Relational Numerical Abstract Domains

MPRI 2–6: Abstract Interpretation, application to verification and static analysis

Antoine Miné

Year 2023-2024

Course 4 5 October 2023

- The need for relational domains
- Presentation of a few relational numerical abstract domains
 - linear equality domain
 - polyhedra domain
 - weakly relational domains: zones, octagons
- Bibliography

Shortcomings of non-relational domains

Accumulated loss of precision

Non-relation domains cannot represent variable relationships

Rate limiter $Y \leftarrow 0$; while • 1=1 do X: input signal $X \leftarrow [-128, 128]; D \leftarrow [0, 16];$ Y: output signal $S \leftarrow Y; Y \leftarrow X; R \leftarrow X - S;$ *S*: last output if R < -D then $Y \leftarrow S - D$ fi; R: delta Y - Sif R > D then $Y \leftarrow S + D$ fi D: max. allowed for |R|done

Accumulated loss of precision

Non-relation domains cannot represent variable relationships

Rate limiter	
$\begin{array}{l} Y \ \leftarrow \ 0; \ \text{while } \bullet \ 1=1 \ \text{do} \\ X \ \leftarrow \ [-128, 128]; \ D \ \leftarrow \ [0, 16]; \\ S \ \leftarrow \ Y; \ Y \ \leftarrow \ X; \ R \ \leftarrow \ X \ - \ S; \\ \text{if } R \ \leq \ -D \ \text{then} \ Y \ \leftarrow \ S \ - \ D \ \text{fi}; \\ \text{if } R \ \geq \ D \ \text{then} \ Y \ \leftarrow \ S \ + \ D \ \text{fi} \\ \text{done} \end{array}$	 X: input signal Y: output signal S: last output R: delta Y - S D: max. allowed for R

Iterations in the interval domain (without widening):

In fact, $Y \in [-128, 128]$ always holds.

To prove that, e.g. $Y \ge -128$, we must be able to:

- represent the properties R = X S and $R \leq -D$
- **combine** them to deduce $S X \ge D$, and then $Y = S D \ge X$

The need for relational loop invariants

To prove some invariant after the end of a loop, we often need to find a loop invariant of a more complex form

```
relational loop invariant
```

A non-relational analysis finds at \diamondsuit that I = 5000 and $X \in \mathbb{Z}$

The best invariant is: $(I = 5000) \land (X \in [-4999, 4999]) \land (X \equiv 0 \ [2])$

To find this non-relational invariant, we must find a relational loop invariant at •: $(-I < X < I) \land (X + I \equiv 1 \ [2]) \land (I \in [1, 5000])$, and apply the loop exit condition $C^{\sharp} [I \ge 5000 \]$

Modular analysis

```
store the maximum of X,Y,0 into Z
 max(X,Y,Z)
   Z \leftarrow X;
    if Y > Z then Z \leftarrow Y;
    if Z < 0 then Z \leftarrow 0;
```

Modular analysis:

- analyze a function once (function summary)
- reuse the summary at each call site (instantiation)

 \implies improved efficiency

Modular analysis

store the maximum of X,Y,0 into Z' $\frac{\max(X,Y,Z)}{X' \leftarrow X; Y' \leftarrow Y; Z' \leftarrow Z;}$ $Z' \leftarrow X';$ if Y' > Z' then Z' \leftarrow Y'; if Z' < 0 then Z' \leftarrow 0; $(Z' \ge X \land Z' \ge Y \land Z' \ge 0 \land X' = X \land Y' = Y)$

Modular analysis:

- analyze a function once (function summary)
- reuse the summary at each call site (instantiation) ⇒ improved efficiency
- infer a relation between input *X*,*Y*,*Z* and output *X'*,*Y'*,*Z'* values, in $\mathcal{P}((\mathbb{V} \to \mathbb{R}) \times (\mathbb{V} \to \mathbb{R})) \simeq \mathcal{P}((\mathbb{V} \times \mathbb{V}) \to \mathbb{R})$
- requires inferring relational information [Anco10], [Jean09]

Linear equality domain

The affine equality domain

Here $\mathbb{I} \in {\mathbb{Q}, \mathbb{R}}$.

We look for invariants of the form:

 $\bigwedge_{j} \left(\sum_{i=1}^{n} \alpha_{ij} V_{i} = \beta_{j} \right), \ \alpha_{ij}, \beta_{j} \in \mathbb{I}$

where all the α_{ij} and β_j are inferred automatically.

We use a domain of affine spaces proposed by [Karr76]:

 $\mathcal{D}^{\sharp} \stackrel{\text{def}}{=} \{ \text{ affine subspaces of } \mathbb{V} \to \mathbb{I} \}$

Affine equality representation

Machine representation: an affine subspace is represented as

- either the constant \perp^{\sharp} .
- or a pair $\langle \mathbf{M}, \vec{C} \rangle$ where

$$\mathbf{M} \in \mathbb{I}^{m \times n} \text{ is a } m \times n \text{ matrix, } n = |\mathbb{V}| \text{ and } m \leq n,$$

• $\vec{C} \in \mathbb{I}^m$ is a row-vector with *m* rows.

$$\begin{array}{l} \langle \mathbf{M}, \vec{C} \rangle \text{ represents an equation system, with solutions} \\ \gamma(\langle \mathbf{M}, \vec{C} \rangle) \stackrel{\text{def}}{=} \{ \ \vec{V} \in \mathbb{I}^n \mid \mathbf{M} \times \vec{V} = \vec{C} \ \} \end{array}$$

M should be in row echelon form:

$$\forall i \leq m: \exists k_i: M_{ik_i} = 1 \text{ and} \\ \forall c < k_i: M_{ic} = 0, \forall l \neq i: M_{lk_i} = 0, \\ \text{if } i < i' \text{ then } k_i < k_{i'} \quad (leading index) \end{cases}$$

• if
$$i < i'$$
 then $k_i < k_{i'}$ (leading index

Remarks:

the representation is unique

as m < n = |V|, the memory cost is in $\mathcal{O}(n^2)$ at worst

 \top is represented as the empty equation system: m = 0

example:

$\left[\begin{array}{c} 1\\ 0\\ 0\\ 0\end{array}\right]$	0	0	5	0	٦
0	1	0	6	0	
0	0	1	7	0	
LΟ	0	0	0	1	

Normalisation and emptiness testing

Let $\mathbf{M} \times \vec{V} = \vec{C}$ be an equation system, not necessarily in normal form. The Gaussian reduction $Gauss(\langle \mathbf{M}, \vec{C} \rangle)$ tells in $\mathcal{O}(n^3)$ time:

- whether the system is satisfiable, and in that case
- ${\scriptstyle \blacksquare}$ gives an equivalent system $\langle {\bf M}', \vec{C'} \rangle$ in normal form
- i.e. returns an element in $\mathcal{D}^{\sharp}.$

Principle: reorder lines, make linear combinations of lines to eliminate variables

Example:

$$\begin{cases} 2X + Y + Z = 19\\ 2X + Y - Z = 9\\ & 3Z = 15\\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

Affine equality operators

Applications

If $\mathcal{X}^{\sharp}, \mathcal{Y}^{\sharp} \neq \bot^{\sharp}$, we define: $\mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} Gauss\left(\left\langle \left[\begin{array}{c} \mathbf{M}_{\mathcal{X}^{\sharp}} \\ \mathbf{M}_{\mathcal{Y}^{\sharp}} \end{array} \right], \left[\begin{array}{c} \vec{c}_{\mathcal{X}^{\sharp}} \\ \vec{c}_{\mathcal{Y}^{\sharp}} \end{array} \right] \right\rangle \right)$ $\mathcal{X}^{\sharp} = {}^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{\Longrightarrow} \mathbf{M}_{\mathcal{X}^{\sharp}} = \mathbf{M}_{\mathcal{Y}^{\sharp}} \text{ and } \vec{c}_{\mathcal{X}^{\sharp}} = \vec{c}_{\mathcal{Y}^{\sharp}}$ $\mathcal{X}^{\sharp} \subseteq {}^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{\Longrightarrow} \mathcal{X}^{\sharp} \cap {}^{\sharp} \mathcal{Y}^{\sharp} = {}^{\sharp} \mathcal{X}^{\sharp}$ $C^{\sharp} \left[\left[\sum_{j} \alpha_{j} V_{j} = \beta \right] \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} Gauss\left(\left\langle \left[\begin{array}{c} \mathbf{M}_{\mathcal{X}^{\sharp}} \\ \alpha_{1} \cdots \alpha_{n} \end{array} \right], \left[\begin{array}{c} \vec{c}_{\mathcal{X}^{\sharp}} \\ \beta \end{array} \right] \right\rangle \right)$ $C^{\sharp} \left[e \bowtie 0 \right] \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} \mathcal{X}^{\sharp} \text{ for other tests}$

