Non-Relational Numerical Abstract Domains

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

Year 2024-2025

Course 3 7 October 2024

Outline

- Concrete semantics
- Abstract domains and abstract solving
- Non-relational numerical abstract domains
 - generic Cartesian abstraction
 - the sign domain(s)
 - the constant domain
 - the interval domain
 - widenings ∇ and narrowings △
 - the congruence domain
- Reduced products
- Bibliography

Next week: relational abstract domains

Concrete semantics

Syntax of a toy-language

Simple numeric programs:

- fixed, finite set of variables V
- with value in some numeric set $\mathbb{I} \stackrel{\text{def}}{=} \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$
- programs as control flow graphs (CFG): (\mathcal{L}, e, x, A) with nodes \mathcal{L} , entry $e \in \mathcal{L}$, exit $x \in \mathcal{L}$, and arcs $A \subseteq \mathcal{L} \times \text{com} \times \mathcal{L}$

Atomic commands:

```
\begin{array}{cccc} \mathsf{com} & ::= & V \leftarrow \mathsf{exp} & & \mathsf{assignment into} \ V \in \mathbb{V} \\ & & | & \mathsf{exp} \bowtie 0 & & \mathsf{numeric test,} \bowtie \in \{=,<,>,\leq,\geq,\neq\} \end{array}
```

Arithmetic expressions:

```
\begin{array}{ccccc} \operatorname{exp} & ::= & V & \operatorname{variable} \ V \in \mathbb{V} \\ & -\operatorname{exp} & \operatorname{negation} \\ & | & \operatorname{exp} \diamond \operatorname{exp} & \operatorname{binary operation:} \diamond \in \{+,-,\times,/\} \\ & | & [c,c'] & \operatorname{constant range}, \ c,c' \in \mathbb{I} \cup \{\pm\infty\} \\ & | & c & \operatorname{constant}, \operatorname{shorthand for} \ [c,c] \end{array}
```

Expression semantics (reminder)

```
Expression semantics: \mathbb{E}[\![e]\!]: \mathcal{E} \to \mathcal{P}(\mathbb{I})
```

```
where \mathcal{E} \stackrel{\text{def}}{=} \mathbb{V} \to \mathbb{I}.
```

The evaluation of e in $\rho \in \mathcal{E}$ gives a set of values:

```
\begin{split} \mathbb{E}  \big[ & [c,c'] \big]  \big| \rho & \stackrel{\text{def}}{=} & \big\{ x \in \mathbb{I} \, | \, c \leq x \leq c' \, \big\} \\ \mathbb{E}  \big[ & V \big]  \big[ \rho & \stackrel{\text{def}}{=} & \big\{ \rho(V) \big\} \\ \mathbb{E}  \big[ & -e \big]  \big[ \rho & \stackrel{\text{def}}{=} & \big\{ -v \, | \, v \in \mathbb{E}  \big[ e \big] \big] \rho \, \big\} \\ \mathbb{E}  \big[ e_1 + e_2 \big]  \big[ \rho & \stackrel{\text{def}}{=} & \big\{ v_1 + v_2 \, | \, v_1 \in \mathbb{E}  \big[ e_1 \big] \big] \rho, v_2 \in \mathbb{E}  \big[ e_2 \big] \rho \, \big\} \\ \mathbb{E}  \big[ e_1 - e_2 \big]  \big[ \rho & \stackrel{\text{def}}{=} & \big\{ v_1 - v_2 \, | \, v_1 \in \mathbb{E}  \big[ e_1 \big] \big] \rho, v_2 \in \mathbb{E}  \big[ e_2 \big] \big] \rho \, \big\} \\ \mathbb{E}  \big[ e_1 \times e_2 \big]  \big[ \rho & \stackrel{\text{def}}{=} & \big\{ v_1 \times v_2 \, | \, v_1 \in \mathbb{E}  \big[ e_1 \big] \big] \rho, v_2 \in \mathbb{E}  \big[ e_2 \big] \big] \rho \, \big\} \\ \mathbb{E}  \big[ e_1 / e_2 \big]  \big[ \rho & \stackrel{\text{def}}{=} & \big\{ v_1 / v_2 \, | \, v_1 \in \mathbb{E}  \big[ e_1 \big] \big] \rho, v_2 \in \mathbb{E}  \big[ e_2 \big] \big[ \rho, v_2 \neq \mathbf{0} \, \big\} \end{split}
```

Forward semantics: state reachability

$\underline{\mathsf{Transfer functions:}} \quad \mathsf{C}[\![\mathsf{com}]\!] \colon \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$

- $\blacksquare \ \mathsf{C}[\![\ V \leftarrow e \]\!] \, \mathcal{X} \stackrel{\mathrm{def}}{=} \left\{ \left. \rho[\ V \mapsto v \] \, \right| \, \rho \in \mathcal{X}, \ v \in \mathsf{E}[\![\, e \,]\!] \, \rho \right\}$

Fixpoint semantics: $(\mathcal{X}_{\ell})_{\ell \in \mathcal{L}} : \mathcal{P}(\mathcal{E})$

$$\begin{cases} \mathcal{X}_{e} = \mathcal{E} & \text{(entry)} \\ \mathcal{X}_{\ell} = \bigcup_{(\ell', c, \ell) \in A} \mathbf{C} \llbracket c \rrbracket \, \mathcal{X}_{\ell'} & \text{if } \ell \neq e \end{cases}$$

Tarski's Theorem: this smallest solution exists and is unique.

$$\mathcal{D} \stackrel{\mathrm{def}}{=} (\mathcal{P}(\mathcal{E}),\subseteq,\cup,\cap,\emptyset,\mathcal{E}) \text{ is a complete lattice,}$$
 each $M_{\ell}:\mathcal{X}_{\ell}\mapsto\bigcup_{(\ell',c,\ell)\in A}\mathbb{C}[\![\,c\,]\!]\,\mathcal{X}_{\ell'}$ is monotonic in $\mathcal{D}.$

 \Rightarrow the solution is the least fixpoint of $(M_{\ell})_{\ell \in \mathcal{L}}$.

Resolution

Resolution by increasing iterations:

$$\left\{ \begin{array}{ll} \mathcal{X}_{e}^{0} & \stackrel{\mathrm{def}}{=} & \mathcal{E} \\ \mathcal{X}_{\ell \neq e}^{0} & \stackrel{\mathrm{def}}{=} & \emptyset \end{array} \right. \left\{ \begin{array}{ll} \mathcal{X}_{e}^{n+1} & \stackrel{\mathrm{def}}{=} & \mathcal{E} \\ \mathcal{X}_{\ell \neq e}^{n+1} & \stackrel{\mathrm{def}}{=} & \bigcup_{(\ell',c,\ell) \in A} \mathbb{C}[\![\,c\,]\!] \mathcal{X}_{\ell'}^{n} \end{array} \right.$$

Kleene theorem:

Iteration converges in ω iterations to a least solution, because each $\mathbb{C}[\![c]\!]$ is continuous in the CPO $\mathcal{D}.$

Backward refinement: state co-reachability

Semantics of commands: $\begin{tabular}{c|c} \hline \cline{c} & c \cline{c} & c \end{tabular}$: $\mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$

- $\blacksquare \ \, \overleftarrow{C} \, \llbracket \, \textbf{\textit{V}} \leftarrow \textbf{\textit{e}} \, \rrbracket \, \mathcal{X} \, \stackrel{\text{def}}{=} \, \{ \, \rho \, | \, \exists \textbf{\textit{v}} \in \mathsf{E} \llbracket \, \textbf{\textit{e}} \, \rrbracket \, \rho \text{:} \, \rho [\, \textbf{\textit{V}} \mapsto \textbf{\textit{v}} \,] \in \mathcal{X} \, \}$
- $\bullet \overleftarrow{C} \llbracket e \bowtie 0 \rrbracket \mathcal{X} \stackrel{\text{def}}{=} C \llbracket e \bowtie 0 \rrbracket \mathcal{X}$

(necessary conditions on ρ to have a successor in $\mathcal X$ by c)

Refinement: given:

- lacksquare a solution $(\mathcal{X}_\ell)_{\ell\in\mathcal{L}}$ of the forward system
- \blacksquare an output criterion \mathcal{Y} at exit node x

compute a least fixpoint by decreasing iterations [Bour93b]

$$\left\{ \begin{array}{ll} \mathcal{Y}_{x}^{0} & \stackrel{\mathrm{def}}{=} & \mathcal{X}_{x} \cap \boldsymbol{\mathcal{Y}} \\ \mathcal{Y}_{\ell \neq x}^{0} & \stackrel{\mathrm{def}}{=} & \mathcal{X}_{\ell} \end{array} \right.$$

$$\left\{ \begin{array}{ll} \mathcal{Y}_{x}^{n+1} & \stackrel{\mathrm{def}}{=} & \mathcal{X}_{x} \cap \boldsymbol{\mathcal{Y}} \\ \mathcal{Y}_{\ell \neq x}^{n+1} & \stackrel{\mathrm{def}}{=} & \mathcal{X}_{\ell} \cap (\bigcup_{(\ell,c,\ell') \in A} \overleftarrow{C} \llbracket c \rrbracket \mathcal{Y}_{\ell'}^{n}) \end{array} \right.$$

Limit to automation

We wish to perform automatic numerical invariant discovery.

Theoretical problems

- \blacksquare the elements of $\mathcal{P}(\mathbb{V} \to \mathbb{I})$ are not computer representable
- the transfer functions C[[c]], $\overleftarrow{C}[[c]]$ are not computable
- lacktriangle the lattice iterations in $\mathcal{P}(\mathcal{E})$ are transfinite

Finding the best invariant is an undecidable problem

Note:

Even when I is finite, a concrete analysis is not tractable:

- lacktriangleright representing elements in $\mathcal{P}(\mathbb{V} o \mathbb{I})$ in extension is expensive
- computing C[c], C[c] explicitly is expensive
- lacksquare the lattice $\mathcal{P}(\mathbb{V} o \mathbb{I})$ has a large height $(\Rightarrow$ many iterations)

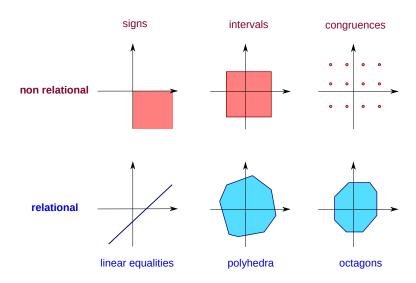
Abstractions

Numerical abstract domains

A numerical abstract domain is given by:

- **a** subset of $\mathcal{P}(\mathcal{E})$ (a set of environment sets) together with a machine encoding,
- effective and sound abstract operators,
- an iteration strategy ensuring convergence in finite time.

