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France
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Abstract. Covert channels represent a security problem for information
systems, since they permit illegal flows and sometimes leaks of classified
data. Although numerous descriptions have been given at a concrete
level, relatively few work has been carried out at a more abstract level.
In this paper, we propose a definition for covert channels based on encod-
ing and decoding binary messages with transducers, in a finite transition
system, and we explain why this definition is different from a similar no-
tion of so called iterated interference. We also show that covert channels
can be detected using a restricted class of transducers.
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1 Introduction

General context and related work. The context of this work is the
security of information flows. While systems have to communicate to ex-
change information and share resources, they aim at maintaining some
confidentiality and try to establish security levels to forbid or filter in-
formation flows, preventing leaks of classified data. A covert channel is a
way to bypass system securities in order to recover some confidential in-
formation. Well-known examples are described in [1] for TCP/IP, in which
reserved fields of IP packets were used to recover information. Character-
istics such as running time [2], power consumption [3] and even electro
magnetic radiation [4] have also been exploited to recover confidential
information from different security systems.
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Since their introduction by Lampson [5], covert channels have been
largely studied in terms of security policies à la Bell and La Padula [6].
But access control does not provide complete solutions for protecting
information and as complementary approach, non-interference was intro-
duced in [7] to detect covert channels through the information flow of a
multi-level security system in order to prevent high-level data from be-
ing deduced by low-level parties. This work has been extended in [8] for
CCS processes. Many behavioural equivalences have been considered in
order to establish a wide variety of non-interference properties classified
according to their discrimination power.

However, as explained in [9], only detecting interference is not suf-
ficient to detect a covert channel since a system fails to satisfy non-
interference as soon as it leaks only one bit of information. Also detecting
quantity of information leaked is necessary. Moreover, in [10] it is given a
zero capacity channel wich can be sent any message on. This observation
has led to set out an additional condition, called the small message crite-
rion, to the existence of a covert channel. It roughly states that messages
of arbitrary size can be sent in a bounded time.

Many models of covert channels have been proposed that are based
on information-theoretic metrics to measure information revealed to an
attacker [11,9,12,13]. Another research thread focuses on a different ap-
proach by re-formulating possibilistic information flow policies [14,15,16]
in order to cope with the above discussed limitations of the original formu-
lation. For instance, opacity [17] is a more general notion where different
observation functions are compared with respect to their power of dis-
covering secret (or opaque) information. While opacity is undecidable in
the general case, some positive results were obtained in [18,19] for un-
bounded Petri nets and finite transition systems, and in [20] for comput-
ing optimal control of a system enforcing concurrent secrets. In [21], the
authors describe covert channels as iterated interference based on obser-
vations of [9,10]. They consider systems modeled as hierarchical message
sequence charts and transformed into Büchi games, with transducers for
encoding and decoding messages of arbitrary size. In this setting, the ex-
istence of an effective covert channel corresponds to the existence of a
strategy and is proved decidable, under certain restrictions for the model
and the transducers.

Contribution. In this work, we consider the possibilistic direction and we
propose a general definition for covert channels, in the framework of finite
transition systems. There is a potential covert channel if we can find a way
to encode and decode any binary message, and if the encoder and decoder



mechanisms, defined as transducers, can be computed. The system under
study is syntactically translated into a transducer, so that the covert
channel property can be expressed as a property of the composition. We
show that this notion of covert channel is different from interference and
iterated interference. The problem of covert channel detection is then to
find the two transducers for encoding and decoding. While this problem
remains open, we show that it is possible for the detection to restrict the
form of encoder and decoder to sequential transducers.
Organization of the paper. Section 2 gives preliminary definitions and
section 3 compares the notions of covert channels and iterated interfer-
ence. Section 4 shows how to reduce the existence of an effective covert
channel to a simpler problem, which is therefore easier to test. Finally, in
section 5, we discuss open problems and future work.