Remarks:

$$\begin{array}{l} \subseteq^{\sharp}, =^{\sharp}, \cap^{\sharp}, =^{\sharp} \text{ and } \mathsf{C}^{\sharp} \llbracket \sum_{j} \alpha_{j} V_{j} = \beta \rrbracket \text{ are exact:} \\ \mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \iff \gamma(\mathcal{X}^{\sharp}) \subseteq \gamma(\mathcal{Y}^{\sharp}), \quad \gamma(\mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp}) = \gamma(\mathcal{X}^{\sharp}) \cap \gamma(\mathcal{Y}^{\sharp}), \ldots \end{array}$$

Generator representation

Generator representation

An affine subspace can also be represented as a set of vector generators $\vec{G}_1, \ldots, \vec{G}_m$ and an origin point \vec{O} , denoted as $[\mathbf{G}, \vec{O}]$.

$$\gamma([\mathbf{G}, ec{O}]) \stackrel{ ext{def}}{=} \set{\mathbf{G} imes ec{\lambda} + ec{O} \mid ec{\lambda} \in \mathbb{I}^m} \quad (\mathbf{G} \in \mathbb{I}^{n imes m}, \ ec{O} \in \mathbb{I}^n)$$

We can switch between a generator and a constraint representation:

From generators to constraints: $\langle \mathbf{M}, \vec{C} \rangle = Cons([\mathbf{G}, \vec{O}])$

Write the system $\vec{V} = \mathbf{G} \times \vec{\lambda} + \vec{O}$ with variables \vec{V} , $\vec{\lambda}$. Solve it in $\vec{\lambda}$ (by row operations). Keep the constraints involving only \vec{V} .

e.g.
$$\begin{cases} X = \lambda + 2 \\ Y = 2\lambda + \mu + 3 \\ Z = \mu \end{cases} \Longrightarrow \begin{cases} X - 2 = \lambda \\ -2X + Y + 1 = \mu \\ 2X - Y + Z - 1 = 0 \end{cases}$$

The result is: 2X - Y + Z = 1.

Generator representation (cont.)

From constraints to generators: $[\mathbf{G}, \vec{O}] \stackrel{\text{def}}{=} Gen(\langle \mathbf{M}, \vec{C} \rangle)$ Assume $\langle \mathbf{M}, \vec{C} \rangle$ is normalized. For each non-leading variable V, assign a distinct λ_V ,

solve leading variables in terms of non-leading ones.

e.g.
$$\begin{cases} X + 0.5Y = 7 \\ Z = 5 \end{cases} \implies \begin{bmatrix} -0.5 \\ 1 \\ 0 \end{bmatrix} \lambda_Y + \begin{bmatrix} 7 \\ 0 \\ 5 \end{bmatrix}$$

Affine equality operators (cont.)

Applications

Given $\mathcal{X}^{\sharp}, \mathcal{Y}^{\sharp} \neq \perp^{\sharp}$, we define: $\mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} Cons\left(\left[\mathbf{G}_{\mathcal{X}^{\sharp}} \mathbf{G}_{\mathcal{Y}^{\sharp}} \left(\vec{O}_{\mathcal{Y}^{\sharp}} - \vec{O}_{\mathcal{X}^{\sharp}}\right), \vec{O}_{\mathcal{X}^{\sharp}}\right]\right)$ $C^{\sharp}\left[\left[V_{j} \leftarrow \left[-\infty, +\infty\right]\right] \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} Cons\left(\left[\mathbf{G}_{\mathcal{X}^{\sharp}} \vec{x}_{j}, \vec{O}_{\mathcal{X}^{\sharp}}\right]\right)$ $C^{\sharp}\left[\left[V_{j} \leftarrow \sum_{i} \alpha_{i} V_{i} + \beta\right] \mathcal{X}^{\sharp} \stackrel{\text{def}}{=}$ if $\alpha_{j} = 0, \left(C^{\sharp}\left[\left[V_{j} = \sum_{i} \alpha_{i} V_{i} + \beta\right]\right] \circ C^{\sharp}\left[\left[V_{j} \leftarrow \left[-\infty, +\infty\right]\right]\right]\right) \mathcal{X}^{\sharp}$ if $\alpha_{j} \neq 0, \mathcal{X}^{\sharp}$ where V_{j} is replaced with $\left(V_{j} - \sum_{i \neq j} \alpha_{i} V_{i} - \beta\right)/\alpha_{j}$ (proofs on next slide)

$$\mathsf{C}^{\sharp}\llbracket V_{j} \leftarrow e \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} \mathsf{C}^{\sharp}\llbracket V_{j} \leftarrow [-\infty, +\infty] \rrbracket \mathcal{X}^{\sharp} \text{ for other assignments}$$

Remarks:

- $\blacksquare \cup^{\sharp}$ is optimal, but not exact.
- $C^{\sharp}[V_j \leftarrow \sum_i \alpha_i V_i + \beta]$ and $C^{\sharp}[V_j \leftarrow [-\infty, +\infty]]$ are exact.

Affine assignments: proofs

$$\begin{split} \mathsf{C}^{\sharp} \llbracket \, V_{j} \leftarrow \sum_{i} \alpha_{i} V_{i} + \beta \, \rrbracket \, \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} \\ & \text{if } \alpha_{j} = 0, \left(\mathsf{C}^{\sharp} \llbracket \, V_{j} = \sum_{i} \alpha_{i} V_{i} + \beta \, \rrbracket \, \circ \mathsf{C}^{\sharp} \llbracket \, V_{j} \leftarrow [-\infty, +\infty] \, \rrbracket \right) \mathcal{X}^{\sharp} \\ & \text{if } \alpha_{j} \neq 0, \mathcal{X}^{\sharp} \text{ where } V_{j} \text{ is replaced with } \left(V_{j} - \sum_{i \neq j} \alpha_{i} V_{i} - \beta\right) / \alpha_{j} \end{split}$$

Proof sketch:

we use the following identities in the concrete

```
non-invertible assignment: \alpha_i = 0
```

 $\begin{array}{l} \mathbb{C}[\![V_j \leftarrow e]\!] = \mathbb{C}[\![V_j \leftarrow e]\!] \circ \mathbb{C}[\![V_j \leftarrow [-\infty, +\infty]]\!] \text{ as the value of } V_j \text{ is not used in } e \\ \text{so: } \mathbb{C}[\![V_j \leftarrow e]\!] = \mathbb{C}[\![V_j = e]\!] \circ \mathbb{C}[\![V_j \leftarrow [-\infty, +\infty]]\!] \end{array}$

 \implies reduces the assignment to a test

• invertible assignment: $\alpha_i \neq 0$

$$\begin{split} \mathbb{C}\llbracket V_{j} \leftarrow e \rrbracket \subsetneq \mathbb{C}\llbracket V_{j} \leftarrow e \rrbracket \circ \mathbb{C}\llbracket V_{j} \leftarrow [-\infty, +\infty] \rrbracket \text{ as } e \text{ depends on } V \\ (\text{e.g., } \mathbb{C}\llbracket V \leftarrow V + 1 \rrbracket \neq \mathbb{C}\llbracket V \leftarrow V + 1 \rrbracket \circ \mathbb{C}\llbracket V \leftarrow [-\infty, +\infty] \rrbracket) \\ \rho \in \mathbb{C}\llbracket V_{j} \leftarrow e \rrbracket R \iff \exists \rho' \in R: \ \rho = \rho' [V_{j} \mapsto \sum_{i} \alpha_{i} \rho'(V_{i}) + \beta] \\ \iff \exists \rho' \in R: \ \rho [V_{j} \mapsto (\rho(V_{j}) - \sum_{i \neq j} \alpha_{i} \rho'(V_{i}) - \beta)/\alpha_{j}] = \rho' \\ \iff \rho [V_{j} \mapsto (\rho(V_{j}) - \sum_{i \neq j} \alpha_{i} \rho(V_{i}) - \beta)/\alpha_{j}] \in R \end{split}$$

 \implies reduces the assignment to a substitution by the inverse expression

Analysis example

No infinite increasing chain: we can iterate without widening.

