Non-Relational Numerical Abstract Domains

MPRI 2-6: Abstract Interpretation,

 application to verification and static analysisAntoine Miné

Year 2023-2024

Course 3
28 September 2023

Outline

- Concrete semantics
- Abstract domains and abstract solving
- Non-relational numerical abstract domains
- generic Cartesian abstraction
- the sign domain(s)
- the constant domain
- the interval domain
- widenings ∇ and narrowings \triangle
- the congruence domain
- Reduced products
- Bibliography

Next week: relational abstract domains

Concrete semantics

Syntax of a toy-language

Simple numeric programs:

- fixed, finite set of variables \mathbb{V}
- with value in some numeric set $\mathbb{\square} \stackrel{\text { def }}{=}\{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$
- programs as control flow graphs (CFG): (\mathcal{L}, e, x, A) with nodes \mathcal{L}, entry $e \in \mathcal{L}$, exit $x \in \mathcal{L}$, and $\operatorname{arcs} A \subseteq \mathcal{L} \times \operatorname{com} \times \mathcal{L}$

Atomic commands:

$$
\begin{array}{cccl}
c o m & V=\exp & & \text { assignment into } V \in \mathbb{V} \\
& \mid & \exp \bowtie 0 & \text { numeric test, } \bowtie \in\{=,<,>, \leq, \geq, \neq\}
\end{array}
$$

Arithmetic expressions:

\exp	$:=$	V	variable $V \in \mathbb{V}$
		$-\exp$	negation
	$\exp \diamond \exp$	binary operation: $\diamond \in\{+,-, \times, /\}$	
	$\left[c, c^{\prime}\right]$	constant range, $c, c^{\prime} \in \mathbb{D} \cup\{ \pm \infty\}$	
	c	constant, shorthand for $[c, c]$	

Expression semantics (reminder)

Expression semantics: $\quad \mathrm{E} \llbracket e \rrbracket: \mathcal{E} \rightarrow \mathcal{P}(\square)$
where $\mathcal{E} \stackrel{\text { def }}{=} \mathbb{V} \rightarrow \mathbb{0}$.
The evaluation of e in $\rho \in \mathcal{E}$ gives a set of values:

$$
\begin{array}{lll}
\mathrm{E} \llbracket\left[c, c^{\prime}\right\rfloor \rrbracket \rho & \stackrel{\text { def }}{=} & \left\{x \in \rrbracket \mid c \leq x \leq c^{\prime}\right\} \\
\mathrm{E} \llbracket V \rrbracket \rho & \stackrel{\text { def }}{=} & \{\rho(V)\} \\
\mathrm{E} \llbracket-e \rrbracket \rho & \stackrel{\text { def }}{=} & \{-v \mid v \in \mathrm{E} \llbracket e \rrbracket \rho\} \\
\mathrm{E} \llbracket e_{1}+e_{2} \rrbracket \rho & \xlongequal{\text { def }} & \left\{v_{1}+v_{2} \mid v_{1} \in \mathrm{E} \llbracket e_{1} \rrbracket \rho, v_{2} \in \mathrm{E} \llbracket e_{2} \rrbracket \rho\right\} \\
\mathrm{E} \llbracket e_{1}-e_{2} \rrbracket \rho & \xlongequal{\text { def }} & \left\{v_{1}-v_{2} \mid v_{1} \in \mathrm{E} \llbracket e_{1} \rrbracket \rho, v_{2} \in \mathrm{E} \llbracket e_{2} \rrbracket \rho\right\} \\
\mathrm{E} \llbracket e_{1} \times e_{2} \rrbracket \rho & \xlongequal{\text { def }} & \left\{v_{1} \times v_{2} \mid v_{1} \in \mathrm{E} \llbracket e_{1} \rrbracket \rho, v_{2} \in \mathrm{E} \llbracket e_{2} \rrbracket \rho\right\} \\
\mathrm{E} \llbracket e_{1} / e_{2} \rrbracket \rho & \stackrel{\text { def }}{=} & \left\{v_{1} / v_{2} \mid v_{1} \in \mathrm{E} \llbracket e_{1} \rrbracket \rho, v_{2} \in \mathrm{E} \llbracket e_{2} \rrbracket \rho, v_{2} \neq 0\right\}
\end{array}
$$

Forward semantics: state reachability

Transfer functions: $\quad \subset \llbracket \operatorname{com} \rrbracket: \mathcal{P}(\mathcal{E}) \rightarrow \mathcal{P}(\mathcal{E})$

- $\mathbb{C} \llbracket V \leftarrow e \rrbracket \mathcal{X} \xlongequal{\text { def }}\{\rho[V \mapsto v \rrbracket \mid \rho \in \mathcal{X}, v \in \mathrm{E} \llbracket e \rrbracket \rho\}$
$■ C \llbracket e \bowtie 0 \rrbracket \mathcal{X} \stackrel{\text { def }}{=}\{\rho \mid \rho \in \mathcal{X}, \exists v \in \mathrm{E} \llbracket e \rrbracket \rho: v \bowtie 0\}$
Fixpoint semantics: $\left(\mathcal{X}_{\ell}\right)_{\ell \in \mathcal{L}}: \mathcal{P}(\mathcal{E})$

$$
\begin{cases}\mathcal{X}_{e}=\mathcal{E} & \text { (entry) } \\ \mathcal{X}_{\ell}=\bigcup_{\left(\ell^{\prime}, c, \ell\right) \in A} \subset \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}} & \text { if } \ell \neq e\end{cases}
$$

Tarski's Theorem: this smallest solution exists and is unique.
$\mathcal{D} \stackrel{\text { def }}{=}(\mathcal{P}(\mathcal{E}), \subseteq, \cup, \cap, \emptyset, \mathcal{E})$ is a complete lattice,
each $M_{\ell}: \mathcal{X}_{\ell} \mapsto \quad \bigcup \subset \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}}$ is monotonic in \mathcal{D}. $\left(\ell^{\prime}, c, \ell\right) \in A$
\Rightarrow the solution is the least fixpoint of $\left(M_{\ell}\right)_{\ell \in \mathcal{L}}$.

Resolution

Resolution by increasing iterations:

$$
\left\{\begin{array} { l l l }
{ \mathcal { X } _ { e } ^ { 0 } } & { \stackrel { \text { def } } { = } \mathcal { E } } \\
{ \mathcal { X } _ { \ell \neq e } ^ { 0 } } & { \stackrel { \text { def } } { = } } & { \emptyset }
\end{array} \quad \left\{\begin{array}{lll}
\mathcal{X}_{e}^{n+1} & \stackrel{\text { def }}{=} & \mathcal{E} \\
\mathcal{X}_{\ell \neq e}^{n+1} & \stackrel{\text { def }}{=} & \bigcup_{\left(\ell^{\prime}, c, \ell\right) \in A} \subset \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}}^{n}
\end{array}\right.\right.
$$

Kleene theorem:
Iteration converges in ω iterations to a least solution, because each $C \llbracket c \rrbracket$ is continuous in the $\mathrm{CPO} \mathcal{D}$.

Backward refinement: state co-reachability

Semantics of commands: $\quad \overleftarrow{C} \llbracket c \rrbracket: \mathcal{P}(\mathcal{E}) \rightarrow \mathcal{P}(\mathcal{E})$

- $\overleftarrow{C} \llbracket V \leftarrow e \rrbracket \mathcal{X} \xlongequal{\text { def }}\{\rho \mid \exists v \in \mathrm{E} \llbracket e \rrbracket \rho: \rho[V \mapsto v] \in \mathcal{X}\}$

■ $\overleftarrow{C} \llbracket e \bowtie 0 \rrbracket \mathcal{X} \stackrel{\text { def }}{=} C \llbracket e \bowtie 0 \rrbracket \mathcal{X}$
(necessary conditions on ρ to have a successor in \mathcal{X} by c)
Refinement: given:

- a solution $\left(\mathcal{X}_{\ell}\right)_{\ell \in \mathcal{L}}$ of the forward system
- an output criterion \mathcal{Y} at exit node x
compute a least fixpoint by decreasing iterations [Bour93b]

$$
\begin{aligned}
& \left\{\begin{array}{lll}
\mathcal{Y}_{x}^{0} & \stackrel{\text { def }}{=} \mathcal{X}_{x} \cap \mathcal{Y} \\
\mathcal{Y}_{\ell \neq x}^{0} & \stackrel{\text { def }}{=} & \mathcal{X}_{\ell}
\end{array}\right. \\
& \left\{\begin{array}{lll}
\mathcal{Y}_{x}^{n+1} & \stackrel{\text { def }}{=} & \mathcal{X}_{x} \cap \mathcal{Y} \\
\mathcal{Y}_{\ell \neq x}^{n+1} & \stackrel{\text { def }}{=} & \mathcal{X}_{\ell} \cap\left(\bigcup_{\left(\ell, c, \ell^{\prime}\right) \in A} \overleftarrow{C} \llbracket c \rrbracket \mathcal{Y}_{\ell^{\prime}}^{n}\right)
\end{array}\right.
\end{aligned}
$$

Limit to automation

We wish to perform automatic numerical invariant discovery.
Theoretical problems

- the elements of $\mathcal{P}(\mathbb{V} \rightarrow \mathbb{\square})$ are not computer representable
- the transfer functions $C \llbracket c \rrbracket, \overleftarrow{C} \llbracket c \rrbracket$ are not computable
- the lattice iterations in $\mathcal{P}(\mathcal{E})$ are transfinite

Finding the best invariant is an undecidable problem

Note:

Even when $\mathbb{\square}$ is finite, a concrete analysis is not tractable:

- representing elements in $\mathcal{P}(\mathbb{V} \rightarrow \mathbb{\square})$ in extension is expensive
- computing $C \llbracket c \rrbracket, \overleftarrow{C} \llbracket c \rrbracket$ explicitly is expensive
- the lattice $\mathcal{P}(\mathbb{V} \rightarrow \mathbb{\square})$ has a large height $(\Rightarrow$ many iterations $)$

Abstractions

Numerical abstract domains

A numerical abstract domain is given by:

- a subset of $\mathcal{P}(\mathcal{E})$
(a set of environment sets) together with a machine encoding,
- effective and sound abstract operators,
- an iteration strategy
ensuring convergence in finite time.

Numerical abstract domain examples

Academic implementation: Apron and Interproc

Apron: library of numerical abstractions [Jean09]

Interproc: on-line analyzer for a toy language, based on Apron

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

Numerical abstract domains (cont.)

Representation: given by

■ a set $\mathcal{D}^{\#}$ of machine-representable abstract environments,

- a partial order $\left(\mathcal{D}^{\sharp}, \sqsubseteq, \perp^{\sharp}, \top^{\#}\right)$ relating the amount of information given by abstract elements,
- a concretization function $\gamma: \mathcal{D}^{\sharp} \rightarrow \mathcal{P}(\mathcal{E})$ giving a concrete meaning to each abstract element,
- an abstraction function α forming a Galois connection (α, γ) is optional.

Required algebraic properties:

- γ should be monotonic: $\mathcal{X}^{\sharp} \sqsubseteq \mathcal{Y}^{\sharp} \Longrightarrow \gamma\left(\mathcal{X}^{\sharp}\right) \subseteq \gamma\left(\mathcal{Y}^{\sharp}\right)$,
- $\gamma\left(\perp^{\sharp}\right)=\emptyset$,
- $\gamma\left(T^{\sharp}\right)=\mathcal{E}$.

Note: γ need not be one-to-one.

Numerical abstract domains (cont.)

Abstract operators: we require:

- sound, effective, abstract transfer functions $C^{\sharp} \llbracket c \rrbracket, \overleftarrow{C}^{\sharp} \llbracket c \rrbracket$ for all commands $c(V \leftarrow e, e \bowtie 0)$,
■ sound, effective, abstract set operators $\cup^{\sharp}, \cap^{\sharp}$,
■ an algorithm to decide the ordering \sqsubseteq.