Numerical abstract domain examples



Numerical abstract domains (cont.)

Representation: given by

- lacksquare a set \mathcal{D}^{\sharp} of machine-representable abstract environments,
- a partial order $(\mathcal{D}^{\sharp},\sqsubseteq,\perp^{\sharp},\top^{\sharp})$ relating the amount of information given by abstract elements,
- **a** concretization function $\gamma \colon \mathcal{D}^{\sharp} \to \mathcal{P}(\mathcal{E})$ giving a concrete meaning to each abstract element,
- \blacksquare an abstraction function α forming a Galois connection (α, γ) is optional.

Required algebraic properties:

- γ should be monotonic: $\mathcal{X}^{\sharp} \sqsubseteq \mathcal{Y}^{\sharp} \Longrightarrow \gamma(\mathcal{X}^{\sharp}) \subseteq \gamma(\mathcal{Y}^{\sharp})$,

Note: γ need not be one-to-one.

Numerical abstract domains (cont.)

Abstract operators: we require:

- sound, effective, abstract transfer functions $C^{\sharp}[\![c]\!]$, $C^{\sharp}[\![c]\!]$ for all commands c ($V \leftarrow e, e \bowtie 0$),
- sound, effective, abstract set operators ∪[#], ∩[#],
- an algorithm to decide the ordering ⊆.

Soundness criterion:

 F^{\sharp} is a sound abstraction of a n-ary operator F if:

$$\forall \mathcal{X}_1^{\sharp}, \dots, \mathcal{X}_n^{\sharp} \in \mathcal{D}^{\sharp} \colon F(\gamma(\mathcal{X}_1^{\sharp}), \dots, \gamma(\mathcal{X}_n^{\sharp})) \subseteq \gamma(F^{\sharp}(\mathcal{X}_1^{\sharp}, \dots, \mathcal{X}_n^{\sharp}))$$

$$F^{\sharp}(\mathcal{X}_{1}^{\sharp},\ldots,\mathcal{X}_{n}^{\sharp})=\alpha(F(\gamma(\mathcal{X}_{1}^{\sharp}),\ldots,\gamma(\mathcal{X}_{n}^{\sharp})))$$
 is optional.

Both semantic and algorithmic aspects.

Abstract semantics

Abstract semantic inequation system

for soundness, a post-fixpoint ☐ is sufficient; a fixpoint = could be too restrictive

Soundness Theorem

Any solution $(\mathcal{X}_{\ell}^{\sharp})_{\ell \in \mathcal{L}}$ is a sound over-approximation of the concrete collecting semantics:

$$\forall \ell \in \mathcal{L}: \gamma(\mathcal{X}_{\ell}^{\sharp}) \supseteq \mathcal{X}_{\ell}$$

$$\forall \ell \in \mathcal{L} : \gamma(\mathcal{X}_{\ell}^{\sharp}) \supseteq \mathcal{X}_{\ell} \qquad \left\{ \begin{array}{l} \text{where } \mathcal{X}_{\ell} \text{ is the smallest solution of} \\ \mathcal{E} \\ \mathcal{X}_{\ell} = \bigcup_{(\ell',c,\ell) \in A} \mathsf{C}[\![\,c\,]\!] \, \mathcal{X}_{\ell'} \quad \text{if } \ell \neq \mathsf{e} \end{array} \right.$$

A first abstract analysis

Resolution by iteration in \mathcal{D}^{\sharp} :

$$\begin{split} \mathcal{X}_{e}^{\sharp 0} &\stackrel{\mathrm{def}}{=} \top^{\sharp} \\ \mathcal{X}_{\ell \neq e}^{\sharp 0} &\stackrel{\mathrm{def}}{=} \perp^{\sharp} \\ \mathcal{X}_{\ell}^{\sharp n+1} &\stackrel{\mathrm{def}}{=} \left\{ \begin{array}{l} \top^{\sharp} & \text{if } \ell = e \\ \\ \bigcup_{(\ell',c,\ell) \in A}^{\sharp} C^{\sharp} \llbracket c \rrbracket \, \mathcal{X}_{\ell'}^{\sharp n} & \text{if } \ell \neq e \end{array} \right. \end{aligned}$$

Iteration until stabilisation: $\forall \ell \in \mathcal{L}: \mathcal{X}_{\ell}^{\sharp \delta+1} \sqsubseteq \mathcal{X}_{\ell}^{\sharp \delta}$

Soundness:
$$\forall \ell \in \mathcal{L}: \mathcal{X}_{\ell} \subseteq \gamma(\mathcal{X}_{\ell}^{\sharp \delta})$$

<u>Termination</u>: for monotonic operators on finite height lattices.

Quite restrictive!

Some improvements we will see later:

- widening operators ∇ to ensure termination in all cases
- decreasing iterations to improve precision

Also, other iteration schemes (worklist, chaotic iterations, see [Bour93a])

Backward abstract analysis

Backward refinement:

Given a forward analysis result $(\mathcal{X}_{\ell}^{\sharp})_{\ell \in \mathcal{L}}$ and an abstract output \mathcal{Y}^{\sharp} at x, we compute $(\mathcal{Y}_{\ell}^{\sharp})_{\ell \in \mathcal{L}}$:

Forward-backward analyses can be iterated [Bour93b].

Non-relational domains

Value abstract domains

<u>Idea:</u> start from an abstraction \mathcal{B}^{\sharp} of values $\mathcal{P}(\mathbb{I})$ (representing a single variable)

Numerical value abstract domain:

```
\begin{array}{lll} \mathcal{B}^{\sharp} & \text{abstract values, machine-representable} \\ \gamma_b \colon \mathcal{B}^{\sharp} \to \mathcal{P}(\mathbb{I}) & \text{concretization} \\ & \sqsubseteq_b & \text{partial order} \\ & \bot_b^{\sharp}, \, \top_b^{\sharp} & \text{represent } \emptyset \text{ and } \mathbb{I} \\ & \cup_b^{\sharp}, \, \cap_b^{\sharp} & \text{abstractions of } \cup \text{ and } \cap \\ & \nabla_b & \text{extrapolation operator (introduced later, with intervals)} \\ & \alpha_b \colon \mathcal{P}(\mathbb{I}) \to \mathcal{B}^{\sharp} & \text{abstraction (optional)} \end{array}
```

Abstract arithmetic operators

Require sound abstract versions in \mathcal{B}^{\sharp} of arithmetic operators +, -, \times , /.

Soundness conditions:

$$\{x \mid \mathbf{c} \leq \mathbf{x} \leq \mathbf{c}'\} \qquad \subseteq \qquad \gamma_b([\mathbf{c}, \mathbf{c}']_b^{\sharp})$$

$$\{-\mathbf{x} \mid \mathbf{x} \in \gamma_b(\mathcal{X}_b^{\sharp})\} \qquad \subseteq \qquad \gamma_b(-_b^{\sharp} \mathcal{X}_b^{\sharp})$$

$$\{\mathbf{x}+\mathbf{y} \mid \mathbf{x} \in \gamma_b(\mathcal{X}_b^{\sharp}), \mathbf{y} \in \gamma_b(\mathcal{Y}_b^{\sharp})\} \qquad \subseteq \qquad \gamma_b(\mathcal{X}_b^{\sharp} +_b^{\sharp} \mathcal{Y}_b^{\sharp})$$

$$\vdots \qquad \vdots$$

Using a Galois connection (α_b, γ_b) :

We can define best abstract arithmetic operators:

$$\begin{aligned} & [c,c']_b^{\sharp} & \stackrel{\text{def}}{=} & \alpha_b(\{x \mid c \leq x \leq c'\}) \\ & -_b^{\sharp} \, \mathcal{X}_b^{\sharp} & \stackrel{\text{def}}{=} & \alpha_b(\{-x \mid x \in \gamma(\mathcal{X}_b^{\sharp})\}) \\ & \mathcal{X}_b^{\sharp} +_b^{\sharp} \, \mathcal{Y}_b^{\sharp} & \stackrel{\text{def}}{=} & \alpha_b(\{x+y \mid x \in \gamma(\mathcal{X}_b^{\sharp}), \, y \in \gamma(\mathcal{Y}_b^{\sharp})\}) \\ & \vdots \end{aligned}$$

Derived abstract domain

<u>Idea:</u> associate an abstract value to each variable

$$\mathcal{D}^{\sharp} \stackrel{\mathrm{def}}{=} (\mathbb{V} \to (\mathcal{B}^{\sharp} \setminus \{\perp_{b}^{\sharp}\})) \cup \{\perp^{\sharp}\}$$

- point-wise extension: $\mathcal{X}^{\sharp} \in \mathcal{D}^{\sharp}$ is a vector of elements in \mathcal{B}^{\sharp} (e.g. using arrays of size $|\mathbb{V}|$, or functional maps)
- smashed \perp^{\sharp} (avoids redundant representations of \emptyset)

Definitions on \mathcal{D}^{\sharp} derived from \mathcal{B}^{\sharp} :

$$\gamma(\mathcal{X}^{\sharp}) \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{l} \emptyset & \text{if } \mathcal{X}^{\sharp} = \bot^{\sharp} \\ \left\{ \rho \,|\, \forall V \colon \rho(V) \in \gamma_{b}(\mathcal{X}^{\sharp}(V)) \right\} & \text{otherwise} \end{array} \right.$$

$$\alpha(\mathcal{X}) \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{l} \bot^{\sharp} & \text{if } \mathcal{X} = \emptyset \\ \lambda V . \alpha_{b}(\left\{ \rho(V) \,|\, \rho \in \mathcal{X} \right\}) & \text{otherwise} \end{array} \right.$$

$$\uparrow^{\sharp} \stackrel{\mathrm{def}}{=} \lambda V . \uparrow^{\sharp}_{b}$$

