}(\mathcal{I})) \subseteq \gamma_{*\preceq}(P) = P$. Hence $\mathcal{M}_{\infty} \cap (\mathcal{I} \cdot \Sigma^{\infty}) \subseteq P$.

Completeness. $\mathcal{T}_p(\mathcal{I})$ provides an inductive invariant for P.

Liveness properties

Idea: liveness property $P \in \mathcal{P}(\Sigma^{\infty})$

Liveness properties model that "something good eventually occurs"

- P cannot be proved by testing (if nothing good happens in a prefix execution, it can still happen in the rest of the execution)
- disproving P requires exhibiting an infinite execution not in P

Examples:

- termination: $P \stackrel{\text{def}}{=} \Sigma^*$
- inevitability: $P \stackrel{\text{def}}{=} \Sigma^* \cdot a \cdot \Sigma^{\infty}$ (a eventually occurs in all executions)
- state properties are not liveness properties

Definition of liveness properties

<u>Definition:</u> $P \in \mathcal{P}(\Sigma^{\infty})$ is a liveness property if $\rho_{*\preceq}(P) = \Sigma^{\infty}$

Examples and counter-examples:

■ termination $P \stackrel{\text{def}}{=} \Sigma^*$:

$$\rho_p(\Sigma^*) = \Sigma^*$$
 and $\lim(\Sigma^*) = \Sigma^{\infty} \Longrightarrow$ liveness

■ inevitability: $P \stackrel{\text{def}}{=} \Sigma^* \cdot a \cdot \Sigma^{\infty}$

$$\rho_p(P) = P \cup \Sigma^*$$
 and $\lim(P \cup \Sigma^*) = \Sigma^{\infty} \Longrightarrow$ liveness

■ state property $P \stackrel{\text{def}}{=} S^{\infty}$ for $S \subseteq \Sigma$:

$$\rho_p(S^\infty) = \lim(S^\infty) = S^\infty \neq \Sigma^\infty$$
 if $S \neq \Sigma \Longrightarrow$ not liveness

■ maximal execution time $P \stackrel{\text{def}}{=} \Sigma^{\leq k}$:

$$\rho_p(\Sigma^{\leq k}) = \lim(\Sigma^{\leq k}) = \Sigma^{\leq k} \neq \Sigma^{\infty} \Longrightarrow \text{not liveness}$$

lacksquare the only property which is both safety and liveness is Σ^{∞}

Proving liveness properties

Variance proof method: (informal definition)

Find a decreasing quantity until something good happens

Example: termination proof

- find $f: \Sigma \to \mathcal{S}$ where $(\mathcal{S}, \sqsubseteq)$ is well-ordered (cf. previous course) f is called a "ranking function"
- $\sigma \in \mathcal{B} \implies \mathbf{f} = \min \mathcal{S}$
- $\sigma \to \sigma' \implies f(\sigma') \sqsubset f(\sigma)$

generalizes the idea that f "counts" the number of steps remaining before termination

Trace topology

A topology on a set can be defined as:

- either a family of open sets (closed under union)
- or family of closed sets (closed under intersection)

Trace topology: on sets of traces in Σ^{∞}

- the closed sets are: $\mathcal{C} \stackrel{\text{def}}{=} \{ P \in \mathcal{P}(\Sigma^{\infty}) | P \text{ is a safety property } \}$
- the open sets can be derived as $\mathcal{O} \stackrel{\text{def}}{=} \{ \Sigma^{\infty} \setminus c \mid c \in \mathcal{C} \}$

Topological closure: $\rho: \mathcal{P}(X) \to \mathcal{P}(X)$

- on our trace topology, $\rho = \rho_{*} \prec$

Dense sets:

- $\mathbf{x} \subseteq X$ is dense if $\rho(x) = X$
- on our trace topology, dense sets are liveness properties

Decomposition theorem

Theorem: decomposition of a set in a topological space

Any set $x \subseteq X$ is the intersection of a closed set and a dense set

proof:

Consequence: on trace properties

Every trace property is the conjunction of a safety property and a liveness property

proving a trace property can be decomposed into a soundness proof and a liveness proof

Bibliography

Bibliography

[Bour93] **F. Bourdoncle**. Abstract debugging of higher-order imperative languages. In PLDI, 46-55, ACM Press, 1993.

[Cous92] **P. Cousot & R. Cousot**. Abstract interpretation and application to logic programs. In Journal of Logic Programming, 13(2–3):103–179, 1992..

[Cous02] **P. Cousot**. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. In Theoretical Comp. Sc., 277(1–2):47–103.