Soundness criterion:
F^{\sharp} is a sound abstraction of a n-ary operator F if:

$$
\forall \mathcal{X}_{1}^{\sharp}, \ldots, \mathcal{X}_{n}^{\sharp} \in \mathcal{D}^{\sharp}: F\left(\gamma\left(\mathcal{X}_{1}^{\sharp}\right), \ldots, \gamma\left(\mathcal{X}_{n}^{\sharp}\right)\right) \subseteq \gamma\left(F^{\sharp}\left(\mathcal{X}_{1}^{\sharp}, \ldots, \mathcal{X}_{n}^{\sharp}\right)\right)
$$

$F^{\sharp}\left(\mathcal{X}_{1}^{\sharp}, \ldots, \mathcal{X}_{n}^{\sharp}\right)=\alpha\left(F\left(\gamma\left(\mathcal{X}_{1}^{\sharp}\right), \ldots, \gamma\left(\mathcal{X}_{n}^{\sharp}\right)\right)\right)$ is optional.
Both semantic and algorithmic aspects.

Abstract semantics

Abstract semantic inequation system

$$
\mathcal{X}^{\sharp}: \mathcal{L} \rightarrow \mathcal{D}^{\sharp}
$$

$$
\mathcal{X}_{\ell}^{\sharp} \sqsupseteq\left\{\begin{array}{ccc}
T^{\sharp} & \text { if } \ell=e & \text { (entry) } \\
\bigcup_{\left(\ell^{\prime}, c, \ell\right) \in A}^{\sharp} C^{\sharp} \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}}^{\sharp} & \text { if } \ell \neq e
\end{array} \quad\right. \text { (abstract transfer function) }
$$

for soundness, a post-fixpoint \sqsupseteq is sufficient; a fixpoint $=$ could be too restrictive

Soundness Theorem

Any solution $\left(\mathcal{X}_{\ell}^{\sharp}\right)_{\ell \in \mathcal{L}}$ is a sound over-approximation of the concrete collecting semantics:

$$
\forall \ell \in \mathcal{L}: \gamma\left(\mathcal{X}_{\ell}^{\sharp}\right) \supseteq \mathcal{X}_{\ell} \quad\left\{\begin{array}{l}
\text { where } \mathcal{X}_{\ell} \text { is the smallest solution of } \\
\mathcal{X}_{\ell}=\bigcup_{\left(\ell^{\prime}, c, \ell\right) \in A} \subset \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}} \\
\text { entry } \\
\text { if } \ell \neq e
\end{array}\right.
$$

A first abstract analysis

Resolution by iteration in $\mathcal{D}^{\sharp}:$

$$
\mathcal{X}_{e}^{\sharp 0} \stackrel{\text { def }}{=} T^{\sharp}
$$

$\mathcal{X}_{\ell \neq e}^{\sharp 0} \stackrel{\text { def }}{=} \perp^{\#}$

$$
\mathcal{X}_{\ell}^{\sharp n+1} \stackrel{\text { def }}{=} \begin{cases}T^{\sharp} & \text { if } \ell=e \\ \bigcup_{\left(\ell^{\prime}, c, \ell\right) \in A}^{\sharp} C^{\sharp} \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}}^{\sharp n} & \text { if } \ell \neq e\end{cases}
$$

Iteration until stabilisation: $\forall \ell \in \mathcal{L}: \mathcal{X}_{\ell}^{\sharp \delta+1} \sqsubseteq \mathcal{X}_{\ell}^{\sharp \delta}$
Soundness: $\forall \ell \in \mathcal{L}: \mathcal{X}_{\ell} \subseteq \gamma\left(\mathcal{X}_{\ell}^{\sharp \delta}\right)$
Termination: for monotonic operators on finite height lattices.
Quite restrictive!
Some improvements we will see later:

- widening operators ∇ to ensure termination in all cases
- decreasing iterations to improve precision

Also, other iteration schemes (worklist, chaotic iterations, see [Bour93a])

Backward abstract analysis

Backward refinement:

Given a forward analysis result $\left(\mathcal{X}_{\ell}^{\sharp}\right)_{\ell \in \mathcal{L}}$ and an abstract output \mathcal{Y}^{\sharp} at x, we compute $\left(\mathcal{Y}_{\ell}^{\sharp}\right)_{\ell \in \mathcal{L}}$:

$$
\begin{aligned}
& \mathcal{Y}_{x}^{\sharp 0} \stackrel{\text { def }}{=} \mathcal{X}_{x}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} \\
& \mathcal{Y}_{\ell \neq x}^{\sharp 0} \stackrel{\text { def }}{=} \mathcal{X}_{\ell}^{\sharp} \\
& \mathcal{Y}_{\ell}^{\sharp n+1} \stackrel{\text { def }}{=} \begin{cases}\mathcal{X}_{x}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} & \text { if } \ell=x \\
\mathcal{X}_{\ell}^{\sharp} \cap^{\sharp} \bigcup_{\left(\ell, c, \ell^{\prime}\right) \in A}^{\sharp} \overleftarrow{C^{\sharp}} \llbracket c \rrbracket \mathcal{Y}_{\ell^{\prime}}^{\sharp n} & \text { if } \ell \neq x\end{cases}
\end{aligned}
$$

Forward-backward analyses can be iterated [Bour93b].

Non-relational domains

Value abstract domains

Idea: start from an abstraction \mathcal{B}^{\sharp} of values $\mathcal{P}(0)$ (representing a single variable)
Numerical value abstract domain:

\mathcal{B}^{\sharp}	abstract values, machine-representable
$\gamma_{b}: \mathcal{B}^{\sharp} \rightarrow \mathcal{P}(\square)$	concretization
\sqsubseteq_{b}	partial order
$\perp_{b}^{\sharp}, \top_{b}^{\sharp}$	represent \emptyset and $\mathbb{\square}$
$\cup_{b}^{\sharp}, \cap_{b}^{\sharp}$	abstractions of \cup and \cap
∇_{b}	extrapolation operator (introduced later, with intervals)
$\alpha_{b}: \mathcal{P}(\mathbb{\square}) \rightarrow \mathcal{B}^{\sharp}$	abstraction (optional)

Abstract arithmetic operators

Require sound abstract versions in \mathcal{B}^{\sharp} of arithmetic operators,,$+- \times, /$.
Soundness conditions:

$$
\begin{array}{cl}
\left\{x \mid c \leq x \leq c^{\prime}\right\} & \subseteq \gamma_{b}\left(\left[c, c^{\prime}\right]_{b}^{\sharp}\right) \\
\left\{-x \mid x \in \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right)\right\} & \subseteq \gamma_{b}\left(-\frac{\sharp}{b} \mathcal{X}_{b}^{\sharp}\right) \\
\left\{x+y \mid x \in \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right), y \in \gamma_{b}\left(\mathcal{Y}_{b}^{\sharp}\right)\right\} & \subseteq \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}+\frac{\sharp}{b} \mathcal{Y}_{b}^{\sharp}\right)
\end{array}
$$

$\underline{\text { Using a Galois connection }\left(\alpha_{b}, \gamma_{b}\right): ~}$
We can define best abstract arithmetic operators:

$$
\begin{array}{ccl}
{\left[c, c^{\prime}\right]_{b}^{\sharp}} & \stackrel{\text { def }}{=} & \alpha_{b}\left(\left\{x \mid c \leq x \leq c^{\prime}\right\}\right) \\
-{ }_{b}^{\sharp} \mathcal{X}_{b}^{\sharp} & \stackrel{\text { def }}{=} & \alpha_{b}\left(\left\{-x \mid x \in \gamma\left(\mathcal{X}_{b}^{\sharp}\right)\right\}\right) \\
\mathcal{X}_{b}^{\sharp}++_{b}^{\sharp} \mathcal{Y}_{b}^{\sharp} & \stackrel{\text { def }}{=} & \alpha_{b}\left(\left\{x+y \mid x \in \gamma\left(\mathcal{X}_{b}^{\sharp}\right), y \in \gamma\left(\mathcal{Y}_{b}^{\sharp}\right)\right\}\right)
\end{array}
$$

Derived abstract domain

Idea: associate an abstract value to each variable

$$
\mathcal{D}^{\sharp} \stackrel{\text { def }}{=}\left(\mathbb{V} \rightarrow\left(\mathcal{B}^{\sharp} \backslash\left\{\perp_{b}^{\sharp}\right\}\right)\right) \cup\left\{\perp^{\sharp}\right\}
$$

- point-wise extension: $\mathcal{X}^{\sharp} \in \mathcal{D}^{\sharp}$ is a vector of elements in \mathcal{B}^{\sharp}
(e.g. using arrays of size $|\mathbb{V}|$, or functional maps)

■ smashed $\perp^{\sharp} \quad$ (avoids redundant representations of \emptyset)
Definitions on \mathcal{D}^{\sharp} derived from \mathcal{B}^{\sharp} :

$$
\begin{aligned}
& \gamma\left(\mathcal{X}^{\sharp}\right) \stackrel{\text { def }}{=} \begin{cases}\emptyset & \text { if } \mathcal{X} \sharp=\perp^{\sharp} \\
\left\{\rho \mid \forall V: \rho(V) \in \gamma_{b}(\mathcal{X} \sharp(V))\right\} & \text { otherwise }\end{cases} \\
& \alpha(\mathcal{X}) \stackrel{\text { def }}{=} \begin{cases}\perp^{\sharp} & \text { if } \mathcal{X}=\emptyset \\
\lambda V \cdot \alpha_{b}(\{\rho(V) \mid \rho \in \mathcal{X}\}) & \text { otherwise }\end{cases} \\
& T \sharp \stackrel{\text { def }}{=} \lambda V \cdot T_{b}^{\sharp}
\end{aligned}
$$

Derived abstract domain (cont.)

$$
\begin{aligned}
& \mathcal{X}^{\sharp} \sqsubseteq \mathcal{Y}^{\sharp} \stackrel{\text { def }}{\Longleftrightarrow} \mathcal{X}^{\sharp}=\perp^{\sharp} \vee\left(\mathcal{X}^{\sharp}, \mathcal{Y}^{\sharp} \neq \perp^{\sharp} \wedge \forall V: \mathcal{X}^{\sharp}(V) \sqsubseteq_{b} \mathcal{Y}^{\sharp}(V)\right) \\
& \mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text { if } \mathcal{X}^{\sharp}=\perp^{\sharp}}{=} \begin{array}{ll}
\text { def } & \text { if } \mathcal{Y}^{\sharp}=\perp^{\sharp} \\
\mathcal{X}^{\sharp} & \text { if } \mathcal{X}^{\sharp}=\perp^{\sharp} \text { or } \mathcal{Y}^{\sharp}=\perp^{\sharp} \\
\lambda V \cdot \mathcal{X}^{\sharp}(V) \cup_{b}^{\sharp} \mathcal{Y}^{\sharp}(V) & \text { otherwise }
\end{array} \\
& \mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text { def }}{=} \begin{cases}\perp^{\sharp} & \text { if } \exists V: \mathcal{X}^{\sharp}(V) \cap_{b}^{\sharp} \mathcal{Y}^{\sharp}(V)=\perp_{b}^{\sharp} \\
\perp^{\sharp} & \mathcal{X}^{\sharp}(V) \cap_{b}^{\sharp} \mathcal{Y}^{\sharp}(V) \\
\lambda V \text { otherwise }\end{cases}
\end{aligned}
$$

We will see later how to derive $C^{\sharp} \llbracket c \rrbracket, \overleftarrow{C^{\sharp}} \llbracket c \rrbracket$ from abstract arithmetic operators $+\frac{\sharp}{b}, \ldots$

On the loss of precision: Cartesian abstraction

Non-relational domains "forget" all relationships between variables.
Cartesian abstraction:
Upper closure operator $\rho_{c}: \mathcal{P}(\mathcal{E}) \rightarrow \mathcal{P}(\mathcal{E})$

$$
\rho_{c}(\mathcal{X}) \stackrel{\text { def }}{=}\left\{\rho \in \mathcal{E} \mid \forall V \in \mathbb{V}: \exists \rho^{\prime} \in \mathcal{X}: \rho(V)=\rho^{\prime}(V)\right\}
$$

A domain is non-relational if $\rho \circ \gamma=\gamma$,
i.e. it cannot distinguish between \mathcal{X} and \mathcal{X}^{\prime} if $\rho_{c}(\mathcal{X})=\rho_{c}\left(\mathcal{X}^{\prime}\right)$.

Example: $\rho_{c}(\{(X, Y) \mid X \in\{0,2\}, Y \in\{0,2\}, X+Y \leq 2\})=\{0,2\} \times\{0,2\}$.