2 Automata, transducers, and rational relations

In this section we recall general definitions used in the sequel. Let A be
a finite set called alphabet. The set of words over A is denoted by A∗,
with ε for the empty word and Aε = A∪ {ε}. For two words u and v, we
write v 4 u when v is a prefix of u. A language is a subset of A∗. Given a
subset P of A, the projection on P ∗ is denoted by projP and defined as
follows: for a word u ∈ A∗, projP (u) is obtained by replacing in u each
letter from A \ P by ε.

Transition systems. A labeled transition system (LTS) is a tuple M =
(S, s0, Lab,→) where S is a set of states, s0 is the initial state, Lab is a set
of labels and →⊆ S×Lab×S is the transition relation. We use the notation
s

a
−→ s′ if (s, a, s′) ∈→. An LTS M is finite if S and → are finite. A run

from s ∈ S is a finite sequence of transitions ρ = s
a1−→ s1

a2−→ · · ·
an−→ sn.

The last state of the sequence i.e. the state sn is denoted by last(ρ) and
the trace of ρ is trace(ρ) = a1 · · · an. We let Runs(s,M) be the set of runs

from s in M and Runs(M) = Runs(s0,M). We write s
∗
−→ s′ if there is

a run from s to s′.
A finite LTS along with a set Fin ⊆ S of final states, is a finite

automaton, or automaton for short. A word w ∈ A∗ is accepted by M if
w = trace(ρ) for some ρ ∈ Runs(M) with last(ρ) ∈ Fin. The language
accepted by M, denoted by L(M), is the set of words accepted by M.
A rational language is a language accepted by a finite automaton. Note
that the languages considered here are often prefix-closed. When the set
of final states is omitted, it implicitly means that Fin = S i.e. all states
are final states.



Rational relations. A relation between two sets E and F is identified
with its graph, a subset τ of E × F . For e ∈ E, we set τ(e) = {f ∈
F | (e, f) ∈ τ}. The domain of τ is Dom(τ) = {e ∈ E| ∃f ∈ F, (e, f) ∈ τ}
and the image of τ is Im(τ) = {f ∈ F | ∃e ∈ E, (e, f) ∈ τ}.

For an alphabet A, and a subset P of A∗, we denote by Id(P ) the
relation {(w,w) |w ∈ P} on A∗ ×A∗. For a word u ∈ A∗, let Prefk(u) be
the set of k-bounded prefixes of u, which are prefixes of u whose length
is less than the length of u by at most k letters: Prefk(u) = {v ∈ Σ∗|v 4

u ∧ |u| − |v| ≤ k}. For instance, Pref2(010110) = {010110, 01011, 0101}
over A = {0, 1}. We denote by Idk(A

∗) the relation between words and
their k-bounded prefixes: Idk(A

∗) = {(u, v) ∈ A∗ × A∗| v ∈ Prefk(u)}.
Note that Id0 = Id.

Given alphabets H and L, a rational transducer (or transducer for
short) is a finite automaton with set of labels H∗ × L∗. The language
accepted by a transducer τ is a rational relation [22] between H∗ and L∗,
which will also be denoted by τ . If the domain of transducer τ is H∗,
then τ is said to be complete. The transducer is functional if for each
word w ∈ H∗, there is at most one word in τ(w). The composition of
rational transducers is a rational transducer [23].

Note that any transducer on H∗ × L∗ can be put into a normal form
where each transition is labeled either by (h, ε), also written h|ε, or by
(ε, l), written ε|l, with h ∈ Hε and l ∈ Lε. This representation preserves
the accepted relation and can be used to syntactically derive a transducer
from an automaton: Let M = (S, s0, A

ε,→, F ) be such an automaton
where alphabet A is partitioned into two disjoint subsets H and L, which
is denoted by A = H ⊎L. Letters in H (resp. L) will represent high (resp.
low) level actions. A transducer τM = (S, s0,H

∗ × L∗,→τ ) is obtained
from M by defining →τ as follows:

– If s
h
→ s′, h ∈ H, then s

h|ε
−→τ s′

– If s
ℓ
→ s′, ℓ ∈ L, then q

ε|ℓ
−→τ s′

– If s
ε
→ s′, then s

ε|ε
−→τ s′

Example 1. Consider the automaton of Fig. 1(a), whith {h1, h2} = H

and {l1, l2} = L. The associated transducer is depicted in Fig. 1(b).