Note in particular:

$$\mathcal{X}_{2}^{\sharp 3} = \{(10, 100)\} \cup^{\sharp} \{(9, 110)\} = \{(X, Y) \mid 10X + Y = 200\}$$

The polyhedron domain

Here again $\mathbb{I} \in \{\mathbb{Q}, \mathbb{R}\}$.

We look for invariants of the form: $\bigwedge_{j} \left(\sum_{i=1}^{n} \alpha_{ij} V_i \ge \beta_j \right).$

We use the polyhedron domain proposed by [Cous78]:

 $\mathcal{D}^{\sharp} \stackrel{\mathrm{\tiny def}}{=} \{ \mathsf{closed \ convex \ polyhedra \ of} \ \mathbb{V} \to \mathbb{I} \}$

<u>Note:</u> polyhedra need not be bounded (\neq polytopes).

Double description of polyhedra

Polyhedra have dual representations (Weyl–Minkowski Theorem). (see [Schr86])

Constraint representation

$$\begin{split} \langle \mathbf{M}, \vec{C} \rangle \text{ with } \mathbf{M} \in \mathbb{I}^{m \times n} \text{ and } \vec{C} \in \mathbb{I}^m \text{ represents:} \\ \gamma(\langle \mathbf{M}, \vec{C} \rangle) \stackrel{\text{def}}{=} \{ \vec{V} \mid \mathbf{M} \times \vec{V} \geq \vec{C} \} \end{split}$$

We will also often use a constraint set notation $\{\sum_{i} \alpha_{ij} V_i \geq \beta_j \}$.

Generator representation

 $\begin{array}{l} [\mathbf{P}, \mathbf{R}] \text{ where:} \\ & \mathbf{P} \in \mathbb{I}^{n \times p} \text{ is a set of } p \text{ points: } \vec{P}_1, \dots, \vec{P}_p, \\ & \mathbf{R} \in \mathbb{I}^{n \times r} \text{ is a set of } r \text{ rays: } \vec{R}_1, \dots, \vec{R}_r. \\ \gamma([\mathbf{P}, \mathbf{R}]) \stackrel{\text{def}}{=} \left\{ \left(\sum_{j=1}^p \alpha_j \vec{P}_j \right) + \left(\sum_{j=1}^r \beta_j \vec{R}_j \right) \mid \forall j: \alpha_j \ge 0, \ \sum_{j=1}^p \alpha_j = 1, \ \forall j: \beta_j \ge 0 \right\} \end{array}$

Double description of polyhedra (cont.)

Generator representation examples:

 $\gamma([\mathbf{P},\mathbf{R}]) \stackrel{\text{def}}{=} \{ \left(\sum_{j=1}^{p} \alpha_j \vec{P}_j \right) + \left(\sum_{j=1}^{r} \beta_j \vec{R}_j \right) | \forall j : \alpha_j \ge 0, \ \sum_{j=1}^{p} \alpha_j = 1, \ \forall j : \beta_j \ge 0 \}$

- the points can only define a bounded convex hull,
- the rays allow unbounded polyhedra.

Origin of duality

Dual:
$$A^* \stackrel{\text{def}}{=} \{ \vec{x} \in \mathbb{I}^n \mid \forall \vec{a} \in A : \vec{a} \cdot \vec{x} \le 0 \}$$

- $\{\vec{a}\}^*$ and $\{\lambda\vec{r}\,|\,\lambda\geq 0\}^*$ are half-spaces,
- $(A \cup B)^* = A^* \cap B^*$,
- bidual: if A is convex, closed, and $\vec{0} \in A$, then $A^{**} = A$.

Duality on polyhedral cones:

Cone:
$$C = \{ \vec{V} \mid \mathbf{M} \times \vec{V} \ge \vec{0} \}$$
 or $C = \{ \sum_{j=1}^{r} \beta_j \vec{R}_j \mid \forall j : \beta_j \ge 0 \}$
(polyhedron with no vertex, except $\vec{0}$)

- C* is also a polyhedral cone,
- *C*** = *C*,
- a ray of C corresponds to a constraint of C^* ,
- a constraint of C corresponds to a ray of C^* .

Extension to polyhedra: by homogenisation to polyhedral cones:

$$\mathcal{C}(\mathcal{P}) \stackrel{ ext{def}}{=} \{ \ \lambda ec{V} \mid \lambda \geq 0, \, (V_1, \ldots, V_n) \in \gamma(\mathcal{P}), \ V_{n+1} = 1 \ \} \subseteq \mathbb{I}^{n+1}$$

(polyhedron in $\mathbb{I}^n \simeq$ polyhedral cone in \mathbb{I}^{n+1})

Polyhedra representations

no best abstraction α ,

(e.g., a disc has infinitely many polyhedral over-approximations, but no best one)

no memory bound on the representations.

Polyhedra representations

Minimal representations

- A constraint / generator system is minimal if no constraint / generator can be omitted without changing the concretization.
- Minimal representations are not unique.
- No memory bound even on minimal representations.

Example: three different constraint representations for a point

Chernikova's algorithm

Algorithm by [Cher68], improved by [LeVe92] to switch from a constraint system to an equivalent generator system.

Why? most operators are easier on one representation.

Notes:

- By duality, we can use the same algorithm to switch from generators to constraints.
- The minimal generator system can be exponential in the original constraint system. (e.g., hypercube: 2n constraints, 2ⁿ vertices)
- Equality constraints and lines (pairs of opposed rays) may be handled separately and more efficiently.

Chernikova's algorithm (cont.)

Algorithm:

incrementally add constraints one by one

Start with:

$$\begin{cases} \mathbf{P}_0 = \{ (0, \dots, 0) \} & \text{(origin} \\ \mathbf{R}_0 = \{ \vec{x}_i, -\vec{x}_i \mid 1 \le i \le n \} & \text{(axes)} \end{cases}$$

For each constraint $\vec{M}_k \cdot \vec{V} \ge C_k \in \langle \mathbf{M}, \vec{C} \rangle$, update $[\mathbf{P}_{k-1}, \mathbf{R}_{k-1}]$ to $[\mathbf{P}_k, \mathbf{R}_k]$.

Start with $\mathbf{P}_k = \mathbf{R}_k = \emptyset$,

- for any $\vec{P} \in \mathbf{P}_{k-1}$ s.t. $\vec{M}_k \cdot \vec{P} \ge C_k$, add \vec{P} to \mathbf{P}_k
- for any $\vec{R} \in \mathbf{R}_{k-1}$ s.t. $\vec{M}_k \cdot \vec{R} \ge 0$, add \vec{R} to \mathbf{R}_k
- for any $\vec{P}, \vec{Q} \in \mathbf{P}_{k-1}$ s.t. $\vec{M}_k \cdot \vec{P} > C_k$ and $\vec{M}_k \cdot \vec{Q} < C_k$, add to \mathbf{P}_k : $\vec{O} \stackrel{\text{def}}{=} \frac{C_k - \vec{M}_k \cdot \vec{Q}}{\vec{M}_k \cdot \vec{P} - \vec{M}_k \cdot \vec{Q}} \vec{P} - \frac{C_k - \vec{M}_k \cdot \vec{P}}{\vec{M}_k \cdot \vec{P} - \vec{M}_k \cdot \vec{Q}} \vec{Q}$

i.e., move Q towards P along [Q, P] until it saturates the constraint

Chernikova's algorithm (cont.)