The sign domains

The sign lattices

Hasse diagram: for the lattice $\left(\mathcal{B}^{\sharp}, \sqsubseteq_{b}, \perp_{b}^{\sharp}, \top_{b}^{\sharp}\right)$

The extended sign domain is a refinement of the simple sign domain.
The diagram implicitly defines $\cup_{b}^{\#}$ and \cap_{b}^{\sharp} as the least upper bound and greatest lower bound for \sqsubseteq_{b}.

Abstract operators for simple signs

Abstraction α : there is a Galois connection between \mathcal{B}^{\sharp} and $\mathcal{P}(\mathbb{0})$:

$$
\alpha_{b}(S) \stackrel{\text { def }}{=} \begin{cases}\perp_{b}^{\sharp} & \text { if } S=\emptyset \\ 0 & \text { if } S=\{0\} \\ \geq 0 & \text { else if } \forall s \in S: s \geq 0 \\ \leq 0 & \text { else if } \forall s \in S: s \leq 0 \\ \top_{b}^{\#} & \text { otherwise }\end{cases}
$$

Derived abstract arithmetic operators:

$$
\begin{aligned}
& c_{b}^{\sharp} \stackrel{\text { def }}{=} \alpha_{b}(\{c\})= \begin{cases}0 & \text { if } c=0 \\
\leq 0 & \text { if } c<0 \\
\geq 0 & \text { if } c>0\end{cases} \\
& X^{\sharp}++_{b}^{\sharp} Y^{\sharp} \quad \stackrel{\text { def }}{=} \alpha_{b}\left(\left\{x+y \mid x \in \gamma_{b}\left(X^{\sharp}\right), y \in \gamma_{b}\left(Y^{\sharp}\right)\right\}\right) \\
&= \begin{cases}\perp_{b}^{\sharp} & \text { if } X \text { or } Y^{\sharp}=\perp_{b}^{\sharp} \\
0 & \text { if } X^{\sharp}=Y^{\sharp}=0 \\
\leq 0 & \text { else if } X^{\sharp} \text { and } Y^{\sharp} \in\{0, \leq 0\} \\
\geq 0 & \text { else if } X^{\sharp} \text { and } Y^{\sharp} \in\{0, \geq 0\} \\
\top_{b}^{\sharp} & \text { otherwise }\end{cases}
\end{aligned}
$$

Generic non-relational abstract assignments

We can then define for all non-relational domains:

- an abstract semantics of expressions: $\quad E^{\sharp} \llbracket e \rrbracket: \mathcal{D}^{\sharp} \rightarrow \mathcal{B}^{\sharp}$

$$
E^{\sharp} \llbracket e \rrbracket \perp \sharp \quad \stackrel{\text { def }}{=} \quad \perp_{b}^{\sharp}
$$

$$
\text { if } \mathcal{X}^{\sharp} \neq \perp^{\sharp}:
$$

$$
E^{\sharp} \llbracket\left[c, c^{\prime}\right] \rrbracket \mathcal{X}^{\sharp} \quad \stackrel{\text { def }}{=} \quad\left[c, c^{\prime}\right]_{b}^{\sharp}
$$

$$
E^{\sharp} \llbracket V \rrbracket \mathcal{X}^{\sharp} \quad \stackrel{\text { def }}{=} \quad \mathcal{X}^{\sharp}(V)
$$

$$
E^{\sharp} \llbracket-e \rrbracket \mathcal{X}^{\sharp} \quad \stackrel{\text { def }}{=} \quad-{ }_{b}^{\sharp} E^{\sharp} \llbracket e \rrbracket \mathcal{X}^{\sharp}
$$

$$
\mathrm{E}^{\sharp} \llbracket e_{1}+e_{2} \rrbracket \mathcal{X}^{\sharp} \quad \stackrel{\text { def }}{=} \quad \mathrm{E}^{\sharp} \llbracket e_{1} \rrbracket \mathcal{X}^{\sharp}+{ }_{b}^{\sharp} \mathrm{E}^{\sharp} \llbracket e_{2} \rrbracket \mathcal{X}^{\sharp}
$$

- an abstract assignment:

$$
C^{\sharp} \llbracket V \leftarrow e \rrbracket \mathcal{X}^{\sharp} \stackrel{\text { def }}{=} \begin{cases}\perp^{\sharp} & \text { if } \mathcal{V}_{b}^{\sharp}=\perp_{b}^{\sharp} \\ \mathcal{X}^{\sharp}\left[V \mapsto \mathcal{V}_{b}^{\sharp}\right] & \text { otherwise }\end{cases}
$$

where $\mathcal{V}_{b}^{\sharp}=E^{\sharp} \llbracket e \rrbracket \mathcal{X}^{\sharp}$.

Note: in general, $E^{\sharp} \llbracket e \rrbracket$ is less precise than $\alpha_{b} \circ \mathrm{E} \llbracket e \rrbracket \circ \gamma$
e.g, on intervals: $e=V-V$ and $\gamma_{b}\left(\mathcal{X}^{\sharp}(V)\right)=[0,1]$
then we get $[-1,1]$ instead of 0

Abstract tests on simple signs

Abstract test examples:

$$
C^{\sharp} \llbracket X \leq 0 \rrbracket \mathcal{X}^{\sharp} \stackrel{\text { def }}{=}\left(\begin{array}{ll}
\mathcal{X}^{\sharp}[X \mapsto 0] & \text { if } \mathcal{X}^{\sharp}(X) \in\{0, \geq 0\} \\
\mathcal{X}^{\sharp}[X \mapsto \leq 0] & \text { if } \mathcal{X}^{\sharp}(X) \in\left\{T_{b}^{\sharp}, \leq 0\right\} \\
\perp^{\sharp} & \text { otherwise }
\end{array}\right)
$$

$$
C^{\sharp} \llbracket X \leq c \rrbracket \mathcal{X}^{\sharp} \stackrel{\text { def }}{=}\left(\left\{\begin{array}{ll}
C^{\sharp} \llbracket X \leq 0 \rrbracket \mathcal{X}^{\sharp} & \text { if } c \leq 0 \\
\mathcal{X}^{\sharp} & \text { otherwise }
\end{array}\right)\right.
$$

$$
C^{\sharp} \llbracket X \leq Y \rrbracket \mathcal{X} \sharp \stackrel{\text { def }}{=}
$$

$$
\begin{aligned}
& \begin{cases}C^{\sharp} \llbracket X \leq 0 \rrbracket \mathcal{X}^{\sharp} & \text { if } \mathcal{X}^{\sharp}(Y) \in\{0, \leq 0\} \\
\mathcal{X}^{\sharp} & \text { otherwise }\end{cases} \\
& \begin{cases}C^{\sharp} \llbracket Y \geq 0 \rrbracket \mathcal{X}^{\sharp} & \text { if } \mathcal{X}^{\sharp}(X) \in\{0, \geq 0\} \\
\mathcal{X}^{\sharp} & \text { otherwise }\end{cases}
\end{aligned}
$$

Other cases: $\quad C^{\sharp} \llbracket$ expr $\bowtie 0 \rrbracket \mathcal{X} \sharp \stackrel{\text { def }}{=} \mathcal{X} \sharp$ is always a sound abstraction.

We will see later a systematic way to build tests, as we did for assignments...

Simple sign analysis example

Example analysis using the simple sign domain:

$$
\begin{aligned}
& X \leftarrow 0 ; \\
& \text { while } X<40 \text { do } \\
& \quad X \leftarrow X+1 \\
& \text { done }
\end{aligned}
$$

Program

$$
\left\{\begin{aligned}
\mathcal{X}_{2}^{\sharp i+1}= & C^{\sharp} \llbracket X \leftarrow 0 \rrbracket \mathcal{X}_{1}^{\sharp i} \cup \\
& C^{\sharp} \llbracket X \leftarrow X+1 \rrbracket \mathcal{X}_{3}^{\sharp i} \\
\mathcal{X}_{3}^{\sharp i+1}= & C^{\sharp} \llbracket X<40 \rrbracket \mathcal{X}_{2}^{\sharp i} \\
\mathcal{X}_{4}^{\sharp i+1}= & C^{\sharp} \llbracket X \geq 40 \rrbracket \mathcal{X}_{2}^{\sharp i}
\end{aligned}\right.
$$

Iteration system

ℓ	$\mathcal{X}_{\ell}^{\sharp 0}$	$\mathcal{X}_{\ell}^{\sharp 1}$	$\mathcal{X}_{\ell}^{\sharp 2}$	$\mathcal{X}_{\ell}^{\sharp 3}$	$\mathcal{X}_{\ell}^{\sharp 4}$	$\mathcal{X}_{\ell}^{\sharp 5}$
1	T\#	T\#	T\#	T\#	T\#	T\#
2	$\perp^{\#}$	$X=0$	$X=0$	$x \geq 0$	$x \geq 0$	$x \geq 0$
3	$\perp^{\#}$	$\perp^{\#}$	$X=0$	$X=0$	$x \geq 0$	$x \geq 0$
4	$\perp^{\#}$	$\perp^{\#}$	$X=0$	$X=0$	$x \geq 0$	$X \geq 0$

The constant domain

The constant lattice

Hasse diagram:

$\mathcal{B}^{\sharp}=0 \cup\left\{\top_{b}^{\sharp}, \perp_{b}^{\sharp}\right\}$
The lattice is flat but infinite.

Operations on constants

Abstraction α : there is a Galois connection:

$$
\alpha_{b}(S) \stackrel{\text { def }}{=} \begin{cases}\perp_{b}^{\sharp} & \text { if } S=\emptyset \\ c & \text { if } S=\{c\} \\ \top_{b}^{\sharp} & \text { otherwise }\end{cases}
$$

Derived abstract arithmetic operators:

$$
\left.\begin{array}{rl}
c_{b}^{\sharp} & \stackrel{\text { def }}{=} c \\
\left(X^{\sharp}\right)+\frac{\#}{b}\left(Y^{\sharp}\right) & \stackrel{\text { def }}{=}\{
\end{array} \begin{array}{ll}
\perp_{b}^{\sharp} & \text { if } X^{\sharp} \text { or } Y^{\sharp}=\perp_{b}^{\sharp} \\
T_{b}^{\sharp} \\
X^{\sharp}+Y^{\sharp} & \text { else if } X^{\sharp} \text { orerwise } Y^{\sharp}=T_{b}^{\sharp}
\end{array}\right\}
$$

Operations on constants (cont.)

Abstract test examples:

$$
C^{\sharp} \llbracket X=c \rrbracket \mathcal{X} \xlongequal{\sharp} \stackrel{\text { def }}{=} \begin{cases}\perp^{\sharp} & \text { if } \mathcal{X}^{\sharp}(X) \notin\left\{c, T_{b}^{\sharp}\right\} \\ \mathcal{X}^{\sharp}[X \mapsto c] & \text { otherwise }\end{cases}
$$

$$
C^{\sharp} \llbracket X=Y+c \rrbracket \mathcal{X} \sharp \stackrel{\text { def }}{=}
$$

$$
\begin{aligned}
& \left(\left\{\begin{array}{ll}
C^{\sharp} \llbracket X=\mathcal{X}^{\sharp}(Y)+c \rrbracket \mathcal{X}^{\sharp} & \text { if } \mathcal{X}^{\sharp}(Y) \notin\left\{\perp_{b}^{\sharp}, T_{b}^{\sharp}\right\} \\
\mathcal{X}^{\sharp}
\end{array}\right) \cap^{\sharp}\right. \\
& \left(\left\{\begin{array}{ll}
C^{\sharp} \llbracket Y=\mathcal{X}^{\sharp}(X)-c \rrbracket \mathcal{X}^{\sharp} & \text { if } \mathcal{X}^{\sharp}(X) \notin\left\{\perp_{b}^{\sharp}, T_{b}^{\sharp}\right\} \\
\mathcal{X}^{\sharp} & \text { otherwise }
\end{array}\right)\right.
\end{aligned}
$$

Constant analysis example

\mathcal{B}^{\sharp} has finite height, the $\left(\mathcal{X}_{\ell}^{\sharp i}\right)$ converge in finite time.
(even though \mathcal{B}^{\sharp} is infinite...)
Analysis example:

$$
\begin{aligned}
& X \leftarrow 0 ; Y \leftarrow 10 ; \\
& \text { while } X<100 \text { do } \\
& Y \leftarrow Y-3 ; \\
& X \leftarrow X+Y ; \bullet \\
& Y \leftarrow Y+3
\end{aligned}
$$

The constant analysis finds, at \bullet, the invariant: $\left\{\begin{array}{l}X=T_{b}^{\sharp} \\ Y=7\end{array}\right.$
Note: the analysis can find constants that do not appear syntactically in the program.