Derived abstract domain (cont.)

$$\mathcal{X}^{\sharp} \sqsubseteq \mathcal{Y}^{\sharp} \stackrel{\text{def}}{\iff} \mathcal{X}^{\sharp} = \bot^{\sharp} \lor (\mathcal{X}^{\sharp}, \mathcal{Y}^{\sharp} \neq \bot^{\sharp} \land \forall V : \mathcal{X}^{\sharp}(V) \sqsubseteq_{b} \mathcal{Y}^{\sharp}(V))$$

$$\mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{\triangleq} \begin{cases} \mathcal{Y}^{\sharp} & \text{if } \mathcal{X}^{\sharp} = \bot^{\sharp} \\ \mathcal{X}^{\sharp} & \text{if } \mathcal{Y}^{\sharp} = \bot^{\sharp} \\ \lambda V . \mathcal{X}^{\sharp}(V) \cup_{b}^{\sharp} \mathcal{Y}^{\sharp}(V) & \text{otherwise} \end{cases}$$

$$\mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{\triangleq} \begin{cases} \bot^{\sharp} & \text{if } \exists V : \mathcal{X}^{\sharp}(V) \cap_{b}^{\sharp} \mathcal{Y}^{\sharp}(V) = \bot^{\sharp}_{b} \\ \lambda V . \mathcal{X}^{\sharp}(V) \cap_{b}^{\sharp} \mathcal{Y}^{\sharp}(V) & \text{otherwise} \end{cases}$$

We will see later how to derive $C^{\sharp}[\![c]\!]$, $C^{\sharp}[\![c]\!]$ from abstract arithmetic operators $+^{\sharp}_{b}$, ...

On the loss of precision: Cartesian abstraction

Non-relational domains "forget" all relationships between variables.

Cartesian abstraction:

Upper closure operator $\rho_c: \mathcal{P}(\mathcal{E}) \to \mathcal{P}(\mathcal{E})$

$$\rho_c(\mathcal{X}) \stackrel{\text{def}}{=} \{ \rho \in \mathcal{E} \mid \forall V \in \mathbb{V} : \exists \rho' \in \mathcal{X} : \rho(V) = \rho'(V) \}$$

A domain is non-relational if $\rho \circ \gamma = \gamma$,

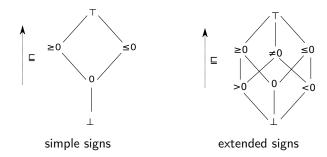
i.e. it cannot distinguish between \mathcal{X} and \mathcal{X}' if $\rho_c(\mathcal{X}) = \rho_c(\mathcal{X}')$.

Example: $\rho_c(\{(X,Y) \mid X \in \{0,2\}, Y \in \{0,2\}, X + Y \le 2\}) = \{0,2\} \times \{0,2\}.$

The sign domains

The sign lattices

<u>Hasse diagram:</u> for the lattice $(\mathcal{B}^{\sharp}, \sqsubseteq_b, \perp_b^{\sharp}, \top_b^{\sharp})$



The extended sign domain is a refinement of the simple sign domain.

The diagram implicitly defines \cup_b^{\sharp} and \cap_b^{\sharp} as the least upper bound and greatest lower bound for \sqsubseteq_b .

Abstract operators for simple signs

<u>Abstraction α:</u> there is a Galois connection between \mathcal{B}^{\sharp} and $\mathcal{P}(\mathbb{I})$:

$$\alpha_b(S) \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{l} \bot_b^\sharp & \text{if } S = \emptyset \\ 0 & \text{if } S = \{0\} \\ \geq 0 & \text{else if } \forall s \in S \colon s \geq 0 \\ \leq 0 & \text{else if } \forall s \in S \colon s \leq 0 \\ \top_b^\sharp & \text{otherwise} \end{array} \right.$$

Derived abstract arithmetic operators:

$$\begin{split} \mathbf{c}_b^{\sharp} &\stackrel{\mathrm{def}}{=} \alpha_b(\{c\}) = \begin{cases} 0 & \text{if } c = 0 \\ \leq 0 & \text{if } c < 0 \\ \geq 0 & \text{if } c > 0 \end{cases} \\ X^{\sharp} +_b^{\sharp} Y^{\sharp} &\stackrel{\mathrm{def}}{=} \alpha_b(\{x + y \mid x \in \gamma_b(X^{\sharp}), \ y \in \gamma_b(Y^{\sharp}) \}) \\ &= \begin{cases} \bot_b^{\sharp} & \text{if } X \text{ or } Y^{\sharp} = \bot_b^{\sharp} \\ 0 & \text{if } X^{\sharp} = Y^{\sharp} = 0 \\ \leq 0 & \text{else if } X^{\sharp} \text{ and } Y^{\sharp} \in \{0, \leq 0\} \\ \bot_b^{\sharp} & \text{otherwise} \end{cases} \end{split}$$

Generic non-relational abstract assignments

We can then define for all non-relational domains:

- an abstract assignment:

$$\begin{array}{ll} \mathbf{C}^{\sharp} \llbracket \, \mathbf{V} \leftarrow \mathbf{e} \, \rrbracket \, \mathcal{X}^{\sharp} \, \stackrel{\mathrm{def}}{=} \, \left\{ \begin{array}{ll} \bot^{\sharp} & \text{if } \mathcal{V}_{b}^{\sharp} = \bot_{b}^{\sharp} \\ \mathcal{X}^{\sharp} \llbracket \, \mathbf{V} \mapsto \mathcal{V}_{b}^{\sharp} \rrbracket & \text{otherwise} \end{array} \right. \\ \text{where } \mathcal{V}_{b}^{\sharp} = \mathbf{E}^{\sharp} \llbracket \, \mathbf{e} \, \rrbracket \, \mathcal{X}^{\sharp}. \end{array}$$

Note: in general, $\mathbf{E}^{\sharp} \llbracket e \rrbracket$ is less precise than $\alpha_b \circ \mathbf{E} \llbracket e \rrbracket \circ \gamma$ e.g, on intervals: e = V - V and $\gamma_b(\mathcal{X}^{\sharp}(V)) = [0,1]$ then we get [-1,1] instead of 0

Abstract tests on simple signs

Abstract test examples:

$$\begin{split} \mathsf{C}^{\sharp} \llbracket \textbf{\textit{X}} &\leq \mathbf{0} \rrbracket \, \mathcal{X}^{\sharp} \stackrel{\mathrm{def}}{=} \, \left(\left\{ \begin{array}{l} \mathcal{X}^{\sharp} [X \mapsto 0] & \text{if } \mathcal{X}^{\sharp} (X) \in \{0, \geq 0\} \\ \mathcal{X}^{\sharp} [X \mapsto \leq 0] & \text{if } \mathcal{X}^{\sharp} (X) \in \{\top_b^{\sharp}, \leq 0\} \\ \bot^{\sharp} & \text{otherwise} \end{array} \right) \\ \mathsf{C}^{\sharp} \llbracket \textbf{\textit{X}} &\leq \mathbf{\textit{c}} \rrbracket \, \mathcal{X}^{\sharp} \stackrel{\mathrm{def}}{=} \, \left(\left\{ \begin{array}{l} \mathsf{C}^{\sharp} \llbracket \textbf{\textit{X}} \leq \mathbf{\textit{0}} \rrbracket \, \mathcal{X}^{\sharp} & \text{if } \mathbf{\textit{c}} \leq \mathbf{\textit{0}} \\ \mathcal{X}^{\sharp} & \text{otherwise} \end{array} \right) \\ \mathsf{C}^{\sharp} \llbracket \textbf{\textit{X}} &\leq \mathbf{\textit{Y}} \rrbracket \, \mathcal{X}^{\sharp} \stackrel{\mathrm{def}}{=} \\ \left\{ \begin{array}{l} \mathsf{C}^{\sharp} \llbracket \textbf{\textit{X}} \leq \mathbf{\textit{0}} \rrbracket \, \mathcal{X}^{\sharp} & \text{if } \mathcal{X}^{\sharp} (Y) \in \{0, \leq 0\} \\ \mathcal{X}^{\sharp} & \text{otherwise} \end{array} \right. \\ \left\{ \begin{array}{l} \mathsf{C}^{\sharp} \llbracket \textbf{\textit{Y}} \geq \mathbf{\textit{0}} \rrbracket \, \mathcal{X}^{\sharp} & \text{if } \mathcal{X}^{\sharp} (X) \in \{0, \geq 0\} \\ \text{otherwise} \end{array} \right. \end{split}$$

Other cases: $C^{\sharp} \llbracket expr \bowtie 0 \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} \mathcal{X}^{\sharp}$ is always a sound abstraction.

We will see later a systematic way to build tests, as we did for assignments. . .

Simple sign analysis example

Example analysis using the simple sign domain:

$$X \leftarrow 0;$$
 while $X < 40$ do $X \leftarrow X + 1$ done

Program

$$\left\{ \begin{array}{ll} \mathcal{X}_{2}^{\sharp i+1} &=& \mathsf{C}^{\sharp} \llbracket \, \mathsf{X} \leftarrow \mathsf{0} \, \rrbracket \, \mathcal{X}_{1}^{\sharp i} \, \cup \\ && \mathsf{C}^{\sharp} \llbracket \, \mathsf{X} \leftarrow \mathsf{X} + \mathsf{1} \, \rrbracket \, \mathcal{X}_{3}^{\sharp i} \\ \mathcal{X}_{3}^{\sharp i+1} &=& \mathsf{C}^{\sharp} \llbracket \, \mathsf{X} < \mathsf{40} \, \rrbracket \, \mathcal{X}_{2}^{\sharp i} \\ \mathcal{X}_{4}^{\sharp i+1} &=& \mathsf{C}^{\sharp} \llbracket \, \mathsf{X} \geq \mathsf{40} \, \rrbracket \, \mathcal{X}_{2}^{\sharp i} \\ && \mathsf{lteration \ system} \end{array} \right.$$

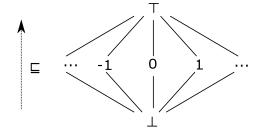
ℓ	$\mid \mathcal{X}_{\ell}^{\sharp 0} \mid$	$\mid \; \mathcal{X}_{\ell}^{\sharp 1} \;$	$\mathcal{X}_{\ell}^{\sharp 2}$	$\mathcal{X}_{\ell}^{\sharp 3}$	$\mathcal{X}^{\sharp 4}_{\ell}$	$\mathcal{X}_{\ell}^{\sharp 5}$
1	⊤♯	#	⊤♯	⊤#	⊤ ♯	T#
2	\perp^{\sharp}	X=0	X = 0	$X \ge 0$	$X \ge 0$	$X \ge 0$
3	\perp^{\sharp}	#	X = 0	X = 0	$X \ge 0$	$X \ge 0$
4	\perp^{\sharp}	#	X = 0	X = 0	$X \ge 0$	$X \ge 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Iterations

The constant domain

The constant lattice

Hasse diagram:



$$\mathcal{B}^{\sharp} = \mathbb{I} \cup \{ \top_b^{\sharp}, \bot_b^{\sharp} \}$$

The lattice is flat but infinite.