• for any $\vec{R}, \vec{S} \in \mathbf{R}_{k-1}$ s.t. $\vec{M}_k \cdot \vec{R} > 0$ and $\vec{M}_k \cdot \vec{S} < 0$, add to \mathbf{R}_k : $\vec{O} \stackrel{\text{def}}{=} (\vec{M}_k \cdot \vec{S})\vec{R} - (\vec{M}_k \cdot \vec{R})\vec{S}$

i.e., rotate S towards R until it is parallel to the constraint

■ for any $\vec{P} \in \mathbf{P}_{k-1}$, $\vec{R} \in \mathbf{R}_{k-1}$ s.t. either $\vec{M}_k \cdot \vec{P} > C_k$ and $\vec{M}_k \cdot \vec{R} < 0$, or $\vec{M}_k \cdot \vec{P} < C_k$ and $\vec{M}_k \cdot \vec{R} > 0$ add to \mathbf{P}_k : $\vec{O} \stackrel{\text{def}}{=} \vec{P} + \frac{C_k - \vec{M}_k \cdot \vec{P}}{\vec{M}_k \cdot \vec{R}} \vec{R}$

Chernikova's algorithm example

Example:

$$\mathbf{P}_0 = \{(0,0)\} \qquad \qquad \mathbf{R}_0 = \{(1,0), \, (-1,0), \, (0,1), \, (0,-1)\}$$

Chernikova's algorithm example

Example:

$$\begin{array}{lll} \mbox{\boldmath${\bf P}$}_0 = \{(0,0)\} & \mbox{\boldmath${\bf R}$}_0 = \{(1,0),\,(-1,0),\,(0,1),\,(0,-1)\} \\ \mbox{\boldmath${\bf P}$}_1 = \{(0,1)\} & \mbox{\boldmath${\bf R}$}_1 = \{(1,0),\,(-1,0),\,(0,1)\} \end{array}$$

Y

Chernikova's algorithm example

Example:

$$\begin{array}{ll} {\bf P}_0 = \{(0,0)\} \\ {\bf Y} \geq 1 & {\bf P}_1 = \{(0,1)\} \\ {\bf X} + {\bf Y} \geq 3 & {\bf P}_2 = \{(2,1)\} \end{array}$$

$$\begin{aligned} & \mathsf{R}_0 = \{(1,0), \, (-1,0), \, (0,1), \, (0,-1)\} \\ & \mathsf{R}_1 = \{(1,0), \, (-1,0), \, (0,1)\} \\ & \mathsf{R}_2 = \{(1,0), \, (-1,1), \, (0,1)\} \end{aligned}$$

Chernikova's algorithm example

Example:

$$\begin{array}{ll} \textbf{P}_0 = \{(0,0)\} & \textbf{R}_0 = \{(1,0), \ (-1,0), \ (0,1), \ (0,-1)\} \\ Y \geq 1 & \textbf{P}_1 = \{(0,1)\} & \textbf{R}_1 = \{(1,0), \ (-1,0), \ (0,1)\} \\ X+Y \geq 3 & \textbf{P}_2 = \{(2,1)\} & \textbf{R}_2 = \{(1,0), \ (-1,1), \ (0,1)\} \\ X-Y \leq 1 & \textbf{P}_3 = \{(2,1), \ (1,2)\} & \textbf{R}_3 = \{(0,1), \ (1,1)\} \end{array}$$

Redundancy removal

<u>Goal</u>: introduce only non-redundant generators during Chernikova's algorithm.

 $\begin{array}{l} \underline{\text{Definitions}} & (\text{for rays in polyhedral cones}) \\ \text{Given } C = \{ \vec{V} \mid \mathbf{M} \times \vec{V} \ge \vec{0} \} = \{ \mathbf{R} \times \vec{\beta} \mid \vec{\beta} \ge \vec{0} \}. \\ & \quad \mathbf{\vec{R} \text{ saturates}} \quad \vec{M}_k \cdot \vec{V} \ge 0 \quad \stackrel{\text{def}}{\longleftrightarrow} \quad \vec{M}_k \cdot \vec{R} = 0. \\ & \quad \mathbf{\vec{S}}(\vec{R}, C) \stackrel{\text{def}}{=} \{ k \mid \vec{M}_k \cdot \vec{R} = 0 \}. \end{array}$

Theorem:

Assume *C* has no line $(\exists \vec{L} \neq \vec{0} \text{ s.t. } \forall \alpha: \alpha \vec{L} \in C)$, then \vec{R} is non-redundant w.r.t. $\mathbf{R} \iff \exists \vec{R}_i \in \mathbf{R}: S(\vec{R}, C) \subseteq S(\vec{R}_i, C)$.

- $S(\vec{R}_i, C), \vec{R}_i \in \mathbf{R}$ is maintained during Chernikova's algorithm in a saturation matrix,
- extension to (non-conic) polyhedra and to lines,
- various improvements exist [LeVe92].

Operators on polyhedra

Given $\mathcal{X}^{\sharp}, \mathcal{Y}^{\sharp} \neq \bot^{\sharp}$, we define:

$$\mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \quad \stackrel{\text{\tiny def}}{\iff} \quad \left\{ \begin{array}{l} \forall \vec{P} \in \mathbf{P}_{\mathcal{X}^{\sharp}} \colon \mathbf{M}_{\mathcal{Y}^{\sharp}} \times \vec{P} \geq \vec{C}_{\mathcal{Y}^{\sharp}} \\ \forall \vec{R} \in \mathbf{R}_{\mathcal{X}^{\sharp}} \colon \mathbf{M}_{\mathcal{Y}^{\sharp}} \times \vec{R} \geq \vec{0} \end{array} \right.$$

(every generator of \mathcal{X}^{\sharp} must satisfy every constraint in $\mathcal{Y}^{\sharp})$

$$\begin{array}{ccc} \mathcal{X}^{\sharp} \stackrel{=}{=} \mathcal{Y}^{\sharp} & \stackrel{\text{def}}{\longleftrightarrow} & \mathcal{X}^{\sharp} \stackrel{\subseteq}{=} \mathcal{Y}^{\sharp} & \text{and} & \mathcal{Y}^{\sharp} \stackrel{\subseteq}{=} \mathcal{X}^{\sharp} \\ \\ \mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} & \stackrel{\text{def}}{=} & \left\langle \left[\begin{array}{c} \mathsf{M}_{\mathcal{X}^{\sharp}} \\ \mathsf{M}_{\mathcal{Y}^{\sharp}} \end{array} \right], \left[\begin{array}{c} \vec{c}_{\mathcal{X}^{\sharp}} \\ \vec{c}_{\mathcal{Y}^{\sharp}} \end{array} \right] \right\rangle \end{array}$$

(set union of sets of constraints)

Remarks:

•
$$\subseteq^{\sharp}$$
, $=^{\sharp}$ and \cap^{\sharp} are exact.

Operators on polyhedra: join

$$\underline{\mathsf{Join:}} \quad \mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\mathrm{def}}{=} \left[\left[\mathsf{P}_{\mathcal{X}^{\sharp}} \; \mathsf{P}_{\mathcal{Y}^{\sharp}} \right], \left[\mathsf{R}_{\mathcal{X}^{\sharp}} \; \mathsf{R}_{\mathcal{Y}^{\sharp}} \right] \right] \quad \text{(join generator sets)}$$

Examples:

 \cup^{\sharp} is optimal:

we get the topological closure of the convex hull of $\gamma(\mathcal{X}^{\sharp}) \cup \gamma(\mathcal{Y}^{\sharp})$.

Operators on polyhedra: tests

Forward operators: affine tests

$$C^{\sharp} \llbracket \sum_{i} \alpha_{i} V_{i} + \beta \geq 0 \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} \left\langle \begin{bmatrix} \mathbf{M}_{\mathcal{X}^{\sharp}} \\ \alpha_{1} \cdots \alpha_{n} \end{bmatrix}, \begin{bmatrix} \vec{c}_{\mathcal{X}^{\sharp}} \\ -\beta \end{bmatrix} \right\rangle$$

 $\mathbf{C}^{\sharp}\llbracket\sum_{i}\alpha_{i}V_{i} = \beta \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} (\mathbf{C}^{\sharp}\llbracket\sum_{i}\alpha_{i}V_{i} \geq \beta \rrbracket \circ \mathbf{C}^{\sharp}\llbracket\sum_{i}\alpha_{i}V_{i} \leq \beta \rrbracket) \mathcal{X}^{\sharp}$

These test operators are exact.

Operators on polyhedra: non-deterministic assignment

Forward operators: forget

$$\mathsf{C}^{\sharp}\llbracket \mathsf{V}_{j} \leftarrow [-\infty, +\infty] \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} [\mathsf{P}_{\mathcal{X}^{\sharp}}, [\mathsf{R}_{\mathcal{X}^{\sharp}} \ \vec{x}_{j} \ (-\vec{x}_{j})]]$$

This operator is exact.

It is also a sound abstraction for any assignment.

Polyhedron domain

Operators on polyhedra: affine assignments

Forward operators: affine assignments

$$C^{\sharp} \llbracket V_{j} \leftarrow \sum_{i} \alpha_{i} V_{i} + \beta \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} \\ \text{if } \alpha_{j} = 0, (C^{\sharp} \llbracket V_{j} = \sum_{i} \alpha_{i} V_{i} + \beta \rrbracket \circ C^{\sharp} \llbracket V_{j} \leftarrow [-\infty, +\infty] \rrbracket) \mathcal{X}^{\sharp} \\ \text{if } \alpha_{j} \neq 0, \langle \mathbf{M}, \vec{C} \rangle \text{ where } V_{j} \text{ is replaced with } \frac{1}{\alpha_{j}} (V_{j} - \sum_{i \neq j} \alpha_{i} V_{i} - \beta) \end{cases}$$

Examples :

Affine assignments are exact. They could also be defined on generator systems.