The interval domain

The interval lattice

Introduced by [Cous76].

$$
\mathcal{B}^{\sharp} \stackrel{\text { def }}{=}\{[a, b] \mid a \in \mathbb{\square} \cup\{-\infty\}, b \in \mathbb{\square} \cup\{+\infty\}, a \leq b\} \cup\left\{\perp_{b}^{\sharp}\right\}
$$

Note: intervals are open at infinite bounds $+\infty,-\infty$.

The interval lattice (cont.)

Galois connection $\left(\alpha_{b}, \gamma_{b}\right)$:

$$
\begin{array}{ll}
\gamma_{b}([a, b]) & \stackrel{\text { def }}{=}\{x \in \square \mid a \leq x \leq b\} \\
\alpha_{b}(\mathcal{X}) & \stackrel{\text { def }}{=}
\end{array} \begin{cases}\perp \frac{\perp}{b} & \text { if } \mathcal{X}=\emptyset \\
{[\min \mathcal{X}, \max \mathcal{X}]} & \text { otherwise }\end{cases}
$$

If $\mathbb{Q}=\mathbb{Q}, \alpha_{b}$ is not always defined...
Partial order:

$$
\begin{array}{ccl}
{[a, b] \sqsubseteq_{b}[c, d]} & \stackrel{\text { def }}{\Longrightarrow} & a \geq c \text { and } b \leq d \\
T_{b}^{\#} & \stackrel{\text { def }}{=} & {[-\infty,+\infty]}
\end{array}
$$

$$
[a, b] \cup_{b}^{\#}[c, d] \quad \stackrel{\text { def }}{=} \quad[\min (a, c), \max (b, d)]
$$

$$
[a, b] \cap_{b}^{\sharp}[c, d] \quad \stackrel{\text { def }}{=} \quad \begin{cases}{[\max (a, c), \min (b, d)]} & \text { if } \max \leq \min \\ \perp_{b}^{\sharp} & \text { otherwise }\end{cases}
$$

If $\mathbb{Q} \neq \mathbb{Q}$, it is a complete lattice.

Interval abstract arithmetic operators

$$
\begin{aligned}
& {\left[c, c^{\prime}\right]_{b}^{\sharp} \stackrel{\text { def }}{=} \quad\left[c, c^{\prime}\right]} \\
& -\frac{b_{b}}{\square}[a, b] \quad \stackrel{\text { def }}{=} \quad[-b,-a]
\end{aligned}
$$

$[a, b]++_{b}^{\sharp}[c, d] \stackrel{\text { def }}{=} \quad[a+c, b+d]$
$[a, b]-\frac{b_{b}^{\sharp}}{[c, d]} \stackrel{\text { def }}{=} \quad[a-d, b-c]$
$[a, b] \times \frac{\square}{\square}[c, d] \quad \stackrel{\text { def }}{=} \quad[\min (a c, a d, b c, b d), \max (a c, a d, b c, b d)]$

where $\mid \pm \infty \times 0=0, \quad 0 / 0=0, \quad \forall x: x / \pm \infty=0$ $\forall x>0: x / 0=+\infty, \quad \forall x<0: x / 0=-\infty$

Operators are strict: $-{ }_{b}^{\sharp} \perp_{b}^{\sharp}=\perp_{b}^{\sharp},[a, b]+{ }_{b}^{\sharp} \perp_{b}^{\sharp}=\perp_{b}^{\sharp}$, etc.

Exactness and optimality: Example proofs

Proof: exactness of $+_{b}^{\sharp}$

$$
\begin{aligned}
& \left\{x+y \mid x \in \gamma_{b}([a, b]), y \in \gamma_{b}([c, d])\right\} \\
= & \{x+y \mid a \leq x \leq b \wedge c \leq y \leq d\} \\
= & \{z \mid a+c \leq z \leq b+d\} \\
= & \gamma_{b}([a+c, b+d]) \\
= & \gamma_{b}\left([a, b]+_{b}^{\#}[c, d]\right)
\end{aligned}
$$

Proof optimality of $\cup_{b}^{\#}$

$$
\begin{aligned}
& \alpha_{b}\left(\gamma_{b}([a, b]) \cup \gamma_{b}([c, d])\right) \\
= & \alpha_{b}(\{x \mid a \leq x \leq b\} \cup\{x \mid c \leq x \leq d\}) \\
= & \alpha_{b}(\{x \mid a \leq x \leq b \vee c \leq x \leq d\}) \\
= & {[\min \{x \mid a \leq x \leq b \vee c \leq x \leq d\}, \max \{x \mid a \leq x \leq b \vee c \leq x \leq d\}] } \\
= & {[\min (a, c), \max (b, d)] } \\
= & {[a, b] \cup \not \cup_{b}^{\sharp}[c, d] }
\end{aligned}
$$

but \cup_{b}^{\sharp} is not exact

Interval abstract tests (non-generic)

If $\mathcal{X}^{\sharp}(X)=[a, b]$ and $\mathcal{X}^{\sharp}(Y)=[c, d]$, we can define:

$$
\begin{array}{lll}
C^{\sharp} \llbracket X \leq c \rrbracket \mathcal{X}^{\sharp} & \stackrel{\text { def }}{=} & \begin{cases}\perp^{\sharp} & \text { if } a>c \\
\mathcal{X}^{\sharp}[X \mapsto[a, \min (b, c)]] & \text { otherwise }\end{cases} \\
C^{\sharp} \llbracket X \leq Y \rrbracket \mathcal{X}^{\sharp} & \stackrel{\text { def }}{=} & \begin{cases}\perp^{\sharp} & \text { if } a>d \\
\mathcal{X}^{\sharp}[X \mapsto[a, \min (b, d)], & \text { otherwise } \\
Y \mapsto[\max (c, a), d]]\end{cases}
\end{array}
$$

$C^{\sharp} \llbracket e \bowtie 0 \rrbracket \mathcal{X}^{\sharp} \quad \stackrel{\text { def }}{=} \mathcal{X}^{\sharp}$ otherwise

Note: fall-back operators

- $\mathrm{C}^{\sharp} \llbracket e \bowtie 0 \rrbracket \mathcal{X}^{\sharp}=\mathcal{X}^{\sharp}$ is always sound.
- $C^{\sharp} \llbracket X \leftarrow e \rrbracket \mathcal{X}^{\sharp}=\mathcal{X}^{\sharp}\left[X \mapsto \top_{b}^{\sharp}\right]$ is always sound.

Generic abstract tests, step 1

Example: $\quad C^{\sharp} \llbracket X+Y-Z \leq 0 \rrbracket \mathcal{X}^{\sharp}$

$$
\text { with } \mathcal{X}^{\sharp}=\{X \mapsto[0,10], Y \mapsto[2,10], Z \mapsto[3,5]\}
$$

First step: annotate the expression tree with abstract values in \mathcal{B}^{\sharp}

Bottom-up evaluation similar to abstract expression evaluation using $+\frac{\sharp}{\sharp},-\frac{\sharp}{b}$, etc. but storing abstract value at each node.

Generic abstract tests, step 2

Example: $\quad C^{\sharp} \llbracket X+Y-Z \leq 0 \rrbracket \mathcal{X}^{\sharp}$ with $\mathcal{X}^{\sharp}=\{X \mapsto[0,10], Y \mapsto[2,10], Z \mapsto[3,5]\}$

Second step: top-down expression refinement.

- refine the root abstract value, knowing it should be negative;
- propagate refined abstract values downwards;
- values at leaf variables provide new information to store into \mathcal{X}^{\sharp}. $\{X \mapsto[0,3], Y \mapsto[2,5], Z \mapsto[3,5]\}$

Backward arithmetic and comparison operators

In general, we need sound backward arithmetic and comparison operators that refine their arguments given a result.

Soundness condition: \quad for $\overleftarrow{\leq}_{b}^{\sharp}, \overleftarrow{干}_{b}^{\sharp}, \overleftarrow{ธ}_{b}^{\sharp}, \ldots$

$$
\begin{aligned}
& \mathcal{X}_{b}^{\sharp \prime}=\overleftarrow{\leq} 0_{b}^{\sharp}\left(\mathcal{X}^{\sharp}\right) \Longrightarrow \\
& \quad\left\{x \in \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right) \mid x \leq 0\right\} \subseteq \gamma_{b}\left(\mathcal{X}_{b}^{\sharp \prime}\right) \subseteq \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right) \\
& \mathcal{X}_{b}^{\sharp \prime}=\overleftarrow{-} b_{b}^{\sharp}\left(\mathcal{X}_{b}^{\sharp}, \mathcal{R}_{b}^{\sharp}\right) \Longrightarrow \\
& \quad\left\{x \mid x \in \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right),-x \in \gamma_{b}\left(\mathcal{R}_{b}^{\sharp}\right)\right\} \subseteq \gamma_{b}\left(\mathcal{X}_{b}^{\sharp \prime}\right) \subseteq \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right) \\
& \left.\left(\mathcal{X}_{b}^{\sharp \prime}, \mathcal{Y}_{b}^{\sharp \prime}\right)=\overleftarrow{\Psi}\right)\left(\mathcal{X}_{b}^{\sharp}, \mathcal{Y}_{b}^{\sharp}, \mathcal{R}_{b}^{\sharp}\right) \Longrightarrow \\
& \left\{x \in \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right) \mid \exists y \in \gamma_{b}\left(\mathcal{Y}_{b}^{\sharp}\right): x+y \in \gamma_{b}\left(\mathcal{R}_{b}^{\sharp}\right)\right\} \subseteq \gamma_{b}\left(\mathcal{X}_{b}^{\sharp \prime}\right) \subseteq \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right) \\
& \left\{y \in \gamma_{b}\left(\mathcal{Y}_{b}^{\sharp}\right) \mid \exists x \in \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right): x+y \in \gamma_{b}\left(\mathcal{R}_{b}^{\sharp}\right)\right\} \subseteq \gamma_{b}\left(\mathcal{Y}_{b}^{\sharp \prime}\right) \subseteq \gamma_{b}\left(\mathcal{Y}_{b}^{\sharp}\right)
\end{aligned}
$$

Note: best backward operators can be designed with α_{b} :
e.g. for $\overleftarrow{+}_{b}^{\sharp}: \mathcal{X}_{b}^{\sharp \prime}=\alpha_{b}\left(\left\{x \in \gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right) \mid \exists y \in \gamma_{b}\left(\mathcal{Y}_{b}^{\sharp}\right): x+y \in \gamma_{b}\left(\mathcal{R}_{b}^{\sharp}\right)\right\}\right)$

Generic backward operator construction

Synthesizing non necessarily optimal) backward arithmetic operators from forward arithmetic operators.