Operations on constants

Abstraction α : there is a Galois connection:

$$\alpha_b(S) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} \perp_b^\sharp & \text{if } S = \emptyset \\ c & \text{if } S = \{c\} \\ \top_b^\sharp & \text{otherwise} \end{array} \right.$$

Derived abstract arithmetic operators:

$$c_b^{\sharp} \stackrel{\text{def}}{=} c$$

$$(X^{\sharp}) +_b^{\sharp} (Y^{\sharp}) \stackrel{\text{def}}{=} \begin{cases} \bot_b^{\sharp} & \text{if } X^{\sharp} \text{ or } Y^{\sharp} = \bot_b^{\sharp} \\ \top_b^{\sharp} & \text{else if } X^{\sharp} \text{ or } Y^{\sharp} = \top_b^{\sharp} \end{cases}$$

$$(X^{\sharp}) \times_b^{\sharp} (Y^{\sharp}) \stackrel{\text{def}}{=} \begin{cases} \bot_b^{\sharp} & \text{if } X^{\sharp} \text{ or } Y^{\sharp} = \bot_b^{\sharp} \\ 0 & \text{else if } X^{\sharp} \text{ or } Y^{\sharp} = 0 \\ \top_b^{\sharp} & \text{else if } X^{\sharp} \text{ or } Y^{\sharp} = \top_b^{\sharp} \end{cases}$$

$$(X^{\sharp}) \times_b^{\sharp} (Y^{\sharp}) \stackrel{\text{def}}{=} \begin{cases} \bot_b^{\sharp} & \text{if } X^{\sharp} \text{ or } Y^{\sharp} = \bot_b^{\sharp} \\ X^{\sharp} \times Y^{\sharp} & \text{otherwise} \end{cases}$$

Operations on constants (cont.)

Abstract test examples:

$$\begin{split} \mathbf{C}^{\sharp} \llbracket \, \mathbf{X} &= c \, \rrbracket \, \mathcal{X}^{\sharp} \, \stackrel{\mathrm{def}}{=} \, \left\{ \begin{array}{l} \bot^{\sharp} & \text{if } \mathcal{X}^{\sharp}(\mathbf{X}) \notin \{c, \top^{\sharp}_{b}\} \\ \mathcal{X}^{\sharp} [\mathbf{X} \mapsto c] & \text{otherwise} \end{array} \right. \\ \mathbf{C}^{\sharp} \llbracket \, \mathbf{X} &= \mathbf{Y} + c \, \rrbracket \, \mathcal{X}^{\sharp} \, \stackrel{\mathrm{def}}{=} \\ \left(\left\{ \begin{array}{l} \mathbf{C}^{\sharp} \llbracket \, \mathbf{X} &= \mathcal{X}^{\sharp}(\mathbf{Y}) + c \, \rrbracket \, \mathcal{X}^{\sharp} & \text{if } \mathcal{X}^{\sharp}(\mathbf{Y}) \notin \{\bot^{\sharp}_{b}, \top^{\sharp}_{b}\} \\ \mathcal{X}^{\sharp} & \text{otherwise} \end{array} \right) \cap^{\sharp} \\ \left(\left\{ \begin{array}{l} \mathbf{C}^{\sharp} \llbracket \, \mathbf{Y} &= \mathcal{X}^{\sharp}(\mathbf{X}) - c \, \rrbracket \, \mathcal{X}^{\sharp} & \text{if } \mathcal{X}^{\sharp}(\mathbf{X}) \notin \{\bot^{\sharp}_{b}, \top^{\sharp}_{b}\} \\ \mathcal{X}^{\sharp} & \text{otherwise} \end{array} \right) \right. \end{split}$$

Constant analysis example

 \mathcal{B}^{\sharp} has finite height, the $(\mathcal{X}^{\sharp i}_{\ell})$ converge in finite time.

(even though \mathcal{B}^{\sharp} is infinite...)

Analysis example:

$$X \leftarrow 0; Y \leftarrow 10;$$

while $X < 100$ do
 $Y \leftarrow Y - 3;$
 $X \leftarrow X + Y;$
 $Y \leftarrow Y + 3$
done

The constant analysis finds, at \bullet , the invariant: $\begin{cases} X = \top_b^{\sharp} \\ Y = 7 \end{cases}$

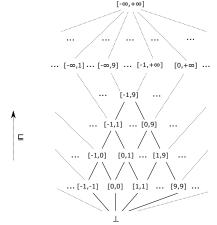
<u>Note:</u> the analysis can find constants that do not appear syntactically in the program.

The interval domain

The interval lattice

Introduced by [Cous76].

$$\mathcal{B}^{\sharp} \stackrel{\text{def}}{=} \{ [a, b] \mid a \in \mathbb{I} \cup \{ -\infty \}, \ b \in \mathbb{I} \cup \{ +\infty \}, \ a \leq b \} \ \cup \ \{ \perp_b^{\sharp} \}$$



Note: intervals are open at infinite bounds $+\infty$, $-\infty$.

The interval lattice (cont.)

Galois connection (α_b, γ_b) :

$$\begin{array}{ll} \gamma_b([a,b]) & \stackrel{\text{def}}{=} & \{\, x \in \mathbb{I} \,|\, a \leq x \leq b \,\} \\ \\ \alpha_b(\mathcal{X}) & \stackrel{\text{def}}{=} & \{\, \begin{matrix} \bot_b^\sharp & \text{if } \mathcal{X} = \emptyset \\ [\min \mathcal{X}, \max \mathcal{X}] & \text{otherwise} \end{matrix} \end{array}$$

If $\mathbb{I} = \mathbb{Q}$, α_b is not always defined...

Partial order:

If $\mathbb{I} \neq \mathbb{Q}$, it is a complete lattice.

Interval abstract arithmetic operators

$$[c,c']_b^{\sharp} \stackrel{\text{def}}{=} [c,c']$$

$$-\frac{\sharp}{b}[a,b] \stackrel{\text{def}}{=} [-b,-a]$$

$$[a,b] + \frac{\sharp}{b}[c,d] \stackrel{\text{def}}{=} [a+c,b+d]$$

$$[a,b] - \frac{\sharp}{b}[c,d] \stackrel{\text{def}}{=} [a-d,b-c]$$

$$[a,b] \times \frac{\sharp}{b}[c,d] \stackrel{\text{def}}{=} [\min(ac,ad,bc,bd),\max(ac,ad,bc,bd)]$$

$$\begin{bmatrix} a,b] / \frac{\sharp}{b}[c,d] \stackrel{\text{def}}{=} [\min(ac,ad,bc,bd),\max(ac,ad,bc,bd)] \\ \min(ac,ad,bc,bd),\min(ac,ad,bc,bd),\min(ac,ad,bc,bd) \end{bmatrix}$$

$$\begin{bmatrix} -\frac{\sharp}{b} & \text{if } c=d=0 \\ \min(ac,ad,b/c,b/d), & \text{else if } 0 \le c \\ \max(a/c,a/d,b/c,b/d), & \text{else if } 0 \le c \\ ([a,b]/\frac{\sharp}{b}[c,0]) \cup \frac{\sharp}{b}([a,b]/\frac{\sharp}{b}[0,d]) & \text{otherwise} \end{bmatrix}$$

$$\text{where } |\pm\infty\times 0=0. \quad 0/0=0. \quad \forall x; x/\pm\infty=0$$

where
$$\begin{vmatrix} \pm \infty \times 0 = 0, & 0/0 = 0, & \forall x : x/\pm \infty = 0 \\ \forall x > 0 : x/0 = +\infty, & \forall x < 0 : x/0 = -\infty \end{vmatrix}$$

Operators are strict: $-_{b}^{\sharp} \perp_{b}^{\sharp} = \perp_{b}^{\sharp}$, $[a, b] +_{b}^{\sharp} \perp_{b}^{\sharp} = \perp_{b}^{\sharp}$, etc.