Affine assignments: proofs

$$\begin{split} \mathsf{C}^{\sharp} \llbracket V_{j} \leftarrow \sum_{i} \alpha_{i} V_{i} + \beta \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} \\ & \text{if } \alpha_{j} = 0, (\mathsf{C}^{\sharp} \llbracket \sum_{i} \alpha_{i} V_{i} - V_{j} + \beta = 0 \rrbracket \circ \mathsf{C}^{\sharp} \llbracket V_{j} \leftarrow [-\infty, +\infty] \rrbracket) \mathcal{X}^{\sharp} \\ & \text{if } \alpha_{j} \neq 0, \mathcal{X}^{\sharp} \text{ where } V_{j} \text{ is replaced with } (V_{j} - \sum_{i \neq j} \alpha_{i} V_{i} - \beta) / \alpha_{j} \end{split}$$

Proof sketch:

we use the following identities in the concrete

non-invertible assignment: $\alpha_i = 0$

 $\begin{array}{l} \mathbb{C}[\![V_j \leftarrow e \!]\!] = \mathbb{C}[\![V_j \leftarrow e \!]\!] \circ \mathbb{C}[\![V_j \leftarrow [-\infty, +\infty] \!]\!] \text{ as the value of } V_j \text{ is not used in } e \text{ so: } \mathbb{C}[\![V_j \leftarrow e \!]\!] = \mathbb{C}[\![V_j = e \!]\!] \circ \mathbb{C}[\![V_j \leftarrow [-\infty, +\infty] \!]\!] \end{array}$

 \implies reduces the assignment to a test

invertible assignment: $\alpha_i \neq 0$

$$\begin{split} \mathbb{C}\llbracket V_{j} \leftarrow e \rrbracket \subsetneq \mathbb{C}\llbracket V_{j} \leftarrow e \rrbracket \circ \mathbb{C}\llbracket V_{j} \leftarrow [-\infty, +\infty] \rrbracket \text{ as e depends on } V \\ (\text{e.g., } \mathbb{C}\llbracket V \leftarrow V + 1 \rrbracket \neq \mathbb{C}\llbracket V \leftarrow V + 1 \rrbracket \circ \mathbb{C}\llbracket V \leftarrow [-\infty, +\infty] \rrbracket) \\ \rho \in \mathbb{C}\llbracket V_{j} \leftarrow e \rrbracket R & \iff \exists \rho' \in R: \ \rho = \rho'[V_{j} \mapsto \sum_{i} \alpha_{i}\rho'(V_{i}) + \beta] \\ & \iff \exists \rho' \in R: \ \rho[V_{j} \mapsto (\rho(V_{j}) - \sum_{i \neq j} \alpha_{i}\rho'(V_{i}) - \beta)/\alpha_{j}] = \rho' \\ & \iff \rho[V_{j} \mapsto (\rho(V_{j}) - \sum_{i \neq j} \alpha_{i}\rho(V_{i}) - \beta)/\alpha_{j}] \in R \end{split}$$

 \implies reduces the assignment to a substitution by the inverse expression

Operators on polyhedra: backward assignments

Backward assignments:

$$\begin{split} \overleftarrow{C}^{\sharp} \llbracket V_{j} \leftarrow [-\infty, +\infty] \rrbracket (\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}) &\stackrel{\text{def}}{=} \mathcal{X}^{\sharp} \cap^{\sharp} (C^{\sharp} \llbracket V_{j} \leftarrow [-\infty, +\infty] \rrbracket \mathcal{R}^{\sharp}) \\ \overleftarrow{C}^{\sharp} \llbracket V_{j} \leftarrow \sum_{i} \alpha_{i} V_{i} + \beta \rrbracket (\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}) \stackrel{\text{def}}{=} \\ \mathcal{X}^{\sharp} \cap^{\sharp} (\mathcal{R}^{\sharp} \text{ where } V_{j} \text{ is replaced with } (\sum_{i} \alpha_{i} V_{i} + \beta)) \\ \overleftarrow{C}^{\sharp} \llbracket V_{j} \leftarrow e \rrbracket (\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}) \stackrel{\text{def}}{=} \overleftarrow{C}^{\sharp} \llbracket V_{j} \leftarrow [-\infty, +\infty] \rrbracket (\mathcal{X}^{\sharp}, \mathcal{R}^{\sharp}) \\ \text{for other assignments} \end{split}$$

Note: identical to the case of linear equalities.

Polyhedra widening

 \mathcal{D}^{\sharp} has strictly increasing infinite chains \Longrightarrow we need a widening. **Definition:**

Take \mathcal{X}^{\sharp} and \mathcal{Y}^{\sharp} in minimal constraint-set form, then $\mathcal{X}^{\sharp} \bigtriangledown \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \{ c \in \mathcal{X}^{\sharp} | \mathcal{Y}^{\sharp} \subseteq^{\sharp} \{ c \} \}$

We suppress any unstable constraint $c \in \mathcal{X}^{\sharp}$, i.e., $\mathcal{Y}^{\sharp} \not\subseteq^{\sharp} \{c\}$.

Polyhedra widening

 \mathcal{D}^{\sharp} has strictly increasing infinite chains \implies we need a widening. **Definition:**

Take \mathcal{X}^{\sharp} and \mathcal{Y}^{\sharp} in minimal constraint-set form, then $\mathcal{X}^{\sharp} \bigtriangledown \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \{ c \in \mathcal{X}^{\sharp} | \mathcal{Y}^{\sharp} \subseteq^{\sharp} \{ c \} \}$ $\cup \{ c \in \mathcal{Y}^{\sharp} | \exists c' \in \mathcal{X}^{\sharp} : \mathcal{X}^{\sharp} =^{\sharp} (\mathcal{X}^{\sharp} \setminus c') \cup \{ c \} \}$

We suppress any unstable constraint $c \in \mathcal{X}^{\sharp}$, i.e., $\mathcal{Y}^{\sharp} \not\subseteq^{\sharp} \{c\}$. We also keep constraints $c \in \mathcal{Y}^{\sharp}$ equivalent to those in \mathcal{X}^{\sharp} , i.e., when $\exists c' \in \mathcal{X}^{\sharp} : \mathcal{X}^{\sharp} =^{\sharp} (\mathcal{X}^{\sharp} \setminus c') \cup \{c\}$.

Example:

Example analysis

Loop invariant:

Increasing iterations with widening at • give:

$$\begin{array}{rcl} \mathcal{X}_1^{\sharp} &=& \{X=2, I=0\} \\ \mathcal{X}_2^{\sharp} &=& \{X=2, I=0\} \lor (\{X=2, I=0\} \cup^{\sharp} \{X \in [-1,4], I=1\}) \\ &=& \{X=2, I=0\} \lor \{I \in [0,1], \ 2-3I \leq X \leq 2I+2\} \\ &=& \{I \geq 0, \ 2-3I \leq X \leq 2I+2\} \end{array}$$

Decreasing iterations (to find $I \leq 10$):

$$\begin{array}{rcl} \mathcal{X}_3^{\sharp} & = & \{X=2, I=0\} \cup^{\sharp} \{ \ I \in [1, 10], \ 2-3I \leq X \leq 2I+2 \} \\ & = & \{I \in [0, 10], \ 2-3I \leq X \leq 2I+2 \} \end{array}$$

We find, at the end of the loop \blacklozenge : $I = 10 \land X \in [-28, 22]$.

Other polyhedra widenings

Widening with thresholds:

Given a finite set T of constraints, we add to $\mathcal{X}^{\sharp} \triangledown \mathcal{Y}^{\sharp}$ all the constraints from T satisfied by both \mathcal{X}^{\sharp} and \mathcal{Y}^{\sharp} .

Delayed widening:

We replace $\mathcal{X}^{\sharp} \bigtriangledown \mathcal{Y}^{\sharp}$ with $\mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp}$ a finite number of times.

(this works for any widening and abstract domain).

See also [Bagn03].

Integer polyhedra

How can we deal with $\mathbb{I} = \mathbb{Z}$?

ssue: integer linear programming is difficult.

satsfiability of conjunctions of linear constraints: Example:

- polynomial cost in Q,
- NP-complete cost in Z.