$$
\begin{aligned}
& \overleftarrow{\leq} 0_{b}^{\sharp}\left(\mathcal{X}_{b}^{\sharp}\right) \stackrel{\text { def }}{=} \mathcal{X}_{b}^{\sharp} \cap_{b}^{\sharp}[-\infty, 0]_{b}^{\sharp} \\
& \overleftarrow{-}_{b}^{\#}\left(\mathcal{X}_{b}^{\sharp}, \mathcal{R}_{b}^{\sharp}\right) \stackrel{\text { def }}{=} \mathcal{X}_{b}^{\sharp} \cap_{b}^{\#}\left(-\frac{R_{b}^{\#}}{\#} \mathcal{R}_{b}^{\sharp}\right) \\
& \text { (as } R=-X \Longrightarrow X=-R \text {) } \\
& \overleftarrow{+}{ }_{b}^{\sharp}\left(\mathcal{X}_{b}^{\sharp}, \mathcal{Y}_{b}^{\sharp}, \mathcal{R}_{b}^{\sharp}\right) \stackrel{\text { def }}{=}\left(\mathcal{X}_{b}^{\sharp} \cap_{b}^{\sharp}\left(\mathcal{R}_{b}^{\sharp}-\frac{\#}{b} \mathcal{Y}_{b}^{\sharp}\right), \mathcal{Y}_{b}^{\sharp} \cap_{b}^{\sharp}\left(\mathcal{R}_{b}^{\sharp}-{ }_{b}^{\sharp} \mathcal{X}_{b}^{\sharp}\right)\right) \\
& \text { (as } R=X+Y \Longrightarrow X=R-Y \text { and } Y=R-X \text {) } \\
& \underset{-}{\sharp}\left(\mathcal{X}_{b}^{\sharp}, \mathcal{Y}_{b}^{\sharp}, \mathcal{R}_{b}^{\sharp}\right) \stackrel{\text { def }}{=}\left(\mathcal{X}_{b}^{\sharp} \cap_{b}^{\sharp}\left(\mathcal{R}_{b}^{\sharp}+{ }_{b}^{\sharp} \mathcal{Y}_{b}^{\sharp}\right), \mathcal{Y}_{b}^{\sharp} \cap_{b}^{\sharp}\left(\mathcal{X}_{b}^{\sharp}-{ }_{b}^{\sharp} \mathcal{R}_{b}^{\sharp}\right)\right) \\
& \overleftarrow{x}_{b}^{\sharp}\left(\mathcal{X}_{b}^{\sharp}, \mathcal{Y}_{b}^{\sharp}, \mathcal{R}_{b}^{\sharp}\right) \stackrel{\text { def }}{=}\left(\mathcal{X}_{b}^{\sharp} \cap_{b}^{\sharp}\left(\mathcal{R}_{b}^{\sharp} /{ }_{b}^{\sharp} \mathcal{Y}_{b}^{\sharp}\right), \mathcal{Y}_{b}^{\sharp} \cap_{b}^{\sharp}\left(\mathcal{R}_{b}^{\sharp} /{ }_{b}^{\sharp} \mathcal{X}_{b}^{\sharp}\right)\right) \\
& \overleftarrow{/}{ }_{b}^{\sharp}\left(\mathcal{X}_{b}^{\sharp}, \mathcal{Y}_{b}^{\sharp}, \mathcal{R}_{b}^{\sharp}\right) \stackrel{\text { def }}{=}\left(\mathcal{X}_{b}^{\sharp} \cap_{b}^{\sharp}\left(\mathcal{S}_{b}^{\sharp} \times_{b}^{\sharp} \mathcal{Y}_{b}^{\sharp}\right), \mathcal{Y}_{b}^{\sharp} \cap_{b}^{\sharp}\left(\left(\mathcal{X}_{b}^{\sharp} /{ }_{b}^{\sharp} \mathcal{S}_{b}^{\sharp}\right) \cup_{b}^{\sharp}[0,0]_{b}^{\sharp}\right)\right) \\
& \text { where } \mathcal{S}_{b}^{\sharp}= \begin{cases}\mathcal{R}_{b}^{\#} & \text { if } \mathbb{\mathbb { C }} \neq \mathbb{Z} \\
\mathcal{R}_{b}^{\sharp}+{ }_{b}^{\sharp}[-1,1]_{b}^{\sharp} & \text { if } \mathbb{\mathbb { Z }}=\mathbb{Z} \text { (as } / \text { rounds) }\end{cases}
\end{aligned}
$$

Note: $\overleftarrow{\delta}_{b}^{\sharp}\left(\mathcal{X}_{b}^{\sharp}, \mathcal{Y}_{b}^{\sharp}, \mathcal{R}_{b}^{\sharp}\right)=\left(\mathcal{X}_{b}^{\sharp}, \mathcal{Y}_{b}^{\sharp}\right)$ is always sound (no refinement).

Application to the interval domain

Applying the generic construction to the interval domain:

$$
\begin{aligned}
& \overleftarrow{\leq} 0_{b}^{\sharp}([a, b]) \stackrel{\text { def }}{=} \begin{cases}{[a, \min (b, 0)]} & \text { if } a \geq 0 \\
\perp_{b}^{\sharp} & \text { otherwise }\end{cases} \\
& \overleftarrow{S}_{b}^{\sharp}([a, b],[r, s]) \stackrel{\text { def }}{=}[a, b] \cap_{b}^{\sharp}[-s,-r] \\
& \overleftarrow{+}_{b}^{\sharp}([a, b],[c, d],[r, s]) \stackrel{\text { def }}{=}\left([a, b] \cap_{b}^{\sharp}[r-d, s-c],\right. \\
& \left.[c, d] \cap_{b}^{\sharp}[r-b, s-a]\right)
\end{aligned}
$$

Generic non-relational backward assignment

Abstract function: $\quad \overleftarrow{C}^{\sharp} \llbracket V \leftarrow e \rrbracket\left(\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}\right)$
over-approximates $\gamma\left(\mathcal{X}^{\sharp}\right) \cap \overleftarrow{C} \llbracket V \leftarrow e \rrbracket \gamma\left(\mathcal{R}^{\sharp}\right)$ given

- an abstract pre-condition \mathcal{X}^{\sharp} to refine,
- according to a given abstract post-condition \mathcal{R}^{\sharp}.

Algorithm: similar to the abstract test

- annotate variable leaves based on $\mathcal{X}^{\sharp} \cap^{\sharp}\left(\mathcal{R}^{\sharp}\left[V \mapsto T_{b}^{\sharp}\right]\right)$;
- evaluate bottom-up using forward operators $\diamond_{b}^{\#}$;
- intersect the root with $\mathcal{R}^{\sharp}(V)$;
- refine top-down using backward operators $\overleftarrow{\delta}_{b}^{\#}$;
- return \mathcal{X}^{\sharp} intersected with values at variable leaves.

Note:

- local iterations can also be used

■ fallback: $\overleftarrow{C} \sharp \llbracket V \leftarrow e \rrbracket\left(\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}\right)=\mathcal{X}^{\sharp} \cap^{\sharp}\left(\mathcal{R}^{\sharp}\left[V \mapsto \top_{b}^{\sharp}\right]\right)$

Interval backward assignment example

Example: $\overleftarrow{C} \sharp \mathbb{}{ }^{\sharp} \leftarrow X+Y-Z \rrbracket\left(\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}\right)$
with $\mathcal{X}^{\sharp}=\{X \mapsto[0,10], Y \mapsto[2,10], Z \mapsto[1,5]\}$ and $\mathcal{R}^{\sharp}=\{X \mapsto[-6,6], Y \mapsto[2,10], Z \mapsto[2,6]\}$

Widening

\mathcal{B}^{\sharp} has an infinite height, so does \mathcal{D}^{\sharp}.
Naive iterations ($\mathcal{X}_{\ell}^{\sharp i}$) may not converge in finite time.
We will use a widening operator ∇.

Definition: widening ∇

Binary operator $\mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp} \rightarrow \mathcal{D}^{\sharp}$ ensuring

- soundness: $\gamma\left(\mathcal{X}^{\sharp}\right) \cup \gamma\left(\mathcal{Y}^{\sharp}\right) \subseteq \gamma\left(\mathcal{X}^{\sharp} \nabla \mathcal{Y}^{\sharp}\right)$,
- termination:
for all sequences $\left(\mathcal{X}_{i}^{\sharp}\right)$, the increasing sequence $\left(\mathcal{Y}_{i}^{\sharp}\right)$ defined by

$$
\left\{\begin{array}{lll}
\mathcal{Y}_{0}^{\sharp} & \stackrel{\text { def }}{=} & \mathcal{X}_{0}^{\sharp} \\
\mathcal{Y}_{i+1}^{\sharp} & \stackrel{\text { def }}{=} & \mathcal{Y}_{i}^{\sharp} \nabla \mathcal{X}_{i+1}^{\sharp}
\end{array}\right.
$$

is stationary, i.e., $\exists i: \mathcal{Y}_{i+1}^{\sharp}=\mathcal{Y}_{i}^{\sharp}$.

Interval widening

Widening on non-relational domains:
Given a value widening $\nabla_{b}: \mathcal{B}^{\sharp} \times \mathcal{B}^{\sharp} \rightarrow \mathcal{B}^{\sharp}$, we extend it point-wise into a widening $\nabla: \mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp} \rightarrow \mathcal{D}^{\sharp}$:

$$
\mathcal{X}^{\sharp} \nabla \mathcal{Y}^{\sharp} \stackrel{\text { def }}{=} \lambda V \cdot\left(\mathcal{X}^{\sharp}(V) \nabla_{b} \mathcal{Y}^{\sharp}(V)\right)
$$

Interval widening example:

$$
\begin{array}{llll}
\perp^{\sharp} & \nabla_{b} & \mathcal{X}^{\sharp} & \stackrel{\text { def }}{=} \\
{[a, b]} & \nabla_{b} & {[c, d]} & \stackrel{\text { def }}{=}
\end{array}\left[\left\{\begin{array}{ll}
a & \text { if } a \leq c \\
-\infty & \text { otherwise }
\end{array},\left\{\begin{array}{ll}
b & \text { if } b \geq d \\
+\infty & \text { otherwise }
\end{array}\right] .\right.\right.
$$

Unstable bounds are set to $\pm \infty$.

Abstract analysis with widening

Take a set $\mathcal{W} \subseteq L$ of widening points such that every CFG cycle has a point in \mathcal{W}.

Iteration with widening:

$$
\begin{aligned}
& \mathcal{X}_{e}^{\sharp 0} \stackrel{\text { def }}{=} T^{\sharp} \\
& \mathcal{X}_{\ell \neq e}^{\sharp 0} \stackrel{\text { def }}{=} \perp^{\sharp}
\end{aligned}
$$

$$
\mathcal{X}_{\ell}^{\sharp n+1} \stackrel{\text { def }}{=} \begin{cases}T^{\sharp} & \text { if } \ell=e \\ \bigcup_{\left(\ell^{\prime}, c, \ell\right) \in A}^{\sharp} C^{\sharp} \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}}^{\sharp n} & \text { if } \ell \notin \mathcal{W}, \ell \neq e \\ \mathcal{X}_{\ell}^{\sharp n} \nabla \bigcup_{\left(\ell^{\prime}, c, \ell\right) \in A}^{\sharp} C^{\sharp} \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}}^{\sharp n} & \text { if } \ell \in \mathcal{W}, \ell \neq e\end{cases}
$$

Theorem: we have:

- termination: for some $\delta, \forall \ell \in \mathcal{L}: \mathcal{X}_{\ell}^{\sharp \delta+1}=\mathcal{X}_{\ell}^{\sharp \delta}$
- soundness: $\forall \ell \in \mathcal{L}: \mathcal{X}_{\ell} \subseteq \gamma\left(\mathcal{X}_{\ell}^{\sharp \delta}\right)$

Note: the abstract operators $C^{\sharp} \llbracket \rrbracket$ do not have to be monotonic!

Abstract analysis with widening (proof $1 / 2$)

Proof of soundness:

Suppose that $\forall \ell: \mathcal{X}_{\ell}^{\sharp \delta+1}=\mathcal{X}_{\ell}^{\sharp \delta}$.
If $\ell=e$, by definition: $\mathcal{X}_{e}^{\sharp \delta}=T^{\sharp}$ and $\gamma\left(T^{\sharp}\right)=\mathcal{E}$.
If $\ell \neq e, \ell \notin \mathcal{W}$, then $\mathcal{X}_{\ell}^{\sharp \delta}=\mathcal{X}_{\ell}^{\sharp \delta+1}=\cup_{\left(\ell^{\prime}, c, \ell\right) \in A}^{\sharp} C^{\sharp} \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}}^{\sharp \delta}$.
By soundness of \cup^{\sharp} and $C^{\sharp} \llbracket c \rrbracket, \gamma\left(\mathcal{X}_{\ell}^{\sharp \delta}\right) \supseteq \cup_{\left(\ell^{\prime}, c, \ell\right) \in A} C \llbracket c \rrbracket \gamma\left(\mathcal{X}_{\ell^{\prime}}^{\sharp}\right)$.
If $\ell \neq e, \ell \in \mathcal{W}$, then $\mathcal{X}_{\ell}^{\sharp \delta}=\mathcal{X}_{\ell}^{\sharp \delta+1}=\mathcal{X}_{\ell}^{\sharp \delta} \nabla \cup_{\left(\ell^{\prime}, c, \ell\right) \in A}^{\sharp} C^{\sharp} \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}}^{\sharp}$.
By soundness of $\nabla, \gamma\left(\mathcal{X}_{\ell}^{\sharp \delta}\right) \supseteq \gamma\left(\cup_{\left(\ell^{\prime}, c, \ell\right) \in A}^{\sharp} C^{\sharp} \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}}^{\sharp \delta}\right)$,
and so we also have $\gamma\left(\mathcal{X}_{\ell}^{\sharp \delta}\right) \supseteq \cup_{\left(\ell^{\prime}, c, \ell\right) \in A} C \llbracket c \rrbracket \gamma\left(\mathcal{X}_{\ell^{\prime}}^{\sharp \delta}\right)$.
We have proved that $\lambda \ell \cdot \gamma\left(\mathcal{X}_{\ell}^{\sharp \delta}\right)$ is a postfixpoint of the concrete equation system. Hence, it is greater than its least solution.