Exactness and optimality: Example proofs

```
Proof: exactness of +^{\sharp}_{b}
        \{x + v \mid x \in \gamma_h([a, b]), v \in \gamma_h([c, d])\}
 = \{x + y \mid a < x < b \land c < y < d\}
 = \{z \mid a+c \le z \le b+d\}
 = \gamma_b([a+c,b+d])
 = \gamma_b([a,b] + \sharp [c,d])
<u>Proof</u> optimality of \cup_{b}^{\sharp}
        \alpha_b(\gamma_b([a,b]) \cup \gamma_b([c,d]))
      \alpha_b(\{x \mid a < x < b\} \cup \{x \mid c < x < d\})
      \alpha_b(\{x \mid a < x < b \lor c < x < d\})
      [\min \{x \mid a \le x \le b \lor c \le x \le d\}, \max \{x \mid a \le x \le b \lor c \le x \le d\}]
 = [\min(a, c), \max(b, d)]
 = [a,b] \cup_b^{\sharp} [c,d]
but \cup_{b}^{\sharp} is not exact
```

Interval abstract tests (non-generic)

If
$$\mathcal{X}^{\sharp}(X) = [a,b]$$
 and $\mathcal{X}^{\sharp}(Y) = [c,d]$, we can define:
$$C^{\sharp} \llbracket X \leq c \rrbracket \, \mathcal{X}^{\sharp} \quad \stackrel{\mathrm{def}}{=} \quad \left\{ \begin{array}{c} \bot^{\sharp} & \text{if } a > c \\ \mathcal{X}^{\sharp} \llbracket X \mapsto [a, \min(b,c)] \, \end{array} \right] \quad \text{otherwise}$$

$$C^{\sharp} \llbracket X \leq Y \rrbracket \, \mathcal{X}^{\sharp} \quad \stackrel{\mathrm{def}}{=} \quad \left\{ \begin{array}{c} \bot^{\sharp} & \text{if } a > d \\ \mathcal{X}^{\sharp} \llbracket X \mapsto [a, \min(b,d)], & \text{otherwise} \end{array} \right.$$

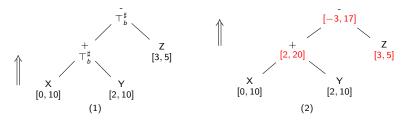
$$C^{\sharp} \llbracket e \bowtie 0 \, \rrbracket \, \mathcal{X}^{\sharp} \quad \stackrel{\mathrm{def}}{=} \quad \mathcal{X}^{\sharp} \quad \text{otherwise}$$

Note: fall-back operators

- lacksquare $C^{\sharp} \llbracket e \bowtie 0 \rrbracket \mathcal{X}^{\sharp} = \mathcal{X}^{\sharp}$ is always sound.
- $C^{\sharp}[X \leftarrow e] \mathcal{X}^{\sharp} = \mathcal{X}^{\sharp}[X \mapsto \mathsf{T}_{b}^{\sharp}]$ is always sound.

Generic abstract tests, step 1

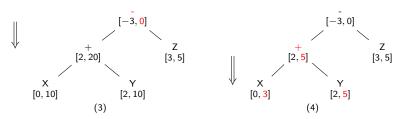
First step: annotate the expression tree with abstract values in \mathcal{B}^{\sharp}



Bottom-up evaluation similar to abstract expression evaluation using $+^{\sharp}_{h}$, $-^{\sharp}_{h}$, etc. but storing abstract value at each node.

Generic abstract tests, step 2

Second step: top-down expression refinement.



- refine the root abstract value, knowing it should be negative;
- propagate refined abstract values downwards;
- values at leaf variables provide new information to store into \mathcal{X}^{\sharp} . $\{X \mapsto [0,3], Y \mapsto [2,5], Z \mapsto [3,5]\}$

Backward arithmetic and comparison operators

In general, we need sound backward arithmetic and comparison operators that refine their arguments given a result.

<u>Note:</u> best backward operators can be designed with α_b : e.g. for $\leftarrow \sharp$: $\mathcal{X}_{b}^{\sharp\prime} = \alpha_b(\{x \in \gamma_b(\mathcal{X}_{b}^{\sharp}) \mid \exists y \in \gamma_b(\mathcal{Y}_{b}^{\sharp}): x + y \in \gamma_b(\mathcal{R}_{b}^{\sharp})\})$

Generic backward operator construction

Synthesizing non necessarily optimal) backward arithmetic operators from forward arithmetic operators.

Note: $\stackrel{\sharp}{\otimes}_{b}^{\sharp}(\mathcal{X}_{b}^{\sharp},\mathcal{Y}_{b}^{\sharp},\mathcal{R}_{b}^{\sharp}) = (\mathcal{X}_{b}^{\sharp},\mathcal{Y}_{b}^{\sharp})$ is always sound (no refinement).

Application to the interval domain

Applying the generic construction to the interval domain:

Generic non-relational backward assignment

Abstract function: $C^{\sharp} V \leftarrow e (\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp})$

over-approximates $\gamma(\mathcal{X}^{\sharp}) \cap \overleftarrow{C} \mathbb{I} V \leftarrow e \mathbb{I} \gamma(\mathcal{R}^{\sharp})$ given:

- \blacksquare an abstract pre-condition \mathcal{X}^{\sharp} to refine.
- \blacksquare according to a given abstract post-condition \mathcal{R}^{\sharp} .

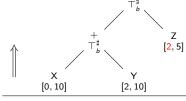
Algorithm: similar to the abstract test

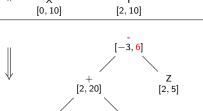
- annotate variable leaves based on $\mathcal{X}^{\sharp} \cap^{\sharp} (\mathcal{R}^{\sharp}[V \mapsto \top_{h}^{\sharp}]);$
- evaluate bottom-up using forward operators ♦,
- intersect the root with $\mathcal{R}^{\sharp}(V)$;
- refine top-down using backward operators 🔯 ‡;
- return X[#] intersected with values at variable leaves.

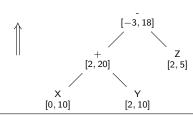
Note:

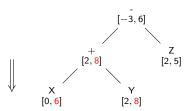
- local iterations can also be used
- fallback: $\overleftarrow{C}^{\sharp} \llbracket V \leftarrow e \rrbracket (\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}) = \mathcal{X}^{\sharp} \cap^{\sharp} (\mathcal{R}^{\sharp} \llbracket V \mapsto \top_{\iota}^{\sharp} \rrbracket)$

Interval backward assignment example









Χ

[0, 10]

[2, 10]

Widening

 \mathcal{B}^{\sharp} has an infinite height, so does \mathcal{D}^{\sharp} .

Naive iterations $(\mathcal{X}^{\sharp i}_\ell)$ may not converge in finite time.

We will use a widening operator ∇ .

Definition: widening ∇

Binary operator $\mathcal{D}^{\sharp} imes \mathcal{D}^{\sharp} o \mathcal{D}^{\sharp}$ ensuring

- soundness: $\gamma(\mathcal{X}^{\sharp}) \cup \gamma(\mathcal{Y}^{\sharp}) \subseteq \gamma(\mathcal{X}^{\sharp} \vee \mathcal{Y}^{\sharp})$,
- termination:

for all sequences $(\mathcal{X}_{i}^{\sharp})$, the increasing sequence $(\mathcal{Y}_{i}^{\sharp})$ defined by $\left\{ \begin{array}{ll} \mathcal{Y}_{0}^{\sharp} & \stackrel{\mathrm{def}}{=} & \mathcal{X}_{0}^{\sharp} \\ \mathcal{Y}_{i+1}^{\sharp} & \stackrel{\mathrm{def}}{=} & \mathcal{Y}_{i}^{\sharp} \ \nabla \ \mathcal{X}_{i+1}^{\sharp} \\ \end{array} \right.$ is stationary, i.e., $\exists i \colon \mathcal{Y}_{i+1}^{\sharp} = \mathcal{Y}_{i}^{\sharp}$.

Interval widening

Widening on non-relational domains:

Given a value widening $\nabla_b \colon \mathcal{B}^{\sharp} \times \mathcal{B}^{\sharp} \to \mathcal{B}^{\sharp}$, we extend it point-wise into a widening $\nabla \colon \mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp} \colon \mathcal{X}^{\sharp} \nabla \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \lambda V. (\mathcal{X}^{\sharp}(V) \nabla_b \mathcal{Y}^{\sharp}(V))$

Interval widening example:

Unstable bounds are set to $\pm \infty$.

Abstract analysis with widening

Take a set $W \subseteq L$ of widening points such that every CFG cycle has a point in W.

Iteration with widening:

$$\mathcal{X}_{\ell}^{\sharp 0} \stackrel{\text{def}}{=} \uparrow^{\sharp}$$

$$\mathcal{X}_{\ell \neq e}^{\sharp 0} \stackrel{\text{def}}{=} \perp^{\sharp}$$

$$\mathcal{X}_{\ell}^{\sharp n+1} \stackrel{\text{def}}{=} \left\{ \begin{array}{c} \uparrow^{\sharp} & \text{if } \ell = e \\ \\ \bigcup_{(\ell',c,\ell) \in A}^{\sharp} C^{\sharp} \llbracket c \rrbracket \mathcal{X}_{\ell'}^{\sharp n} & \text{if } \ell \notin \mathcal{W}, \ell \neq e \\ \\ \mathcal{X}_{\ell}^{\sharp n} \nabla \bigcup_{(\ell',c,\ell) \in A}^{\sharp} C^{\sharp} \llbracket c \rrbracket \mathcal{X}_{\ell'}^{\sharp n} & \text{if } \ell \in \mathcal{W}, \ell \neq e \end{array} \right.$$

Theorem: we have:

- termination: for some δ , $\forall \ell \in \mathcal{L}: \mathcal{X}_{\ell}^{\sharp \delta+1} = \mathcal{X}_{\ell}^{\sharp \delta}$
- soundness: $\forall \ell \in \mathcal{L}: \mathcal{X}_{\ell} \subseteq \gamma(\mathcal{X}_{\ell}^{\sharp \delta})$

Note: the abstract operators $C^{\sharp}[\![\]\!]$ do not have to be monotonic!

Abstract analysis with widening (proof 1/2)

Proof of soundness:

Suppose that
$$\forall \ell \colon \mathcal{X}_{\ell}^{\sharp \delta+1} = \mathcal{X}_{\ell}^{\sharp \delta}$$
. If $\ell = e$, by definition: $\mathcal{X}_{e}^{\sharp \delta} = \top^{\sharp}$ and $\gamma(\top^{\sharp}) = \mathcal{E}$. If $\ell \neq e$, $\ell \notin \mathcal{W}$, then $\mathcal{X}_{\ell}^{\sharp \delta} = \mathcal{X}_{\ell}^{\sharp \delta+1} = \cup_{(\ell',c,\ell) \in A}^{\sharp} \mathsf{C}^{\sharp} \llbracket c \rrbracket \mathcal{X}_{\ell'}^{\sharp \delta} \delta$. By soundness of \cup^{\sharp} and $\mathsf{C}^{\sharp} \llbracket c \rrbracket$, $\gamma(\mathcal{X}_{\ell}^{\sharp \delta}) \supseteq \cup_{(\ell',c,\ell) \in A} \mathsf{C} \llbracket c \rrbracket \gamma(\mathcal{X}_{\ell'}^{\sharp \delta})$. If $\ell \neq e$, $\ell \in \mathcal{W}$, then $\mathcal{X}_{\ell}^{\sharp \delta} = \mathcal{X}_{\ell}^{\sharp \delta+1} = \mathcal{X}_{\ell}^{\sharp \delta} \triangledown \cup_{(\ell',c,\ell) \in A}^{\sharp} \mathsf{C}^{\sharp} \llbracket c \rrbracket \mathcal{X}_{\ell'}^{\sharp \delta}$. By soundness of ∇ , $\gamma(\mathcal{X}_{\ell}^{\sharp \delta}) \supseteq \gamma(\cup_{(\ell',c,\ell) \in A}^{\sharp} \mathsf{C}^{\sharp} \llbracket c \rrbracket \mathcal{X}_{\ell'}^{\sharp \delta})$, and so we also have $\gamma(\mathcal{X}_{\ell}^{\sharp \delta}) \supseteq \cup_{(\ell',c,\ell) \in A} \mathsf{C} \llbracket c \rrbracket \gamma(\mathcal{X}_{\ell'}^{\sharp \delta})$.