Possible solutions:

Use some complete integer algorithms. (e.g. Presburger arithmetic) Costly, and we do not have any abstract domain structure.

Keep Q-polyhedra as representation, and change the concretization into: $\gamma_{\mathbb{Z}}(\mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \gamma(\mathcal{X}^{\sharp}) \cap \mathbb{Z}^{n}.$

However, operators are no longer exact / optimal.

Weakly relational domains

Zone domain

The zone domain

Here, $\mathbb{I} \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}.$

We look for invariants of the form:

 $\bigwedge V_i - V_j \leq c \text{ or } \pm V_i \leq c, \quad c \in \mathbb{I}.$

A subset of \mathbb{I}^n bounded by such constraints is called a **zone**.

[Miné01a]

Machine representation

A potential constraint has the form: $V_j - V_i \leq c$.

Potential graph: directed, weighted graph \mathcal{G}

- \blacksquare nodes are labelled with variables in $\mathbb V,$
- we add an arc with weight c from V_i to V_j for each constraint $V_j V_i \le c$.

Difference Bound Matrix (DBM)

Adjacency matrix **m** of \mathcal{G} :

- **m** is square, with size $n \times n$, and elements in $\mathbb{I} \cup \{+\infty\}$,
- $m_{ij} = c < +\infty$ denotes the constraint $V_j V_i \leq c$,
- $m_{ij} = +\infty$ if there is no upper bound on $V_j V_i$.

Concretization:

$$\gamma(\mathbf{m}) \stackrel{\text{\tiny def}}{=} \{ (\mathbf{v}_1, \ldots, \mathbf{v}_n) \in \mathbb{I}^n \mid \forall i, j: \mathbf{v}_j - \mathbf{v}_i \leq m_{ij} \}.$$

Machine representation (cont.)

Modeling unary constraints: add a constant null variable V_0 .

m has size
$$(n+1) \times (n+1)$$
,

- $V_i \leq c$ is denoted as $V_i V_0 \leq c$, i.e., $m_{i0} = c$,
- $V_i \ge c$ is denoted as $V_0 V_i \le -c$, i.e., $m_{0i} = -c$,
- γ is now: $\gamma_0(\mathbf{m}) \stackrel{\text{def}}{=} \{ (v_1, \ldots, v_n) \mid (0, v_1, \ldots, v_n) \in \gamma(\mathbf{m}) \}.$

Example:

The DBM lattice

 \mathcal{D}^{\sharp} contains all DBMs, plus \perp^{\sharp} .

 $\leq \text{ on } \mathbb{I} \cup \{+\infty\} \text{ is extended point-wisely.}$ If $m,n \neq \bot^{\sharp}$:

$$\begin{array}{ccc} \mathbf{m} \subseteq^{\sharp} \mathbf{n} & \stackrel{\text{def}}{\longleftrightarrow} & \forall i, j: m_{ij} \leq n_{ij} \\ \mathbf{m} =^{\sharp} \mathbf{n} & \stackrel{\text{def}}{\longleftrightarrow} & \forall i, j: m_{ij} = n_{ij} \\ \left[\mathbf{m} \cap^{\sharp} \mathbf{n}\right]_{ij} & \stackrel{\text{def}}{=} & \min(m_{ij}, n_{ij}) \\ \left[\mathbf{m} \cup^{\sharp} \mathbf{n}\right]_{ij} & \stackrel{\text{def}}{=} & \max(m_{ij}, n_{ij}) \\ \left[\top^{\sharp}\right]_{ij} & \stackrel{\text{def}}{=} & +\infty \end{array}$$

 $(\mathcal{D}^{\sharp}, \subseteq^{\sharp}, \cup^{\sharp}, \cap^{\sharp}, \perp^{\sharp}, \top^{\sharp})$ is a lattice.

Remarks:

Normal form, equality and inclusion testing

<u>Issue:</u> how can we compare $\gamma_0(\mathbf{m})$ and $\gamma_0(\mathbf{n})$ precisely?

Idea: find a normal form by propagating/tightening constraints.

<u>Definition:</u> shortest-path closure \mathbf{m}^* $m_{ij}^* \stackrel{\text{def}}{=} \min_{\substack{N \\ \langle i = i_1, \dots, i_N = i \rangle}} \sum_{k=1}^{N-1} m_{i_k \, i_{k+1}}$

Exists only when \mathbf{m} has no cycle with strictly negative weight.

Floyd–Warshall algorithm

Properties:

- $\gamma_0(\mathbf{m}) = \emptyset \iff \mathcal{G}$ has a cycle with strictly negative weight.
- if $\gamma_0(\mathbf{m}) \neq \emptyset$, the shortest-path graph \mathbf{m}^* is a normal form: $\mathbf{m}^* = \min_{\subseteq \sharp} \{ \mathbf{n} \mid \gamma_0(\mathbf{m}) = \gamma_0(\mathbf{n}) \}$

■ If
$$\gamma_0(\mathbf{m}), \gamma_0(\mathbf{n}) \neq \emptyset$$
, then
■ $\gamma_0(\mathbf{m}) = \gamma_0(\mathbf{n}) \iff \mathbf{m}^* =^{\sharp} \mathbf{n}^*,$
■ $\gamma_0(\mathbf{m}) \subseteq \gamma_0(\mathbf{n}) \iff \mathbf{m}^* \subseteq^{\sharp} \mathbf{n}.$

Floyd–Warshall algorithm

$$\left\{ \begin{array}{ll} m_{ij}^0 & \stackrel{\text{def}}{=} & m_{ij} \\ m_{ij}^{k+1} & \stackrel{\text{def}}{=} & \min(m_{ij}^k, m_{ik}^k + m_{kj}^k) \end{array} \right.$$

If
$$\gamma_0(\mathbf{m}) \neq \emptyset$$
, then $\mathbf{m}^* = \mathbf{m}^{n+1}$,

• $\gamma_0(\mathbf{m}) = \emptyset \iff \exists i : m_{ii}^{n+1} < 0,$

0, (emptiness testing)

(normal form)

mⁿ⁺¹ can be computed in $\mathcal{O}(n^3)$ time.

Abstract operators

Abstract join: naive version \cup^{\ddagger} (element-wise max)

 $\blacksquare ~\cup^{\sharp}$ is a sound abstraction of \cup

but $\gamma_0(\mathbf{m} \cup^{\sharp} \mathbf{n})$ is not necessarily the smallest zone containing $\gamma_0(\mathbf{m})$ and $\gamma_0(\mathbf{n})$!

The union of two zones with \cup^{\sharp} is no more precise in the zone domain than in the interval domain!

Abstract join: precise version: \cup^{\sharp} after closure

• $(\mathbf{m}^*) \cup^{\sharp} (\mathbf{n}^*)$ is however optimal

we have: $(\mathbf{m}^*) \cup^{\sharp} (\mathbf{n}^*) = \min_{\subseteq^{\sharp}} \{ \mathbf{o} \mid \gamma_0(\mathbf{o}) \supseteq \gamma_0(\mathbf{m}) \cup \gamma_0(\mathbf{n}) \}$

which implies:

 $\gamma_{0}((\mathbf{m}^{*}) \cup^{\sharp} (\mathbf{n}^{*})) = \min_{\subseteq} \left\{ \left. \gamma_{0}(\mathbf{o}) \mid \gamma_{0}(\mathbf{o}) \supseteq \gamma_{0}(\mathbf{m}) \cup \gamma_{0}(\mathbf{n}) \right. \right\}$

after closure, new constraints $c \leq X - Y \leq d$ give an increase in precision

•
$$(\mathbf{m}^*) \cup^{\sharp} (\mathbf{n}^*)$$
 is always closed.

Abstract intersection ∩[‡]: element-wise min

 $\blacksquare \cap^{\sharp}$ is an exact abstraction of \cap (zones are closed under intersection):

• $(\mathbf{m}^*) \cap^{\sharp} (\mathbf{n}^*)$ is not necessarily closed...