Abstract analysis with widening (proof 2/2)

Proof of termination:

Suppose that the iteration does not terminate in finite time.
Given a label $\ell \in \mathcal{L}$, we denote by $i_{\ell}^{1}, \ldots, i_{\ell}^{k}, \ldots$ the increasing sequence of unstable indices, i.e., such that $\forall k: \mathcal{X}_{\ell}^{\#_{\ell}^{i k}}{ }_{\ell}^{i+1} \neq \mathcal{X}_{\ell}^{\sharp i_{\ell}^{k}}$.
As the iteration is not stable, $\forall n$: $\exists \ell: \mathcal{X}_{\ell}^{\sharp n} \neq \mathcal{X}_{\ell}^{\sharp n+1}$.
Hence, the sequence $\left(i_{\ell}^{k}\right)_{k}$ is infinite for at least one $\ell \in \mathcal{L}$.
We argue that $\exists \ell \in \mathcal{W}$ such that $\left(i_{\ell}^{k}\right)_{k}$ is infinite as, otherwise, $N=\max \left\{i_{\ell}^{k} \mid \ell \in \mathcal{W}\right\}+|\mathcal{L}|$ is finite and satisfies: $\forall n \geq N: \forall \ell \in \mathcal{L}: \mathcal{X}_{\ell}^{\sharp n}=\mathcal{X}_{\ell}^{\sharp n+1}$, contradicting our assumption.
For such a $\ell \in \mathcal{W}$, consider the subsequence $\mathcal{Y}_{k}^{\sharp}=\mathcal{X}_{\ell}^{\sharp i} i^{k}$ comprised of the unstable iterates of $\mathcal{X}_{\ell}^{\sharp}$.
Then $\mathcal{Y}^{\sharp k+1}=\mathcal{Y}^{\sharp k} \nabla \mathcal{Z}^{\sharp k}$ for some sequence $\mathcal{Z}^{\sharp k}$.
The subsequence is infinite and $\forall k: \mathcal{Y}^{\sharp k+1} \neq \mathcal{Y}^{\sharp k}$, which contradicts the definition of ∇.
Hence, the iteration must terminate in finite time.

Interval analysis with widening example

Analysis example with $\mathcal{W}=\{2\}$

ℓ	$\mathcal{X}_{\ell}^{\sharp 0}$	$\mathcal{X}_{\ell}^{\sharp 1}$	$\mathcal{X}_{\ell}^{\sharp 2}$	$\mathcal{X}_{\ell}^{\sharp 3}$	$\mathcal{X}_{\ell}^{\sharp 4}$	$\mathcal{X}_{\ell}^{\sharp 5}$
1	\top^{\sharp}	\top^{\sharp}	\top^{\sharp}	\top^{\sharp}	\top^{\sharp}	\top^{\sharp}
2∇	\perp^{\sharp}	$=0$	$=0$	≥ 0	≥ 0	≥ 0
3	\perp^{\sharp}	\perp^{\sharp}	$=0$	$=0$	$\in[0,39]$	$\in[0,39]$
4	\perp^{\sharp}	\perp^{\sharp}	\perp^{\sharp}	\perp^{\sharp}	≥ 40	≥ 40

More precisely, at the widening point:

$$
\begin{aligned}
& \mathcal{X}_{2}^{\sharp 1}=\perp^{\sharp} \quad \nabla_{b}\left([0,0] \cup_{b}^{\sharp} \perp^{\sharp}\right)=\perp^{\sharp} \quad \nabla_{b}[0,0]=[0,0] \\
& \mathcal{X}_{2}^{\sharp 2}=[0,0] \quad \nabla_{b}\left([0,0] \cup_{b}^{\sharp} \perp^{\sharp}\right)=[0,0] \quad \nabla_{b}[0,0]=[0,0] \\
& \mathcal{X}_{2}^{\sharp 3}=[0,0] \quad \nabla_{b}\left([0,0] \cup_{b}^{\sharp}[1,1]\right)=[0,0] \quad \nabla_{b}[0,1]=[0,+\infty[\\
& \mathcal{X}_{2}^{\sharp 4}=[0,+\infty] \nabla_{b}\left([0,0] \cup_{b}^{\sharp}[1,40]\right)=[0,+\infty] \nabla_{b}[0,40]=[0,+\infty]
\end{aligned}
$$

Note that the most precise interval abstraction would be $X \in[0,40]$ at 2, and $X=40$ at 4 .

Influence of the widening point and iteration strategy

Changing \mathcal{W} changes the analysis result

Example: The analysis is less precise for $\mathcal{W}=\{3\}$.

ℓ	$\mathcal{X}_{\ell}^{\sharp 1}$	$\mathcal{X}_{\ell}^{\sharp 2}$	$\mathcal{X}_{\ell}^{\sharp 3}$	$\mathcal{X}_{\ell}^{\sharp 4}$	$\mathcal{X}_{\ell}^{\sharp 5}$	$\mathcal{X}_{\ell}^{\sharp 6}$
1	T^{\sharp}	T^{\sharp}	\top^{\sharp}	T^{\sharp}	\top^{\sharp}	T^{\sharp}
2	$=0$	$=0$	$\in[0,1]$	$\in[0,1]$	≥ 0	≥ 0
3∇	\perp^{\sharp}	$=0$	$=0$	≥ 0	≥ 0	≥ 0
4	\perp^{\sharp}	\perp^{\sharp}	\perp^{\sharp}	\perp^{\sharp}	\perp^{\sharp}	≥ 40

Intuition: extrapolation to $+\infty$ is no longer contained by the tests.
Chaotic iterations
Changing the iteration order changes the analysis result in the presence of a widening [Bour93b].

A simple technique: Widening delay

```
V}\leftarrow0
while 0 = [0,1] do
    if V = 0 then V }\leftarrow1\textrm{fi
done
```

V is only incremented once, from 0 to 1 .

Problem:

∇ considers V unstable and sets it to $[0,+\infty] \Longrightarrow$ precision loss $([0,0] \nabla[0,1]=[0,+\infty])$

Solution: delay widening application for one or more iterations:
$\mathcal{X}_{\ell}^{\sharp n+1} \stackrel{\text { def }}{=} \begin{cases}F^{\sharp}\left(\mathcal{X}_{\ell}^{\sharp n}\right) & \text { if } n<N \\ \mathcal{X}_{\ell}^{\sharp n} \nabla F^{\sharp}\left(\mathcal{X}_{\ell}^{\sharp n}\right) & \text { if } n \geq N\end{cases}$
with $N=1, X_{1}^{\sharp}=[0,0] \cup^{\sharp}[1,1]=[0,1], X_{2}^{\sharp}=[0,1] \nabla[0,1]=[0,1]=X_{1}^{\sharp}$
(after some point, the widening must be applied continuously)

Narrowing

Using a widening makes the analysis less precise.
Some precision can be retrieved by using a narrowing \triangle.

Definition: narrowing Δ

Binary operator $\mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp} \rightarrow \mathcal{D}^{\sharp}$ such that:

- $\gamma\left(\mathcal{X}^{\sharp}\right) \cap \gamma\left(\mathcal{Y}^{\sharp}\right) \subseteq \gamma\left(\mathcal{X}^{\sharp} \triangle \mathcal{Y}^{\sharp}\right) \subseteq \gamma\left(\mathcal{X}^{\sharp}\right)$,
- for all sequences $\left(\mathcal{X}_{i}^{\sharp}\right)$, the decreasing sequence $\left(\mathcal{Y}_{i}^{\sharp}\right)$
defined by $\left\{\begin{array}{lll}\mathcal{Y}_{0}^{\sharp} & \stackrel{\text { def }}{=} & \mathcal{X}_{0}^{\sharp} \\ \mathcal{Y}_{i+1}^{\sharp} & \stackrel{\text { def }}{=} & \mathcal{Y}_{i}^{\sharp} \Delta \mathcal{X}_{i+1}^{\sharp}\end{array}\right.$
is stationary.

This is not the dual of a widening!
The widening must ultimately jump above the least fixpoint (to any post-fixpoint).
The narrowing must always stay above the least fixpoint (or any fixpoint actually).

Narrowing examples

Trivial narrowing:
$\mathcal{X}^{\sharp} \triangle \mathcal{Y}^{\sharp} \stackrel{\text { def }}{=} \mathcal{X}^{\sharp}$ is a correct narrowing.
Finite-time intersection narrowing:
$\mathcal{X}^{\sharp i} \Delta \mathcal{Y}^{\sharp} \stackrel{\text { def }}{=} \begin{cases}\mathcal{X}^{\sharp i} \cap^{\sharp} \mathcal{Y}^{\sharp} & \text { if } i \leq N \\ \mathcal{X}^{\sharp i} & \text { if } i>N\end{cases}$
(indexed by an iteration counter i)
Interval narrowing:
$[a, b] \Delta_{b}[c, d] \stackrel{\text { def }}{=}\left[\left\{\begin{array}{ll}c & \text { if } a=-\infty \\ a & \text { otherwise }\end{array},\left\{\begin{array}{ll}d & \text { if } b=+\infty \\ b & \text { otherwise }\end{array}\right]\right.\right.$
(refine only infinite bounds)
Point-wise extension to $\mathcal{D}^{\sharp}: \quad \mathcal{X}^{\sharp} \Delta \mathcal{Y}^{\sharp} \stackrel{\text { def }}{=} \lambda V .\left(\mathcal{X}^{\sharp}(V) \Delta_{b} \mathcal{Y}^{\sharp}(V)\right)$

Iterations with narrowing

Let $\mathcal{X}_{\ell}^{\sharp \delta}$ be the result after widening stabilisation, i.e.:

$$
\mathcal{X}_{\ell}^{\sharp \delta} \sqsupseteq\left\{\begin{array}{cl}
T^{\sharp} & \text { if } \ell=e \\
\bigcup_{\left(\ell^{\prime}, c, \ell\right) \in A}^{\sharp} C^{\sharp} \llbracket c \rrbracket \mathcal{X}_{\ell^{\prime}}^{\sharp \delta} & \text { if } \ell \neq e
\end{array}\right.
$$

The following sequence is computed:

$$
\mathcal{Y}_{\ell}^{\sharp 0} \stackrel{\text { def }}{=} \mathcal{X}_{\ell}^{\sharp \delta} \quad \mathcal{Y}_{\ell}^{\sharp i+1} \stackrel{\text { def }}{=} \begin{cases}T^{\sharp} & \text { if } \ell=e \\ \bigcup_{\left(\ell^{\prime}, c, \ell\right) \in A}^{\sharp} C^{\sharp} \llbracket c \rrbracket \mathcal{Y}_{\ell^{\prime}}^{\sharp i} & \text { if } \ell \notin \mathcal{W} \\ \mathcal{Y}_{\ell}^{\sharp i} \Delta \bigcup_{\left(\ell^{\prime}, c, \ell\right) \in A}^{\sharp} C^{\sharp} \llbracket c \rrbracket \mathcal{Y}_{\ell^{\prime}}^{\sharp i} & \text { if } \ell \in \mathcal{W}\end{cases}
$$

- the sequence $\left(\mathcal{Y}_{\ell}^{\# i}\right)$ is decreasing and converges in finite time,
- all the $\left(\mathcal{Y}_{\ell}^{\sharp i}\right)$ are sound abstractions of the concrete system.