We have proved that $\lambda\ell.\gamma(\mathcal{X}_\ell^{\sharp\delta})$ is a postfixpoint of the concrete equation system. Hence, it is greater than its least solution.

Abstract analysis with widening (proof 2/2)

Proof of termination:

Suppose that the iteration does not terminate in finite time.

Given a label $\ell \in \mathcal{L}$, we denote by $i_{\ell}^1, \ldots, i_{\ell}^k, \ldots$ the increasing sequence of unstable indices, i.e., such that $\forall k \colon \mathcal{X}^{\sharp_{\ell}^{i_{\ell}^k+1}} \neq \mathcal{X}^{\sharp_{\ell}^{i_{\ell}^k}}_{\ell}$.

As the iteration is not stable, $\forall n: \exists \ell: \mathcal{X}_{\ell}^{\sharp n} \neq \mathcal{X}_{\ell}^{\sharp n+1}$.

Hence, the sequence $(i_\ell^k)_k$ is infinite for at least one $\ell \in \mathcal{L}$.

We argue that $\exists \ell \in \mathcal{W}$ such that $(i_{\ell}^k)_{\ell}$ is infinite as, otherwise, $N = \max\{i_{\ell}^k \mid \ell \in \mathcal{W}\} + |\mathcal{L}|$ is finite and satisfies: $\forall n \geq N \colon \forall \ell \in \mathcal{L} \colon \mathcal{X}_{\ell}^{\sharp n} = \mathcal{X}_{\ell}^{\sharp n+1}$, contradicting our assumption.

For such a $\ell \in \mathcal{W}$, consider the subsequence $\mathcal{Y}_k^{\sharp} = \mathcal{X}_{\ell}^{\sharp i_{\ell}^k}$ comprised of the unstable iterates of $\mathcal{X}_{\ell}^{\sharp}$. Then $\mathcal{Y}^{\sharp k+1} = \mathcal{Y}^{\sharp k} \ \nabla \ \mathcal{Z}^{\sharp k}$ for some sequence $\mathcal{Z}^{\sharp k}$.

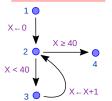
The subsequence is infinite and $\forall k : \mathcal{Y}^{\sharp k+1} \neq \mathcal{Y}^{\sharp k}$, which contradicts the definition of ∇ .

Hence, the iteration must terminate in finite time.

Interval analysis with widening example

Analysis example with $W = \{2\}$

with
$$\mathcal{W} = \{2\}$$



ℓ	$\mathcal{X}_{\ell}^{\sharp 0}$	$\mathcal{X}_{\ell}^{\sharp 1}$	$\mathcal{X}_{\ell}^{\sharp 2}$	$\mathcal{X}_{\ell}^{\sharp 3}$	$\mathcal{X}_{\ell}^{\sharp 4}$	$\mathcal{X}_{\ell}^{\sharp 5}$
1	_ ⊤♯		⊤♯	🗆	#	⊤♯
2 ▽	⊥#	= 0	= 0	≥ 0	≥ 0	≥ 0
3	⊥#	⊥#	= 0	= 0	∈ [0, 39]	∈ [0, 39]
4	⊥#	#	#	⊥♯	⊤ [♯] ≥ 0 ∈ [0, 39] ≥ 40	≥ 40
		•				

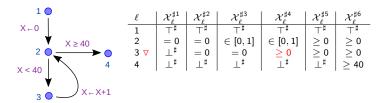
More precisely, at the widening point:

Note that the most precise interval abstraction would be $X \in [0, 40]$ at 2, and X = 40 at 4.

Influence of the widening point and iteration strategy

Changing W changes the analysis result

Example: The analysis is less precise for $W = \{3\}$.



Intuition: extrapolation to $+\infty$ is no longer contained by the tests.

Chaotic iterations

Changing the iteration order changes the analysis result in the presence of a widening [Bour93b].

A simple technique: Widening delay

```
V ← 0;

while 0 = [0,1] do

if V = 0 then V ← 1 fi

done
```

V is only incremented once, from 0 to 1.

Problem:

 \triangledown considers V unstable and sets it to $[0,+\infty]$ \Longrightarrow precision loss $([0,0]\ \triangledown\ [0,1]=[0,+\infty])$

Solution: delay widening application for one or more iterations:

$$\mathcal{X}_{\ell}^{\sharp n+1} \stackrel{\mathrm{def}}{=} \begin{cases} F^{\sharp}(\mathcal{X}_{\ell}^{\sharp n}) & \text{if } n < N \\ \mathcal{X}_{\ell}^{\sharp n} \triangledown F^{\sharp}(\mathcal{X}_{\ell}^{\sharp n}) & \text{if } n \geq N \end{cases}$$
 with $N=1$, $X_{1}^{\sharp}=[0,0]\cup^{\sharp}[1,1]=[0,1]$, $X_{2}^{\sharp}=[0,1]\triangledown[0,1]=[0,1]=X_{1}^{\sharp}$ (after some point, the widening must be applied continuously)

Narrowing

Using a widening makes the analysis less precise.

Some precision can be retrieved by using a narrowing \triangle .

Definition: narrowing △

Binary operator $\mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp}$ such that:

• for all sequences $(\mathcal{X}_{i}^{\sharp})$, the decreasing sequence $(\mathcal{Y}_{i}^{\sharp})$ defined by $\begin{cases} \mathcal{Y}_{0}^{\sharp} & \stackrel{\text{def}}{=} & \mathcal{X}_{0}^{\sharp} \\ \mathcal{Y}_{i+1}^{\sharp} & \stackrel{\text{def}}{=} & \mathcal{Y}_{i}^{\sharp} \wedge \mathcal{X}_{i+1}^{\sharp} \end{cases}$

is stationary.

This is not the dual of a widening!

The widening must ultimately jump above the least fixpoint (to any post-fixpoint). The narrowing must always stay above the least fixpoint (or any fixpoint actually).

The name

Narrowing examples

Trivial narrowing:

 $\mathcal{X}^{\sharp} \triangle \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \mathcal{X}^{\sharp}$ is a correct narrowing.

Finite-time intersection narrowing:

$$\mathcal{X}^{\sharp i} \bigtriangleup \mathcal{Y}^{\sharp} \stackrel{\scriptscriptstyle \mathrm{def}}{=} \left\{ \begin{array}{ll} \mathcal{X}^{\sharp i} \cap^{\sharp} \mathcal{Y}^{\sharp} & \text{ if } i \leq N \\ \mathcal{X}^{\sharp i} & \text{ if } i > N \end{array} \right.$$

(indexed by an iteration counter i)

Interval narrowing:

$$[a,b] \triangle_b [c,d] \stackrel{\text{def}}{=} \left[\left\{ \begin{array}{c} c & \text{if } a = -\infty \\ a & \text{otherwise} \end{array} \right., \left\{ \begin{array}{c} d & \text{if } b = +\infty \\ b & \text{otherwise} \end{array} \right]$$
(refine only infinite bounds)

Point-wise extension to \mathcal{D}^{\sharp} : $\mathcal{X}^{\sharp} \triangle \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \lambda V.(\mathcal{X}^{\sharp}(V) \triangle_b \mathcal{Y}^{\sharp}(V))$

Iterations with narrowing

Let $\mathcal{X}_{\ell}^{\sharp \delta}$ be the result after widening stabilisation, *i.e.*:

$$\mathcal{X}_{\ell}^{\sharp \delta} \supseteq \left\{ \begin{array}{l} \top^{\sharp} & \text{if } \ell = e \\ \bigcup_{(\ell', c, \ell) \in A}^{\sharp} C^{\sharp} \llbracket \, c \, \rrbracket \, \mathcal{X}_{\ell'}^{\sharp \delta} & \text{if } \ell \neq e \end{array} \right.$$

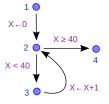
The following sequence is computed:

following sequence is computed:
$$\mathcal{Y}_{\ell}^{\sharp 0} \stackrel{\text{def}}{=} \mathcal{X}_{\ell}^{\sharp \delta} \qquad \mathcal{Y}_{\ell}^{\sharp i+1} \stackrel{\text{def}}{=} \left\{ \begin{array}{c} \top^{\sharp} & \text{if } \ell = e \\ \bigcup^{\sharp} C^{\sharp} \llbracket c \rrbracket \, \mathcal{Y}_{\ell'}^{\sharp i} & \text{if } \ell \notin \mathcal{W} \\ (\ell', c, \ell) \in \mathcal{A} & \bigcup^{\sharp} C^{\sharp} \llbracket c \rrbracket \, \mathcal{Y}_{\ell'}^{\sharp i} & \text{if } \ell \in \mathcal{W} \end{array} \right.$$

- the sequence $(\mathcal{Y}_{\ell}^{\sharp i})$ is decreasing and converges in finite time,
- lacksquare all the $(\mathcal{Y}_{\ell}^{\sharp i})$ are sound abstractions of the concrete system.