We finally recall the definition of sequential transducer [24]. This is a
restricted version of transducer, for which the associated automaton has

the following property: for each state s and each letter h ∈ H, if s
h|u1

−→ s1

and s
h|u2

−→ s2, for some words u1, u2 ∈ L∗ and states s1, s2, then s1 = s2



s0s1 s2

h1 h2

l1 l2

(a) Automaton M1

s0s1 s2

h1|ε h2|ε

ε|l1 ε|l2

(b) Transducer τM1
under normal form

Fig. 1. An example of automaton and transducer

and u1 = u2. This property can be viewed as input determinism and,
unlike for finite automata, it strictly reduces the expressive power. In this
case, the transitions can be described in a slightly different way.

Definition 1 (Sequential transducer). A left sequential transducer
(or sequential transducer for short) τ is an automaton M = (S, s0,H ×
L∗,→, F ) where S is a finite set of states, s0 ∈ S is the initial state,
H and L are two alphabets, and the transition relation → is defined via
two partial functions δ : S × H → S, and λ : S × H → L∗ with the
same domain and called the next state function and the output function
respectively. We usually denote δ by a large dot, and λ by a star. Thus

we write s • h for δ(s, h) and s ∗ h for λ(s, h) and we have: s
h|s∗h
−→ s • h.

Both δ and λ can be extended to H∗.

3 Covert channels versus iterated interference

We shall now define covert channels and compare this definition with it-
erated interference, a notion sometimes considered too tight to effectively
test real-world security policies [16,25]. Consider a system described by
an automaton M over alphabet A = H ⊎ L, so that this system has two
kind of users: low level user (with actions in L) and high level user (with
actions in H) who, in our setting, can only execute and see their respec-
tive actions. This restriction could be lifted by extending the definition
of encoders, but this is beyond the scope of this work.

The definition proposed below is new, up to our knowledge. It models
a system, an encoder and a decoder by three transducers. A message is
sent by the encoder via the transducer τE with high level actions and
is transmitted through the system (transducer τM). In this work, we
consider systems in which the receiver is a low level user and cannot see
directly the actions from high level. Thus, it decodes the message from
low level actions via transducer τD. To take into account possible delays



of transmission, we do not require that the result be strictly identical to
the message sent but rather a k-bounded prefix, for some k ≥ 0.

Definition 2. Two transducers τE : {0, 1}∗ → H∗ and τD : L∗ → {0, 1}∗

realize a covert channel of delay k for an automaton M = (S, s0, A
ε,→

, F ) over alphabet A = H ⊎ L if τD ◦ τM ◦ τE = Idk({0, 1}
∗).

Note that since all binary words must be encoded, a covert channel implies
that the encoder τE is complete. A typical system containing a covert
channel is described in the following example.

Example 2. Consider the transducer of Fig. 1(b), where h1, h2 are high
level actions and l1, l2 low level actions. This is a typical form of covert
channel, since the high level user can encode 0 with h1, 1 with h2, and
the low level user can decode l1 with 0 and l2 with 1.

Example 3. Consider the automaton M1 of Fig. 1(a), we can see that the
transducers τE1

of Fig. 2(a) and τD1
of Fig. 2(b) realize a covert channel

of delay 1.

q0

0|h1

1|h2

(a) Automaton τE1
is an example of

encoder

q0

l1|0

l2|1

(b) Automaton τD1
is an example of

decoder

Fig. 2. Encoder and decoder to realize a covert channel on M1

We now give a definition of interference and iterated interference in
order to compare them with covert channels. We use the notion of opac-
ity [19], which can capture a wide range of security properties, in a sim-
plified version from [20].

Definition 3 (Opacity). Let L and K be two rational languages over
an alphabet A, with L ⊆ K, and let L be a subset of A. Then L is said
opaque w.r.t K if projL(L) ⊆ projL(K\L), i.e. ∀w ∈ L, ∃w′ ∈ K \L s.t
projL(w) = projL(w′).