We can define:

$$\begin{bmatrix} \mathsf{C}^{\sharp} \llbracket V_{j_0} - V_{i_0} \le c \rrbracket \mathbf{m} \end{bmatrix}_{ij} \stackrel{\text{def}}{=} \begin{cases} \min(m_{ij}, c) & \text{if } (i, j) = (i_0, j_0), \\ m_{ij} & \text{otherwise.} \end{cases}$$

$$\begin{bmatrix} \mathsf{C}^{\sharp}\llbracket \textit{V}_{j_0} \leftarrow \llbracket -\infty, +\infty \rrbracket \rrbracket \textit{m} \end{bmatrix}_{ij} \stackrel{\text{def}}{=} \left\{ \begin{array}{c} +\infty & \text{if } i=j_0 \text{ or } j=j_0, \\ \textit{m}_{ij}^* & \text{otherwise.} \end{array} \right.$$

not optimal on non-closed arguments

$$\mathsf{C}^{\sharp}\llbracket V_{j_{0}} \leftarrow V_{i_{0}} + a \rrbracket \mathfrak{m} \stackrel{\mathrm{def}}{=} (\mathsf{C}^{\sharp}\llbracket V_{j_{0}} - V_{i_{0}} = a \rrbracket \circ \mathsf{C}^{\sharp}\llbracket V_{j_{0}} \leftarrow [-\infty, +\infty] \rrbracket) \mathfrak{m} \quad \text{if } i_{0} \neq j_{0}$$

$$\begin{bmatrix} \mathsf{C}^{\sharp} \llbracket \mathbf{V}_{j_0} \leftarrow \mathbf{V}_{j_0} + a \rrbracket \mathbf{m} \end{bmatrix}_{ij} \stackrel{\text{def}}{=} \begin{cases} m_{ij} - a & \text{if } i = j_0 \text{ and } j \neq j_0 \\ m_{ij} + a & \text{if } i \neq j_0 \text{ and } j = j_0 \\ m_{ij} & \text{otherwise.} \end{cases}$$

These transfer functions are exact.

Backward assignment:

$$\overleftarrow{C}^{\sharp}\llbracket V_{j_{0}} \leftarrow [-\infty, +\infty] \,]\!] \, (\mathbf{m}, \mathbf{r}) \stackrel{\mathrm{def}}{=} \mathbf{m} \cap^{\sharp} \left(\mathsf{C}^{\sharp}\llbracket \, V_{j_{0}} \leftarrow [-\infty, +\infty] \,]\!] \, \mathbf{r} \right)$$

$$\overleftarrow{C}^{\sharp}\llbracket V_{j_{0}} \leftarrow V_{j_{0}} + a \rrbracket (\mathbf{m}, \mathbf{r}) \stackrel{\mathrm{def}}{=} \mathbf{m} \cap^{\sharp} (\mathsf{C}^{\sharp}\llbracket V_{j_{0}} \leftarrow V_{j_{0}} - a \rrbracket \mathbf{r})$$

$$\begin{bmatrix} \overleftarrow{C}^{\sharp} \llbracket V_{j_0} \leftarrow V_{i_0} + a \rrbracket (\mathbf{m}, \mathbf{r}) \end{bmatrix}_{ij} \stackrel{\text{def}}{=} \\ \mathbf{m} \cap^{\sharp} \begin{cases} \min(\mathbf{r}^*_{ij}, \mathbf{r}^*_{j_0j} + a) & \text{if } i = i_0 \text{ and } j \neq i_0, j_0 \\ \min(\mathbf{r}^*_{ij}, \mathbf{r}^*_{ij_0} - a) & \text{if } j = i_0 \text{ and } i \neq i_0, j_0 \\ +\infty & \text{if } i = j_0 \text{ or } j = j_0 \\ \mathbf{r}^*_{ij} & \text{otherwise.} \end{cases}$$

<u>Issue</u>: given an arbitrary linear assignment $V_{j_0} \leftarrow a_0 + \sum_k a_k \times V_k$

- there is no exact abstraction in general,
- \blacksquare the best abstraction $\alpha \circ \mathsf{C}[\![\, \mathit{c}\,]\!] \circ \gamma$ can be costly to compute.

(e.g. convert to a polyhedron and back, with exponential cost)

Possible solution:

Given a (more general) assignment $e = [a_0, b_0] + \sum_k [a_k, b_k] \times V_k$, we define an approximate operator as follows:

$$\begin{bmatrix} \mathsf{C}^{\sharp} \llbracket V_{j_{0}} \leftarrow e \rrbracket \mathbf{m} \end{bmatrix}_{ij} \stackrel{\text{def}}{=} \begin{cases} \max(\mathsf{E}^{\sharp} \llbracket e \rrbracket \mathbf{m}) & \text{if } i = 0 \text{ and } j = j_{0} \\ -\min(\mathsf{E}^{\sharp} \llbracket e \rrbracket \mathbf{m}) & \text{if } i = j_{0} \text{ and } j = 0 \\ \max(\mathsf{E}^{\sharp} \llbracket e - V_{i} \rrbracket \mathbf{m}) & \text{if } i \neq 0, j_{0} \text{ and } j = j_{0} \\ -\min(\mathsf{E}^{\sharp} \llbracket e - V_{i} \rrbracket \mathbf{m}) & \text{if } i = j_{0} \text{ and } j \neq 0, j_{0} \\ m_{ij} & \text{otherwise} \end{cases}$$

where $\mathsf{E}^{\sharp} \llbracket e \rrbracket \mathbf{m}$ evaluates *e* using interval arithmetics with $V_k \in [-m_{k0}^*, m_{0k}^*]$.

Quadratic total cost (plus the cost of closure).

Example:

Argument

We have a good trade-off between cost and precision.

The same idea can be used for tests and backward assignments.

Widening and narrowing

The zone domain has both strictly increasing and decreasing infinite chains.

Widening ∇ :

$$\left[\mathbf{m} \nabla \mathbf{n}\right]_{ij} \stackrel{\text{def}}{=} \begin{cases} m_{ij} & \text{if } n_{ij} \leq m_{ij} \\ +\infty & \text{otherwise} \end{cases}$$

Unstable constraints are deleted.

Narrowing \triangle :

$$\left[\mathbf{m} \bigtriangleup \mathbf{n}\right]_{ij} \stackrel{\text{def}}{=} \begin{cases} n_{ij} & \text{if } m_{ij} = +\infty \\ m_{ij} & \text{otherwise} \end{cases}$$

Only $+\infty$ bounds are refined.

Remarks:

- We can construct widenings with thresholds.
- ∇ (resp. \triangle) can be seen as a point-wise extension of an interval widening (resp. narrowing).

Interaction between closure and widening

Widening \triangledown and closure \ast cannot always be mixed safely:

- $\mathbf{m}_{i+1} \stackrel{\text{\tiny def}}{=} \mathbf{m}_i \bigtriangledown (\mathbf{n}_i^*)$ OK
- $\mathbf{m}_{i+1} \stackrel{\text{def}}{=} (\mathbf{m}_i^*) \bigtriangledown \mathbf{n}_i$ wrong!
- $\mathbf{m}_{i+1} \stackrel{\text{\tiny def}}{=} (\mathbf{m}_i \bigtriangledown \mathbf{n}_i)^*$ wrong

Otherwise the sequence (\mathbf{m}_i) may be infinite.

Example:

$X \leftarrow 0; Y \leftarrow [-1,1];$	iter.	X	Y	X - Y
while • 1 = 1 do	0	0	[-1, 1]	[-1, 1]
$R \leftarrow [-1,1];$	1	[-2,2]	[-1, 1]	[-1, 1]
	2	[-2, 2]	[-3, 3]	[-1, 1]
if $X = Y$ then $Y \leftarrow X + R$				
else X ← Y + R fi	2 <i>i</i>	[-2i, 2i]	[-2i - 1, 2i + 1]	[-1, 1]
done	2j + 1	$\begin{bmatrix} -2j & -2, 2j + 2 \end{bmatrix}$		[-1, 1]

Applying the closure after the widening at • prevents convergence. Without the closure, we would find in finite time $X - Y \in [-1, 1]$. <u>Note:</u> this situation also occurs in reduced products. (here, $D^{\sharp} \simeq$ reduced product of $n \times n$ intervals, * \simeq reduction)

Interaction between closure and widening (illustration)

Octagon domain

The octagon domain

Now, $\mathbb{I} \in \{\mathbb{Q}, \mathbb{R}\}.$

We look for invariants of the form: $\bigwedge \pm V_i \pm V_j \leq c, c \in \mathbb{I}.$

A subset of I^n defined by such constraints is called an octagon.

It is a generalization of zones (more symmetric).

[Miné01b]

Machine representation

Idea: use a variable change to get back to potential constraints.