Interval analysis with narrowing example

Example with
$$W = \{2\}$$



ℓ	$\mathcal{Y}_\ell^{\sharp 0}$	${\cal Y}_\ell^{\sharp 1}$	${\cal Y}_\ell^{\sharp 2}$	${\cal Y}_\ell^{\sharp 3}$
1	⊤#	⊤#	⊤#	#
2 🛆	≥ 0	∈ [0, 40]	∈ [0, 40]	∈ [0, 40]
3	$\in [0, 39]$	∈ [0, 39]	∈ [0, 39]	∈ [0, 39]
4	≥ 40 °	≥ 40 °	= 40	= 40
	_	_		•

Narrowing at 2 gives:

$$\begin{array}{lllll} \mathcal{Y}_{2}^{\sharp 1} & = & [0,+\infty] \, \Delta_{b} \, ([0,0] \cup_{b}^{\sharp} \, [1,40]) & = & [0,+\infty[\, \Delta_{b} \, [0,40] \, & = & [0,40] \\ \mathcal{Y}_{2}^{\sharp 2} & = & [0,40] \, \Delta_{b} \, ([0,0] \cup_{b}^{\sharp} \, [1,40]) & = & [0,40] \, \Delta_{b} \, [0,40] & = & [0,40] \end{array}$$

Then $\mathcal{Y}_{2}^{\sharp 2}: X \in [0, 40]$ gives $\mathcal{Y}_{4}^{\sharp 3}: X = 40$.

We found the most precise invariants!

Another use of narrowing: Backward analysis

Backward refinement:

Given a forward analysis result $(\mathcal{X}_{\ell}^{\sharp})_{\ell \in \mathcal{L}}$ and an abstract output \mathcal{Y}^{\sharp} at x, we compute $(\mathcal{Y}_{\ell}^{\sharp})_{\ell \in \mathcal{L}}$.

$$\mathcal{Y}_{\chi}^{\sharp 0} \stackrel{\text{def}}{=} \mathcal{X}_{\chi}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp}$$

$$\mathcal{Y}_{\ell \neq x}^{\sharp 0} \stackrel{\text{def}}{=} \mathcal{X}_{\ell}^{\sharp}$$

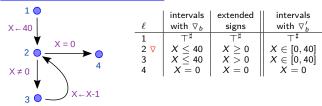
$$\mathcal{Y}_{\ell}^{\sharp n+1} \stackrel{\text{def}}{=} \begin{cases} \mathcal{X}_{\chi}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} & \text{if } \ell = x \\ \mathcal{X}_{\ell}^{\sharp} \cap^{\sharp} \bigcup_{(\ell,c,\ell') \in A}^{\sharp} \stackrel{\leftarrow}{\subset}^{\sharp} \llbracket c \rrbracket \mathcal{Y}_{\ell'}^{\sharp n} & \text{if } \ell \notin \mathcal{W}, \ell \neq x \\ \mathcal{Y}_{\ell}^{\sharp n} \triangle (\mathcal{X}_{\ell}^{\sharp} \cap^{\sharp} \bigcup_{(\ell,c,\ell') \in A}^{\sharp} \stackrel{\leftarrow}{\subset}^{\sharp} \llbracket c \rrbracket \mathcal{Y}_{\ell'}^{\sharp n}) & \text{if } \ell \in \mathcal{W}, \ell \neq x \end{cases}$$

 \triangle overapproximates \cap while enforcing the convergence of decreasing iterations

Forward-backward analyses can be iterated [Bour93b].

Improving the interval widening

Example of imprecise analysis



The interval domain cannot prove that $X \ge 0$ at 2, while the (less powerful) sign domain can!

Solution: improve the interval widening

$$[a,b] \; \triangledown_b' \; [c,d] \stackrel{\mathrm{def}}{=} \; \left[\left\{ \begin{array}{ll} a & \text{if } a \leq c \\ \textcolor{red}{0} & \text{if } 0 \leq c < a \\ -\infty & \text{otherwise} \end{array} \right. \; , \; \left\{ \begin{array}{ll} b & \text{if } b \geq d \\ \textcolor{red}{0} & \text{if } 0 \geq b > d \\ +\infty & \text{otherwise} \end{array} \right]$$

 $(\nabla'_b$ checks the stability of 0)

(narrowing does not help)

Widening with thresholds

Analysis problem:

```
X ← 0;
while • 1 = 1 do
   if [0,1] = 0 then
   X ← X + 1;
   if X > 40 then X ← 0 fi
   fi
done
```

We wish to prove that $X \in [0, 40]$ at \bullet .

- Widening at finds the loop invariant $X \in [0, +\infty]$. $\mathcal{X}_{\bullet}^{\sharp} = [0, 0] \nabla_b ([0, 0] \cup^{\sharp} [0, 1]) = [0, 0] \nabla_b [0, 1] = [0, +\infty[$
- Narrowing is unable to refine the invariant:

$$\mathcal{Y}_{\bullet}^{\sharp} = [0, +\infty] \bigtriangleup_b ([0, 0] \cup^{\sharp} [0, +\infty[) = [0, +\infty[$$

(the code that limits X is not executed at every loop iteration)

Widening with thresholds (cont.)

Solution:

Choose a finite set T of thresholds containing $+\infty$ and $-\infty$.

Definition: widening with thresholds
$$\nabla_b^T$$

$$[a,b] \nabla_b^T [c,d] \stackrel{\text{def}}{=} \left[\left\{ \begin{array}{ll} a & \text{if } a \leq c \\ \max{\{x \in T \mid x \leq c\}} & \text{otherwise} \end{array} \right. \right.,$$

$$\left\{ \begin{array}{ll} b & \text{if } b \geq d \\ \min{\{x \in T \mid x \geq d\}} & \text{otherwise} \end{array} \right]$$

The widening tests and stops at the first stable bound in T.

Widening with thresholds (cont.)

Applications:

- On the previous example, we find: $X \in [0, \min \{x \in T \mid x \ge 40\}]$.
- Useful when it is easy to find a 'good' set T.
 Example: array bound-checking
- Useful if an over-approximation of the bound is sufficient.
 Example: arithmetic overflow checking

<u>Limitations:</u> only works if some non-∞ bound in T is stable.

Example: with $T = \{5, 15\}$

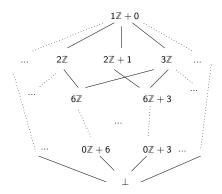
15 is stable

no stable bound

The congruence domain

The congruence lattice

$$\mathcal{B}^{\sharp} \stackrel{\text{def}}{=} \{ (a\mathbb{Z} + b) \mid a \in \mathbb{N}, \ b \in \mathbb{Z} \} \cup \{ \perp_b^{\sharp} \}$$



Introduced by Granger [Gran89]. We take $\mathbb{I} = \mathbb{Z}$.

The congruence lattice (cont.)

Concretization:

$$\gamma_b(\mathcal{X}_b^{\sharp}) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} \{ ak + b \, | \, k \in \mathbb{Z} \} & \text{if } \mathcal{X}_b^{\sharp} = (a\mathbb{Z} + b) \\ \emptyset & \text{if } \mathcal{X}_b^{\sharp} = \bot_b^{\sharp} \end{array} \right.$$

Note that $\gamma(0\mathbb{Z} + b) = \{b\}.$

 γ_b is not injective: $\gamma_b(2\mathbb{Z}+1)=\gamma_b(2\mathbb{Z}+3)$.

Definitions:

Given $x, x' \in \mathbb{Z}$, $y, y' \in \mathbb{N}$, we define:

- $y/y' \iff y \text{ divides } y' (\exists k \in \mathbb{N}: y' = ky)$ (note that $\forall y: y/0$)
- $\blacksquare x \equiv x' [y] \iff y/|x-x'|$ (in particular, $x \equiv x' [0] \iff x = x'$)
- \vee is the LCM, extended with $y \vee 0 \stackrel{\text{def}}{=} 0 \vee y \stackrel{\text{def}}{=} 0$
- \wedge is the GCD, extended with $y \wedge 0 \stackrel{\text{def}}{=} 0 \wedge y \stackrel{\text{def}}{=} y$

 $(\mathbb{N}, /, \vee, \wedge, 1, 0)$ is a complete distributive lattice.

Abstract congruence operators

Complete lattice structure on \mathcal{B}^{\sharp} :

- \blacksquare $\top_h^{\sharp} \stackrel{\text{def}}{=} (1\mathbb{Z} + 0)$
- $(a\mathbb{Z} + b) \cap_b^{\sharp} (a'\mathbb{Z} + b') \stackrel{\text{def}}{=} \begin{cases} (a \vee a')\mathbb{Z} + b'' & \text{if } b \equiv b' [a \wedge a'] \\ \bot_b^{\sharp} & \text{otherwise} \end{cases}$ b'' such that $b'' \equiv b [a \vee a'] \equiv b' [a \vee a']$ is given by Bezout's Theorem.

Course 3

Abstract congruence operators (cont.)

Arithmetic operators:

Abstract congruence operators (cont.)

Test operators:

$$\stackrel{\longleftarrow}{\leq} 0^{\sharp}_{b} (a\mathbb{Z} + b) \quad \stackrel{\text{def}}{=} \quad \left\{ \begin{array}{ll} \bot^{\sharp}_{b} & \text{if } a = 0, \ b > 0 \\ a\mathbb{Z} + b & \text{otherwise} \end{array} \right.$$

$$\vdots$$

Note: better than the generic $\stackrel{\longleftarrow}{\leq} 0^\sharp_b \left(\mathcal{X}^\sharp_b\right) \stackrel{\mathrm{def}}{=} \mathcal{X}^\sharp_b \, \cap^\sharp_b \, \left[-\infty,0\right]^\sharp_b = \mathcal{X}^\sharp_b$

Extrapolation operators:

- lacksquare no infinite increasing chain \Longrightarrow no need for ∇
- infinite decreasing chains ⇒ △ needed

$$(a\mathbb{Z}+b) \ \triangle_b \ (a'\mathbb{Z}+b') \stackrel{\mathrm{def}}{=} \left\{ egin{array}{l} a'\mathbb{Z}+b' & \mathrm{if} \ a=1 \ a\mathbb{Z}+b & \mathrm{otherwise} \end{array}
ight.$$

Note: $\mathcal{X}^{\sharp} \triangle \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \mathcal{X}^{\sharp}$ is always a narrowing.