Thus, L is opaque if low level observations viewed as words over L

cannot distinguish the secrets in L. For a system described by an automa-
ton, non interference states that a low level user cannot discover if a high
level action occurs. Thus non interference can be expressed as an opacity
property where the secrets are words containing at least one high level
letter, hence belong to the language L1 = L∗HA∗.

Definition 4 (Interference). Let Lk = (L∗ · H)k · A∗, for k ≥ 0. An
automaton M is interferent if L1 is not opaque w.r.t L(M). This au-
tomaton has an iterated interference if ∀k ∈ N, Lk is not opaque w.r.t
L(M).

Covert channels have often been linked to interference or to iterated
interference. Of course, the intuition is that a non-interferent system does
not have any covert channel. The same property should also hold for
a system with no iterated interference. However, it is not a necessary
condition, as we can see in an informal way on the following example.

Example 4. Consider the automaton of Fig. 3, with h being a high level
action and l being a low level action. We can see that there is an iterated
interference, since every time an l is seen, the low-level user knows that
there has been at least an h. Thus, while an unlimited number of high
level actions can be detected, it is impossible for the high level to encode
arbitrary messages for the low level (this claim is proven in section 4).
This could be viewed in a restricted way as a channel with capacity 1. Of
course, this notion of covert channel is rather liberal and could in turn be
strenghtened.

q0 q1

h

l

h

Fig. 3. A system M2 with iterated interference but no covert channel

In the last section, we consider the realization problem: Given a system
represented by an automaton M over alphabet A = H⊎L, decide whether
there exist an integer k and two transducers τE : {0, 1}∗ → H∗ and
τD : L∗ → {0, 1}∗ that realize a covert channel of delay k.



4 Decidability and reduction of the problem

We show that the realization problem can be restricted to a simpler class
of covert channels, namely covert channels of delay 0 where encoder and
decoder are sequential. Although the decidability of the realization prob-
lem remains an open question for this class of covert channels, we show
that its expressive power is not weaker than the general one.

Lemma 1. Given an automaton M on A = H ⊎ L and two transducers
τE : {0, 1}∗ → H∗ and τD : L∗ → {0, 1}∗, it can be decided whether τE

and τD realize a covert channel of delay 0 for M.

Proof. It can be decided whether a transducer is functional. Since relation
Id0({0, 1}

∗) is functional, if τD ◦τM ◦τE is not functional, τE and τD does
not realize a covert channel of delay 0. For functional transducers, equality
of languages is decidable, so it can be decided whether two transducers
τE and τD realize a covert channel of delay 0. ⊓⊔

However, since equality of languages is undecidable in general for non-
functional transducers, deciding whether two transducers τE : {0, 1}∗ →
H∗ and τD : L∗ → {0, 1}∗ realize a covert channel of delay k 6= 0 is not
straightforward. Not being able to check candidate encoder and decoder
transducers makes the problem of existence of solutions more difficult.
Nevertheless, it can be shown that looking only for covert channels with
no delay is sufficient.

Lemma 2. If a system represented by an automaton M contains a covert
channel of delay k, then it also contains a covert channel with no delay.

Proof. Suppose τM has a covert channel of delay k. Let τE and τD be
respectively the encoder and decoder corresponding to that channel. We
define the k-repetition morphism R×

k over {0, 1}∗ by:

R×
k (0) = 0k+1 and R×

k (1) = 1k+1

In the reverse way, let R÷
k be the relation defined by R÷

k = (R×
k )−1. We

show that:

– R×
k is a rational function.

– R÷
k is a rational function.

– R÷
k ◦ Idk({0, 1}

∗) ◦ R×
k = Id({0, 1}∗).



The relation R×
k (resp. R÷

k ) is implemented by the transducer represented
in Fig. 4(a) (resp. Fig. 4(b)) which is clearly functional.