Interval analysis with narrowing example

$\underline{\text { Example with } \mathcal{W}=\{2\}}$

Narrowing at 2 gives:

$$
\begin{aligned}
& \mathcal{\nu}_{2}^{\sharp 1}=[0,+\infty] \Delta_{b}\left([0,0] \cup_{b}^{\sharp}[1,40]\right)=\left[0,+\infty\left[\Delta_{b}[0,40]=[0,40]\right.\right. \\
& \mathcal{y}_{2}^{\sharp 2}=[0,40] \quad \Delta_{b}\left([0,0] \cup_{b}^{\sharp}[1,40]\right)=[0,40] \quad \Delta_{b}[0,40]=[0,40]
\end{aligned}
$$

Then $\mathcal{Y}_{2}^{\sharp 2}: X \in[0,40]$ gives $\mathcal{Y}_{4}^{\sharp 3}: X=40$.
We found the most precise invariants!

Another use of narrowing: Backward analysis

Backward refinement:

Given a forward analysis result $\left(\mathcal{X}_{\ell}^{\sharp}\right)_{\ell \in \mathcal{L}}$ and an abstract output \mathcal{Y}^{\sharp} at x, we compute $\left(\mathcal{Y}_{\ell}^{\sharp}\right)_{\ell \in \mathcal{L}}$.

$$
\begin{aligned}
& \mathcal{Y}_{x}^{\sharp 0} \stackrel{\text { def }}{=} \mathcal{X}_{x}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} \\
& \mathcal{Y}_{\ell \neq x}^{\sharp 0} \stackrel{\text { def }}{=} \mathcal{X}_{\ell}^{\sharp}
\end{aligned}
$$

$$
\mathcal{Y}_{\ell}^{\sharp n+1} \stackrel{\text { def }}{=} \begin{cases}\mathcal{X}_{x}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} & \text { if } \ell=x \\ \mathcal{X}_{\ell}^{\sharp} \cap^{\sharp} \bigcup_{\left(\ell, c, \ell^{\prime}\right) \in A}^{\sharp} \overleftarrow{C^{\sharp} \llbracket c \rrbracket \mathcal{Y}_{\ell^{\prime}}^{\sharp n}} & \text { if } \ell \notin \mathcal{W}, \ell \neq x \\ \mathcal{Y}_{\ell}^{\sharp n} \triangle\left(\mathcal{X}_{\ell}^{\sharp} \cap^{\sharp} \bigcup_{\left(\ell, c, \ell^{\prime}\right) \in A}^{\sharp} \overleftarrow{C} \sharp \llbracket c \rrbracket \mathcal{Y}_{\ell^{\prime}}^{\sharp n}\right) & \text { if } \ell \in \mathcal{W}, \ell \neq x\end{cases}
$$

Δ overapproximates \cap while enforcing the convergence of decreasing iterations
Forward-backward analyses can be iterated [Bour93b].

Improving the interval widening

Example of imprecise analysis

ℓ	intervals with ∇_{b}	extended signs	intervals with ∇_{b}^{\prime}
1	$\top^{\#}$	\top^{\sharp}	T^{\sharp}
2∇	$X \leq 40$	$X \geq 0$	$X \in[0,40]$
3	$X \leq 40$	$X>0$	$X \in[0,40]$
4	$X=0$	$X=0$	$X=0$

The interval domain cannot prove that $X \geq 0$ at 2 , while the (less powerful) sign domain can!
(narrowing does not help)
Solution: improve the interval widening
$[a, b] \nabla_{b}^{\prime}[c, d] \stackrel{\text { def }}{=}\left[\left\{\begin{array}{ll}a & \text { if } a \leq c \\ 0 & \text { if } 0 \leq c<a \\ -\infty & \text { otherwise }\end{array} \quad,\left\{\begin{array}{ll}b & \text { if } b \geq d \\ 0 & \text { if } 0 \geq b>d \\ +\infty & \text { otherwise }\end{array}\right]\right.\right.$
(∇_{b}^{\prime} checks the stability of 0)

Widening with thresholds

Analysis problem:

```
X}\leftarrow0
while - 1 = 1 do
    if [0,1] = 0 then
        X \leftarrow X + 1;
        if X > 40 then X \leftarrow 0 fi
    fi
done
```

We wish to prove that $X \in[0,40]$ at \bullet.

- Widening at • finds the loop invariant $X \in[0,+\infty]$.
$\mathcal{X}_{\mathbf{t}}^{\sharp}=[0,0] \nabla_{b}\left([0,0] \cup^{\sharp}[0,1]\right)=[0,0] \nabla_{b}[0,1]=[0,+\infty[$
- Narrowing is unable to refine the invariant:
$\mathcal{Y}_{t}^{\sharp}=[0,+\infty] \Delta_{b}\left([0,0] \cup^{\sharp}[0,+\infty[)=[0,+\infty[\right.$
(the code that limits X is not executed at every loop iteration)

Widening with thresholds (cont.)

Solution:

Choose a finite set T of thresholds containing $+\infty$ and $-\infty$.
Definition: widening with thresholds ∇_{b}^{T}

$$
\begin{aligned}
{[a, b] \nabla_{b}^{T}[c, d] \stackrel{\text { def }}{=} } & {\left[\left\{\begin{array}{ll}
a & \text { if } a \leq c \\
\max \{x \in T \mid x \leq c\} & \text { otherwise }
\end{array}\right.\right.} \\
& \left\{\begin{array}{ll}
b & \text { if } b \geq d \\
\min \{x \in T \mid x \geq d\} & \text { otherwise }
\end{array}\right]
\end{aligned}
$$

The widening tests and stops at the first stable bound in T.

Widening with thresholds (cont.)

Applications:

- On the previous example, we find: $\quad X \in[0, \min \{x \in T \mid x \geq 40\}]$.
- Useful when it is easy to find a 'good' set T.

Example: array bound-checking

- Useful if an over-approximation of the bound is sufficient.