Congruence analysis example

```
X \leftarrow 0; Y \leftarrow 2;
while • X < 40 do
X \leftarrow X + 2;
if X < 5 then Y \leftarrow Y+18 fi;
if X > 8 then Y \leftarrow Y-30 fi
done
```

We find, at
$$ullet$$
, the loop invariant $\left\{ \begin{array}{l} X \in 2\mathbb{Z} \\ Y \in 6\mathbb{Z} + 2 \end{array} \right.$

Reduced products

Non-reduced product of domains

Product representation:

Cartesian product $\mathcal{D}_{\mathbf{1}\times\mathbf{2}}^{\sharp}$ of $\mathcal{D}_{\mathbf{1}}^{\sharp}$ and $\mathcal{D}_{\mathbf{2}}^{\sharp}$:

- $\blacksquare \ \mathcal{D}_{1\times 2}^\sharp \stackrel{\scriptscriptstyle \mathrm{def}}{=} \ \mathcal{D}_1^\sharp \times \mathcal{D}_2^\sharp$

- $\blacksquare \ (\mathcal{X}_1^{\sharp},\mathcal{X}_2^{\sharp}) \sqsubseteq_{1\times 2} (\mathcal{Y}_1^{\sharp},\mathcal{Y}_2^{\sharp}) \ \stackrel{\scriptscriptstyle \mathrm{def}}{\Longleftrightarrow} \ \ \mathcal{X}_1^{\sharp} \sqsubseteq_{1} \mathcal{Y}_1^{\sharp} \quad \mathrm{and} \quad \mathcal{X}_2^{\sharp} \sqsubseteq_{2} \mathcal{Y}_2^{\sharp}$

Abstract operators: performed in parallel on both components:

- $\bullet (\mathcal{X}_1^{\sharp}, \mathcal{X}_2^{\sharp}) \cup_{1 \times 2}^{\sharp} (\mathcal{Y}_1^{\sharp}, \mathcal{Y}_2^{\sharp}) \stackrel{\text{def}}{=} (\mathcal{X}_1^{\sharp} \cup_{1}^{\sharp} \mathcal{Y}_1^{\sharp}, \mathcal{X}_2^{\sharp} \cup_{2}^{\sharp} \mathcal{Y}_2^{\sharp})$
- $\bullet (\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}) \nabla_{1 \times 2} (\mathcal{Y}_{1}^{\sharp}, \mathcal{Y}_{2}^{\sharp}) \stackrel{\mathrm{def}}{=} (\mathcal{X}_{1}^{\sharp} \nabla_{1} \mathcal{Y}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp} \nabla_{2} \mathcal{Y}_{2}^{\sharp})$
- $\blacksquare \mathsf{C}^{\sharp} \llbracket \mathsf{c} \rrbracket_{1 \times 2} (\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}) \stackrel{\text{def}}{=} (\mathsf{C}^{\sharp} \llbracket \mathsf{c} \rrbracket_{1} (\mathcal{X}_{1}^{\sharp}), \mathsf{C}^{\sharp} \llbracket \mathsf{c} \rrbracket_{2} (\mathcal{X}_{2}^{\sharp}))$

Non-reduced product example

The product analysis is no more precise than two separate analyses.

Example: interval-congruence product:

$$X \leftarrow 1;$$
while $X \leq 10$ do
 $X \leftarrow X + 2$
done;
•if $X \geq 12$ then• $X \leftarrow 0$ * fi

	interval	congruence	product
•	$X \in [11, 12]$	$X \equiv 1$ [2]	X = 11
•	X = 12	$X \equiv 1$ [2]	Ø
*	X = 0	X = 0	X = 0

We cannot prove that the if branch is never taken!

Fully-reduced product

Definition:

Given the Galois connections (α_1, γ_1) and (α_2, γ_2) on \mathcal{D}_1^{\sharp} and \mathcal{D}_2^{\sharp} we define the reduction operator ρ as:

$$\rho: \mathcal{D}_{1\times 2}^{\sharp} \to \mathcal{D}_{1\times 2}^{\sharp} \\ \rho(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}) \stackrel{\text{def}}{=} (\alpha_{1}(\gamma_{1}(\mathcal{X}_{1}^{\sharp}) \cap \gamma_{2}(\mathcal{X}_{2}^{\sharp})), \alpha_{2}(\gamma_{1}(\mathcal{X}_{1}^{\sharp}) \cap \gamma_{2}(\mathcal{X}_{2}^{\sharp})))$$

 ρ propagates information between domains.

Application:

We can reduce the result of each abstract operator, except ∇ :

- $\bullet (\mathcal{X}_1^{\sharp}, \mathcal{X}_2^{\sharp}) \cup_{1 \times 2}^{\sharp} (\mathcal{Y}_1^{\sharp}, \mathcal{Y}_2^{\sharp}) \stackrel{\text{def}}{=} \rho (\mathcal{X}_1^{\sharp} \cup_{1}^{\sharp} \mathcal{Y}_1^{\sharp}, \mathcal{X}_2^{\sharp} \cup_{2}^{\sharp} \mathcal{Y}_2^{\sharp}),$

We refrain from reducing after a widening ∇ , this may jeopardize the convergence (octagon domain example).

Fully-reduced product example

Reduction example: between the interval and congruence domains:

Noting:
$$a' \stackrel{\text{def}}{=} \min \{ x \ge a | x \equiv d [c] \}$$

 $b' \stackrel{\text{def}}{=} \max \{ x \le b | x \equiv d [c] \}$

We get:

$$\rho_b([a,b],c\mathbb{Z}+d) \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} \left(\bot_b^{\sharp},\bot_b^{\sharp}\right) & \text{if } a'>b'\\ \left([a',a'],0\mathbb{Z}+a'\right) & \text{if } a'=b'\\ \left([a',b'],c\mathbb{Z}+d\right) & \text{if } a'< b' \end{array} \right.$$

extended point-wisely to ρ on \mathcal{D}^{\sharp} .

Application:

- $\rho_b([10,11], 2\mathbb{Z}+1) = ([11,11], 0\mathbb{Z}+11)$ (proves that the branch is never taken on our example)
- $\rho_b([1,3], 4\mathbb{Z}) = (\perp_b^{\sharp}, \perp_b^{\sharp})$

Partially-reduced product

<u>Definition:</u> of a partial reduction:

any function $\rho: \mathcal{D}_{1 \times 2}^\sharp \to \mathcal{D}_{1 \times 2}^\sharp$ such that:

$$(\mathcal{Y}_{1}^{\sharp}, \mathcal{Y}_{2}^{\sharp}) = \rho(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}) \Longrightarrow \begin{cases} \gamma_{1 \times 2}(\mathcal{Y}_{1}^{\sharp}, \mathcal{Y}_{2}^{\sharp}) = \gamma_{1 \times 2}(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}) \\ \gamma_{1}(\mathcal{Y}_{1}^{\sharp}) \subseteq \gamma_{1}(\mathcal{X}_{1}^{\sharp}) \\ \gamma_{2}(\mathcal{Y}_{2}^{\sharp}) \subseteq \gamma_{2}(\mathcal{X}_{2}^{\sharp}) \end{cases}$$

Useful when:

- there is no Galois connection, or
- a full reduction exists but is expensive to compute.

Partial reduction example:

$$\rho(\mathcal{X}_1^{\sharp},\mathcal{X}_2^{\sharp}) \stackrel{\text{\tiny def}}{=} \left\{ \begin{array}{ll} \left(\bot^{\sharp},\bot^{\sharp}\right) & \text{if } \mathcal{X}_1^{\sharp} = \bot^{\sharp} \text{ or } \mathcal{X}_2^{\sharp} = \bot^{\sharp} \\ \left(\mathcal{X}_1^{\sharp},\mathcal{X}_2^{\sharp}\right) & \text{otherwise} \end{array} \right.$$

(works on all domains)

For more complex examples, see [Blan03].

Bibliography

Bibliography

- [Anco10] **C. Ancourt, F. Coelho & F. Irigoin**. *A modular static analysis approach to affine loop invariants detection*. In Proc. NSAD'10, ENTCS, Elsevier, 2010.
- [Berd07] J. Berdine, A. Chawdhary, B. Cook, D. Distefano & P. O'Hearn. Variance analyses from invariances analyses. In Proc. POPL'07 211–224, ACM, 2007.
- [Blan03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux & X. Rival. A static analyzer for large safety-critical software. In Proc. PLDI'03, 196–207, ACM, 2003.
- [Bour93a] **F. Bourdoncle**. Efficient chaotic iteration strategies with widenings. In Proc. FMPA'93, LNCS 735, 128–141, Springer, 1993.
- [Bour93b] **F. Bourdoncle**. Assertion-based debugging of imperative programs by abstract interpretation. In Proc. ESEC'93, 501–516, Springer, 1993.

Bibliography (cont.)

- [Cous76] **P. Cousot & R. Cousot**. Static determination of dynamic properties of programs. In Proc. ISP'76, Dunod, 1976.
- [Dor01] **N. Dor, M. Rodeh & M. Sagiv**. *Cleanness checking of string manipulations in C programs via integer analysis*. In Proc. SAS'01, LNCS 2126, 194–212, Springer, 2001.
- [Girb06] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler & O. Temam. Semi-automatic composition of loop transformations for deep parallelism and memory hierarchies. In J. of Parallel Prog., 34(3):261–317, 2006.
- [Gran89] **P. Granger**. Static analysis of arithmetical congruences. In JCM, 3(4–5):165–190, 1989.
- [Gran92] **P. Granger**. *Improving the results of static analyses of programs by local decreasing iterations*. In Proc. FSTTCSC'92, LNCS 652, 68–79, Springer, 1992.

Bibliography (cont.)

[Gran97] **P. Granger**. *Static analyses of congruence properties on rational numbers*. In Proc. SAS'97, LNCS 1302, 278–292, Springer, 1997.

[Jean09] **B. Jeannet & A. Miné**. *Apron: A library of numerical abstract domains for static analysis*. In Proc. CAV'09, LNCS 5643, 661–667, Springer, 2009, http://apron.cri.ensmp.fr/library.

[Mine06] **A. Miné**. Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics. In Proc. LCTES'06, 54–63, ACM, 2006.

[Vene02] **A. Venet**. *Nonuniform alias analysis of recursive data structures and arrays*. In Proc. SAS'02, LNCS 2477, 36–51, Springer, 2002.