Let
$$\mathbb{V}' \stackrel{\text{def}}{=} \{V'_1, \ldots, V'_{2n}\}.$$

The constraint		is encoded as			
$V_i - V_j \leq c$	(i ≠ j)	$V'_{2i-1} - V'_{2i-1} \le$	С	and	$V'_{2i} - V'_{2i} \leq c$
$V_i + V_j \leq c$	$(i \neq j)$	$V'_{2i-1} - V'_{2i} \leq$	с	and	$V_{2i-1}' - V_{2i}' \le c$
$-V_i - V_j \leq c$	$(i \neq j)$	$V'_{2i} - V'_{2i-1} \leq$	с	and	$V_{2i}' - V_{2i-1}' \le c$
$V_i \leq c$		$V'_{2i-1} - V'_{2i} \leq$	2 <i>c</i>		,
$V_i \ge c$		$V_{2i}' - V_{2i-1}' \leq -$	-2 <i>c</i>		

We use a matrix **m** of size $(2n) \times (2n)$ with elements in $\mathbb{I} \cup \{+\infty\}$ and $\gamma_{\pm}(\mathbf{m}) \stackrel{\text{def}}{=} \{ (v_1, \dots, v_n) \mid (v_1, -v_1, \dots, v_n, -v_n) \in \gamma(\mathbf{m}) \}.$

Note:

Two distinct \mathbf{m} elements can represent the same constraint on \mathbb{V} .

To avoid this, we impose that $\forall i, j: m_{ij} = m_{\overline{j} \ \overline{\imath}}$ where $\overline{\imath} = i \oplus 1$.

Machine representation (cont.)

Example:

<u>Lattice</u> : constructed by point-wise extension of \leq on $\mathbb{I} \cup \{+\infty\}$.

Algorithms

\mathbf{m}^* is not a normal form for γ_{\pm} .

Idea use two local transformations instead of one:

$$\begin{cases} V'_i - V'_k \leq c \\ V'_k - V'_j \leq d \end{cases} \implies V'_i - V'_j \leq c + d \\ \begin{cases} V'_i - V'_{\overline{i}} \leq c \\ V'_{\overline{j}} - V'_{\overline{j}} \leq d \end{cases} \implies V'_i - V'_j \leq (c+d)/2 \end{cases}$$

Modified Floyd–Warshall algorithm:

$$\mathbf{m}^{\bullet} \stackrel{\text{def}}{=} S(\mathbf{m}^{2n+1})$$
(A)
$$\begin{cases} \mathbf{m}^{1} \stackrel{\text{def}}{=} \mathbf{m} \\ [\mathbf{m}^{k+1}]_{ij} \stackrel{\text{def}}{=} \min(n_{ij}, n_{ik} + n_{kj}), \ 1 \le k \le 2n \end{cases}$$
where:

(B)
$$[S(\mathbf{n})]_{ij} \stackrel{\text{def}}{=} \min(n_{ij}, (n_{i\,\bar{\imath}} + n_{\bar{\jmath}j})/2)$$

Algorithms (cont.)

Applications:

- $\gamma_{\pm}(\mathbf{m}) = \emptyset \iff \exists i: \mathbf{m}_{ii}^{\bullet} < 0,$
- if $\gamma_{\pm}(\mathbf{m}) \neq \emptyset$, \mathbf{m}^{\bullet} is a normal form:
 - $\mathbf{m}^{\bullet} = \min_{\subseteq^{\sharp}} \{ \mathbf{n} \mid \gamma_{\pm}(\mathbf{n}) = \gamma_{\pm}(\mathbf{m}) \},\$
- $(\mathbf{m}^{\bullet}) \cup^{\sharp} (\mathbf{n}^{\bullet})$ is the best abstraction for the set-union $\gamma_{\pm}(\mathbf{m}) \cup \gamma_{\pm}(\mathbf{n})$.

Widening and narrowing:

- The zone widening and narrowing can be used on octagons.
- The widened iterates should not be closed. (prevents convergence)

Abstract transfer functions are similar to the case of the zone domain.

Analysis example

Rate limiter	
$\begin{array}{l} Y \leftarrow 0; \ \text{while } \bullet \ 1=1 \ \text{do} \\ X \leftarrow [-128, 128]; \ D \leftarrow [0, 16]; \\ S \leftarrow Y; \ Y \leftarrow X; \ R \leftarrow X - S; \\ \text{if } R \leq -D \ \text{then } Y \leftarrow S - D \ \text{fi}; \\ \text{if } R \geq D \ \text{then } Y \leftarrow S + D \ \text{fi} \\ \text{done} \end{array}$	 X: input signal Y: output signal S: last output R: delta Y - S D: max. allowed for R

Analysis using:

- the octagon domain,
- an abstract operator for $V_{j_0} \leftarrow [a_0, b_0] + \sum_k [a_k, b_k] \times V_k$ similar to the one we defined on zones,
- a widening with thresholds T.

<u>Result</u>: we prove that |Y| is bounded by: min { $t \in T | t \ge 144$ }.

<u>Note:</u> the polyhedron domain would find $|Y| \le 128$ and does not require thresholds, but it is more costly.

Summary

Summary

Summary of numerical domains

domain	invariants	memory cost	time cost (per operation)	
intervals	$V \in [\ell, h]$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	
linear equalities	$\sum_{i} \alpha_i V_i = \beta_i$	$\mathcal{O}(n ^2)$	$\mathcal{O}(n ^3)$	
zones	$V_i - V_j \leq c$	$\mathcal{O}(n ^2)$	$\mathcal{O}(n ^3)$	
polyhedra	$\sum_{i} \alpha_i V_i \geq \beta_i$	unbounded, exponential in practice		

- abstract domains provide trade-offs between cost and precision
- relational invariants are often necessary

even to prove non-relational properties

- an abstract domain is defined by the choice of:
 - some properties of interest and semantic operators
 - data-structures and algorithms to implement them
- an analysis mixes two kinds of approximations:
 - static approximations
 - dynamic approximations

(semantic part) (algorithmic part)

(choice of abstract properties) (widening)

Bibliography

[Anco10] C. Ancourt, F. Coelho & F. Irigoin. A modular static analysis approach to affine loop invariants detection. In Proc. NSAD'10, ENTCS, Elsevier, 2010.

[Bagn02] R. Bagnara, E. Ricci, E. Zaffanella & P. M. Hill. *Possibly not closed convex polyhedra and the Parma Polyhedra Library*. In Proc. SAS'02, LNCS 2477, 213–229, Springer, 2002.

[Bagn03] R. Bagnara, P. Hill, E. Ricci, E. Zaffanella. *Precise widening operators for convex polyhedra*. In Proc. SAS'03, LNCS 2694, 337-354, Springer, 2003.

[Bagn08] R. Bagnara, P. M. Hill & E. Zaffanella. An improved tight closure algorithm for integer octagonal constraints. In Proc. VMCAI'08, LNCS 4905, 8–21, Springer, 2008.

[Beno96] **F. Benoy & A. King**. Inferring argument size relationships with CLP(R). In In Proc. of LOPSTR'96, LNCS 1207, 204–223. Springer, 1996.

Bibliography (cont.)

[Cher68] N. V. Chernikova. Algorithm for discovering the set of all the solutions of a linear programming problem. In U.S.S.R. Comput. Math. and Math. Phys., 8(6):282–293, 1968.

[Cous78] **P. Cousot & N. Halbwachs**. Automatic discovery of linear restraints among variables of a program. In Proc. POPL'78, 84–96, ACM, 1978.

[Gran91] **P. Granger**. *Static analysis of linear congruence equalities among variables of a program*. In Proc. TAPSOFT'91, LNCS 49, 169–192. Springer, 1991.

[Jean09] B. Jeannet & A. Miné. Apron: A library of numerical abstract domains for static analysis. In Proc. CAV'09, LNCS 5643, 661–667, Springer, 2009, http://apron.cri.ensmp.fr/library.

Bibliography (cont.)

[Karr76] **M. Karr**. Affine relationships among variables of a program. In Acta Informatica, 6:133–151, 1976.

[LeVe92] **H. Le Verge**. *A note on Chernikova's algorithm*. In Research Report 1662, INRIA Rocquencourt, 1992.

[Miné01a] **A. Miné**. *A new numerical abstract domain based on difference-bound matrices*. In Proc. PADO II, LNCS 2053, 155–172, Springer, 2001.

[Miné01b] **A.** Miné. *The octagon abstract domain*. In Proc. AST'01, 310–319, IEEE, 2001.

[Schr86] **A. Schrijver**. *Theory of linear and integer programming*. In John Wiley & Sons, Inc., 1986.