Example: arithmetic overflow checking

Limitations: only works if some non- ∞ bound in T is stable.
Example: with $T=\{5,15\}$

```while 1 = 1 do X}\leftarrow\textrm{X}+1 if X > 10 then X }\leftarrow0\mathrm{ fi done```	```while 1 = 1 do X \leftarrow X + 1; if X }\not=10\mathrm{ then }X\leftarrow0\mathrm{ fi done```

The congruence domain

## The congruence lattice

$$
\mathcal{B}^{\sharp} \stackrel{\text { def }}{=}\{(a \mathbb{Z}+b) \mid a \in \mathbb{N}, b \in \mathbb{Z}\} \cup\left\{\perp_{b}^{\sharp}\right\}
$$



Introduced by Granger [Gran89].
We take $\mathbb{\square}=\mathbb{Z}$.

## The congruence lattice (cont.)

## Concretization:

$$
\gamma_{b}\left(\mathcal{X}_{b}^{\sharp}\right) \stackrel{\text { def }}{=} \begin{cases}\{a k+b \mid k \in \mathbb{Z}\} & \text { if } \mathcal{X}_{b}^{\sharp}=(a \mathbb{Z}+b) \\ \emptyset & \text { if } \mathcal{X}_{b}^{\sharp}=\perp_{b}^{\sharp}\end{cases}
$$

Note that $\gamma(0 \mathbb{Z}+b)=\{b\}$. $\gamma_{b}$ is not injective: $\gamma_{b}(2 \mathbb{Z}+1)=\gamma_{b}(2 \mathbb{Z}+3)$.

## Definitions:

Given $x, x^{\prime} \in \mathbb{Z}, y, y^{\prime} \in \mathbb{N}$, we define:
$\square y / y^{\prime} \stackrel{\text { def }}{\Longleftrightarrow} y$ divides $y^{\prime}\left(\exists k \in \mathbb{N}: y^{\prime}=k y\right) \quad$ (note that $\left.\forall y: y / 0\right)$

- $x \equiv x^{\prime}[y] \stackrel{\text { def }}{\Longleftrightarrow} y /\left|x-x^{\prime}\right| \quad$ (in particular, $x \equiv x^{\prime}[0] \Longleftrightarrow x=x^{\prime}$ )
- $V$ is the LCM, extended with $y \vee 0 \stackrel{\text { def }}{=} 0 \vee y \stackrel{\text { def }}{=} 0$
$■ \wedge$ is the GCD, extended with $y \wedge 0 \stackrel{\text { def }}{=} 0 \wedge y \stackrel{\text { def }}{=} y$
$(\mathbb{N}, /, \vee, \wedge, 1,0)$ is a complete distributive lattice.


## Abstract congruence operators

Complete lattice structure on $\mathcal{B}^{\sharp}$ :
$-(a \mathbb{Z}+b) \sqsubseteq_{b}\left(a^{\prime} \mathbb{Z}+b^{\prime}\right) \stackrel{\text { def }}{\Longleftrightarrow} a^{\prime} / a$ and $b \equiv b^{\prime}\left[a^{\prime}\right]$

- $T_{b}^{\sharp} \stackrel{\text { def }}{=}(\mathbb{Z}+0)$
$-(a \mathbb{Z}+b) \cup_{b}^{\sharp}\left(a^{\prime} \mathbb{Z}+b^{\prime}\right) \stackrel{\text { def }}{=}\left(a \wedge a^{\prime} \wedge\left|b-b^{\prime}\right|\right) \mathbb{Z}+b$
- $(a \mathbb{Z}+b) \cap_{b}^{\sharp}\left(a^{\prime} \mathbb{Z}+b^{\prime}\right) \stackrel{\text { def }}{=} \begin{cases}\left(a \vee a^{\prime}\right) \mathbb{Z}+b^{\prime \prime} & \text { if } b \equiv b^{\prime}\left[a \wedge a^{\prime}\right] \\ \perp_{b}^{\sharp} & \text { otherwise }\end{cases}$
$b^{\prime \prime}$ such that $b^{\prime \prime} \equiv b\left[a \vee a^{\prime}\right] \equiv b^{\prime}\left[a \vee a^{\prime}\right]$ is given by Bezout's Theorem.

Galois connection: $\alpha_{b}(\mathcal{X})=\bigcup_{c \in \mathcal{X}} \bigcup_{b}^{\sharp}(0 \mathbb{Z}+c)$
(up to equivalence $a \mathbb{Z}+b \equiv a^{\prime} \mathbb{Z}+b^{\prime} \stackrel{\text { def }}{\Longleftrightarrow} a=a^{\prime} \wedge b \equiv b^{\prime}[\mathrm{d}]$ )

## Abstract congruence operators (cont.)

## Arithmetic operators:

$$
\begin{array}{cl}
{\left[c, c^{\prime}\right]_{b}^{\sharp}} & \stackrel{\text { def }}{=} \begin{cases}0 \mathbb{Z}+c & \text { if } c=c^{\prime} \\
T_{b}^{\sharp} & \text { otherwise }\end{cases} \\
-\frac{\text { def }}{=}(a \mathbb{Z}+b) & a \mathbb{Z}+(-b) \\
(a \mathbb{Z}+b)+_{b}^{\sharp}\left(a^{\prime} \mathbb{Z}+b^{\prime}\right) & \stackrel{\text { def }}{=}\left(a \wedge a^{\prime}\right) \mathbb{Z}+\left(b+b^{\prime}\right) \\
(a \mathbb{Z}+b)--_{b}^{\sharp}\left(a^{\prime} \mathbb{Z}+b^{\prime}\right) & \stackrel{\text { def }}{=}\left(a \wedge a^{\prime}\right) \mathbb{Z}+\left(b-b^{\prime}\right) \\
(a \mathbb{Z}+b) \times_{b}^{\sharp}\left(a^{\prime} \mathbb{Z}+b^{\prime}\right) & \stackrel{\text { def }}{=}\left(a a^{\prime} \wedge a b^{\prime} \wedge a^{\prime} b\right) \mathbb{Z}+b b^{\prime} \\
(a \mathbb{Z}+b) /_{b}^{\sharp}\left(a^{\prime} \mathbb{Z}+b^{\prime}\right) & \stackrel{\text { def }}{=} \\
\begin{cases}\perp_{b}^{\sharp} & \text { if } a^{\prime} \mathbb{Z}+b^{\prime}=0 \mathbb{Z}+0 \\
\left(a /\left|b^{\prime}\right|\right) \mathbb{Z}+\left(b / b^{\prime}\right) & \text { if } a^{\prime}=0, b^{\prime} \neq 0, b^{\prime} \mid a, \text { and } b^{\prime} \mid b \\
T_{b}^{\sharp} & \text { otherwise (not optimal) }\end{cases}
\end{array}
$$

## Abstract congruence operators (cont.)

Test operators:

$$
\overleftarrow{\leq} 0_{b}^{\sharp}(a \mathbb{Z}+b) \stackrel{\text { def }}{=} \begin{cases}\perp_{b}^{\sharp} & \text { if } a=0, b>0 \\ a \mathbb{Z}+b & \text { otherwise }\end{cases}
$$

Note: better than the generic $\overleftarrow{\leq} 0_{b}^{\sharp}\left(\mathcal{X}_{b}^{\sharp}\right) \stackrel{\text { def }}{=} \mathcal{X}_{b}^{\sharp} \cap_{b}^{\sharp}[-\infty, 0]_{b}^{\sharp}=\mathcal{X}_{b}^{\sharp}$
Extrapolation operators:

- no infinite increasing chain $\Longrightarrow$ no need for $\nabla$

■ infinite decreasing chains $\Longrightarrow \Delta$ needed

$$
(a \mathbb{Z}+b) \Delta_{b}\left(a^{\prime} \mathbb{Z}+b^{\prime}\right) \stackrel{\text { def }}{=} \begin{cases}a^{\prime} \mathbb{Z}+b^{\prime} & \text { if } a=1 \\ a \mathbb{Z}+b & \text { otherwise }\end{cases}
$$

Note: $\mathcal{X}^{\sharp} \triangle \mathcal{Y}^{\sharp} \stackrel{\text { def }}{=} \mathcal{X}^{\sharp}$ is always a narrowing.

## Congruence analysis example

$$
\begin{aligned}
& \mathrm{X} \leftarrow 0 ; Y \leftarrow 2 ; \\
& \text { while } \bullet \mathrm{X}<40 \text { do } \\
& \quad \mathrm{X} \leftarrow \mathrm{X}+2 ; \\
& \text { if } \mathrm{X}<5 \text { then } Y \leftarrow \mathrm{Y}+18 \mathrm{fi} ; \\
& \text { if } \mathrm{X}>8 \text { then } \mathrm{Y} \leftarrow \mathrm{Y}-30 \mathrm{fi}
\end{aligned}
$$

We find, at $\bullet$, the loop invariant $\left\{\begin{array}{l}X \in 2 \mathbb{Z} \\ Y \in 6 \mathbb{Z}+2\end{array}\right.$

## Reduced products

## Non-reduced product of domains

Product representation:
Cartesian product $\mathcal{D}_{1 \times 2}^{\sharp}$ of $\mathcal{D}_{1}^{\sharp}$ and $\mathcal{D}_{2}^{\#}$ :

- $\mathcal{D}_{1 \times 2}^{\sharp} \stackrel{\text { def }}{=} \mathcal{D}_{1}^{\sharp} \times \mathcal{D}_{2}^{\sharp}$
- $\gamma_{1 \times 2}\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \stackrel{\text { def }}{=} \gamma_{1}\left(\mathcal{X}_{1}^{\sharp}\right) \cap \gamma_{2}\left(\mathcal{X}_{2}^{\sharp}\right)$
- $\alpha_{1 \times 2}(\mathcal{X}) \stackrel{\text { def }}{=}\left(\alpha_{1}(\mathcal{X}), \alpha_{2}(\mathcal{X})\right)$
$\square\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \sqsubseteq_{1 \times 2}\left(\mathcal{Y}_{1}^{\sharp}, \mathcal{Y}_{2}^{\sharp}\right) \stackrel{\text { def }}{\Longleftrightarrow} \mathcal{X}_{1}^{\sharp} \sqsubseteq_{1} \mathcal{Y}_{1}^{\sharp} \quad$ and $\quad \mathcal{X}_{2}^{\sharp} \sqsubseteq_{2} \mathcal{Y}_{2}^{\sharp}$
Abstract operators: performed in parallel on both components:
- $\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \cup_{1 \times 2}^{\#}\left(\mathcal{Y}_{1}^{\sharp}, \mathcal{Y}_{2}^{\sharp}\right) \stackrel{\text { def }}{=}\left(\mathcal{X}_{1}^{\sharp} \cup_{1}^{\#} \mathcal{Y}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp} \cup_{2}^{\#} \mathcal{Y}_{2}^{\sharp}\right)$
- $\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \nabla_{1 \times 2}\left(\mathcal{Y}_{1}^{\sharp}, \mathcal{Y}_{2}^{\sharp}\right) \stackrel{\text { def }}{=}\left(\mathcal{X}_{1}^{\sharp} \nabla_{1} \mathcal{Y}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp} \nabla_{2} \mathcal{Y}_{2}^{\sharp}\right)$
$\square C^{\sharp} \llbracket c \rrbracket_{1 \times 2}\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \stackrel{\text { def }}{=}\left(C^{\sharp} \llbracket c \rrbracket_{1}\left(\mathcal{X}_{1}^{\sharp}\right), C^{\sharp} \llbracket c \rrbracket_{2}\left(\mathcal{X}_{2}^{\sharp}\right)\right)$


## Non-reduced product example

The product analysis is no more precise than two separate analyses.
Example: interval-congruence product:


We cannot prove that the if branch is never taken!

## Fully-reduced product

## Definition:

Given the Galois connections $\left(\alpha_{1}, \gamma_{1}\right)$ and $\left(\alpha_{2}, \gamma_{2}\right)$ on $\mathcal{D}_{1}^{\sharp}$ and $\mathcal{D}_{2}^{\sharp}$ we define the reduction operator $\rho$ as:

$$
\begin{aligned}
& \rho: \mathcal{D}_{1 \times 2}^{\sharp} \rightarrow \mathcal{D}_{1 \times 2}^{\sharp} \\
& \rho\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \stackrel{\text { der }}{=}\left(\alpha_{1}\left(\gamma_{1}\left(\mathcal{X}_{1}^{\sharp}\right) \cap \gamma_{2}\left(\mathcal{X}_{2}^{\sharp}\right)\right), \alpha_{2}\left(\gamma_{1}\left(\mathcal{X}_{1}^{\sharp}\right) \cap \gamma_{2}\left(\mathcal{X}_{2}^{\sharp}\right)\right)\right)
\end{aligned}
$$

$\rho$ propagates information between domains.
Application:
We can reduce the result of each abstract operator, except $\nabla$ :
$-\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \cup_{1 \times 2}^{\sharp}\left(\mathcal{Y}_{1}^{\sharp}, \mathcal{Y}_{2}^{\sharp}\right) \stackrel{\text { def }}{=} \rho\left(\mathcal{X}_{1}^{\sharp} \cup_{1}^{\sharp} \mathcal{Y}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp} \cup_{2}^{\sharp} \mathcal{Y}_{2}^{\sharp}\right)$,
$-C^{\sharp} \llbracket c \rrbracket_{1 \times 2}\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \stackrel{\text { def }}{=} \rho\left(C^{\sharp} \llbracket c \rrbracket_{1}\left(\mathcal{X}_{1}^{\sharp}\right), C^{\sharp} \llbracket c \rrbracket_{2}\left(\mathcal{X}_{2}^{\sharp}\right)\right)$.
We refrain from reducing after a widening $\nabla$, this may jeopardize the convergence (octagon domain example).

## Fully-reduced product example

Reduction example: between the interval and congruence domains:
Noting: $a^{\prime} \xlongequal{\text { def }} \min \{x \geq a \mid x \equiv d[c]\}$

$$
b^{\prime} \stackrel{\text { def }}{=} \max \{x \leq b \mid x \equiv d[c]\}
$$

We get:

$$
\rho_{b}([a, b], c \mathbb{Z}+d) \stackrel{\text { def }}{=} \begin{cases}\left(\perp_{b}^{\sharp}, \perp_{b}^{\sharp}\right) & \text { if } a^{\prime}>b^{\prime} \\ \left(\left[a^{\prime}, a^{\prime}\right], 0 \mathbb{Z}+a^{\prime}\right) & \text { if } a^{\prime}=b^{\prime} \\ \left(\left[a^{\prime}, b^{\prime}\right], c \mathbb{Z}+d\right) & \text { if } a^{\prime}<b^{\prime}\end{cases}
$$

extended point-wisely to $\rho$ on $\mathcal{D}^{\sharp}$.
Application:

- $\rho_{b}([10,11], 2 \mathbb{Z}+1)=([11,11], 0 \mathbb{Z}+11)$
(proves that the branch is never taken on our example)
- $\rho_{b}([1,3], 4 \mathbb{Z})=\left(\perp_{b}^{\sharp}, \perp_{b}^{\sharp}\right)$


## Partially-reduced product

Definition: of a partial reduction:
any function $\rho: \mathcal{D}_{1 \times 2}^{\sharp} \rightarrow \mathcal{D}_{1 \times 2}^{\sharp}$ such that:
$\left(\mathcal{Y}_{1}^{\sharp}, \mathcal{Y}_{2}^{\sharp}\right)=\rho\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \Longrightarrow\left\{\begin{array}{l}\gamma_{1 \times 2}\left(\mathcal{Y}_{1}^{\sharp}, \mathcal{Y}_{2}^{\sharp}\right)=\gamma_{1 \times 2}\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \\ \gamma_{1}\left(\mathcal{Y}_{1}^{\sharp} \subseteq \gamma_{1}\left(\mathcal{X}_{1}^{\sharp}\right)\right. \\ \gamma_{2}\left(\mathcal{Y}_{2}^{\sharp}\right) \subseteq \gamma_{2}\left(\mathcal{X}_{2}^{\sharp}\right)\end{array}\right.$
Useful when:

- there is no Galois connection, or
- a full reduction exists but is expensive to compute.

Partial reduction example:
$\rho\left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) \stackrel{\text { def }}{=} \begin{cases}\left(\perp^{\sharp}, \perp^{\sharp}\right) & \text { if } \mathcal{X}_{1}^{\sharp}=\perp^{\sharp} \text { or } \mathcal{X}_{2}^{\sharp}=\perp^{\sharp} \\ \left(\mathcal{X}_{1}^{\sharp}, \mathcal{X}_{2}^{\sharp}\right) & \text { otherwise }\end{cases}$
(works on all domains)
For more complex examples, see [Blan03].

## Bibliography

## Bibliography

[Anco10] C. Ancourt, F. Coelho \& F. Irigoin. A modular static analysis approach to affine loop invariants detection. In Proc. NSAD'10, ENTCS, Elsevier, 2010.
[Berd07] J. Berdine, A. Chawdhary, B. Cook, D. Distefano \& P. O’Hearn.
Variance analyses from invariances analyses. In Proc. POPL'07 211-224, ACM, 2007.
[Blan03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux \& X. Rival. A static analyzer for large safety-critical software. In Proc. PLDI'03, 196-207, ACM, 2003.
[Bour93a] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proc. FMPA'93, LNCS 735, 128-141, Springer, 1993.
[Bour93b] F. Bourdoncle. Assertion-based debugging of imperative programs by abstract interpretation. In Proc. ESEC'93, 501-516, Springer, 1993.

## Bibliography (cont.)

[Cous76] P. Cousot \& R. Cousot. Static determination of dynamic properties of programs. In Proc. ISP'76, Dunod, 1976.
[Dor01] N. Dor, M. Rodeh \& M. Sagiv. Cleanness checking of string manipulations in C programs via integer analysis. In Proc. SAS'01, LNCS 2126, 194-212, Springer, 2001.
[Girb06] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler \&
O. Temam. Semi-automatic composition of loop transformations for deep parallelism and memory hierarchies. In J. of Parallel Prog., 34(3):261-317, 2006.
[Gran89] P. Granger. Static analysis of arithmetical congruences. In JCM, 3(4-5):165-190, 1989.
[Gran92] P. Granger. Improving the results of static analyses of programs by local decreasing iterations. In Proc. FSTTCSC'92, LNCS 652, 68-79, Springer, 1992.

## Bibliography (cont.)

[Gran97] P. Granger. Static analyses of congruence properties on rational numbers. In Proc. SAS'97, LNCS 1302, 278-292, Springer, 1997.
[Jean09] B. Jeannet \& A. Miné. Apron: A library of numerical abstract domains for static analysis. In Proc. CAV'09, LNCS 5643, 661-667, Springer, 2009, http://apron.cri.ensmp.fr/library.
[Mine06] A. Miné. Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics. In Proc. LCTES'06, 54-63, ACM, 2006.
[Vene02] A. Venet. Nonuniform alias analysis of recursive data structures and arrays. In Proc. SAS'02, LNCS 2477, 36-51, Springer, 2002.