Let u ∈ {0, 1}∗ and v be its image by R×
k . If u = u1 · · · un (with

ui ∈ {0, 1}), then v = uk+1

1
· · · uk+1

n . The k-bounded prefixes of v are
v0 = uk+1

1
· · · un, v1 = uk+1

1
· · · u2

n, . . . , vk = uk+1

1
· · · uk+1

n . For every i ∈
{0, . . . , k − 1}, R÷

k (vi) = ∅. The image of vk by R÷
k is u1 · · · un = u.

Now if there are two transducers τE and τD such that τD ◦ τM ◦ τE =
Idk({0, 1}

∗), then R÷
k ◦ τD ◦ τM ◦ τE ◦ R×

k = R÷
k ◦ Idk({0, 1}

∗) ◦ R×
k =

Id({0, 1}∗). By taking τE ◦ R×
k as an encoder and R÷

k ◦ τD as a decoder,
we obtain a covert channel without delay. ⊓⊔

0|0k+1

1|1k+1

(a) Transducer implementing R×

k

p

q1 . . . qk

r1 . . . rk

1|ε

1|ε 1|ε

1|1

0|ε

0|ε 0|ε

0|0

(b) Transducer implementing R÷

k

Fig. 4. Transducers used to suppress the delay in a covert channel

But, even if it can be decided if two transducers realize a covert chan-
nel with no delay, finding those two transducers is hard. So we reduce the
problem by looking only for transducers that have a specific form. Theo-
rem 1 gives this specific form depicted in Fig. 6(a) and 6(b) and Theorem 2
states that these transducers can be chosen as sequential ones. The proofs
of these theorems rely on the two following lemmas.

In Lemma 3, we exhibit a generic path in an encoding transducer,
represented in Fig. 5, where state r accepts two different input words in
a loop. Lemma 4 then states that these two words form a code, i.e. that
it is possible to transmit a message without ambiguity with sequences of
these words.

Lemma 3. Let τE : {0, 1}∗ → H∗ be a transducer, complete on {0, 1}∗.
Then there exist words w,w1, w2 ∈ {0, 1}∗ and a state r such that w1·w2 6=
w2 · w1 and r = s0 • w = r • w1 = r • w2.



Proof. Consider the transducer τE under its normal form. Consider E =
(S, s0, A,→) the projection of τE over its input alphabet. E is a non-
deterministic automaton that has the same form as τE , and L(E) =
{0, 1}∗. Consider NE the number of states of E. A loop is a run ρ =

s
a1−→ s1

a2−→ · · ·
an−→ sn with s = sn and all other states are distinct.

Since 0m ∈ L(E), ∀m > NE, there is at least one loop in the automaton
whose trace is in {0}∗. There is a finite number of loops in the system,
let k0 be the number of loop in the automaton whose trace is in {0}∗

(or 0-loop for short). Consider the words z = 0m · 1 with m > NE and

Z = zk0+1 and let ρ = s0

0m

−−→ s1

1
−→ s′1 · · ·

0m

−−→ sk0+1

1
−→ s′k0+1

be a run

with trace Z, with the subruns ρj = s′j
0m

−−→ sj+1 and ρ0 = s0

0m

−−→ s1.
Each ρj contains a 0-loop. Since there are k0 + 1 such subruns ρj, a same
0-loop occurs in two different subruns. Let w1 ∈ {0}∗ be a trace of this

loop and r the state such that r
w1−→ r. Then the run ρ can be written as

s0

w
−→ r

w1−→ r
w2−→ r

w1−→ r
w′

−→ s′k0+1
, where v contains at least one 1, so

that w1 ·w2 6= w2 ·w1. Hence τE contains a path of the form of Fig. 5. ⊓⊔

s0 r
w|h

w1|h1

w2|h2

Fig. 5. A generic path in τE

Lemma 4 states that when two words do not commute, they form a
code. This property will be used in the proof of Theorem 1. An algorithm
is given in [26] to decide if a set of words is a code, but no direct proof is
given in this particular case.

Lemma 4. Let u and v be two words over an alphabet A such that u ·
v 6= v · u. Then for every two non-empty words x1 · · · xn ∈ {u, v}n and
y1 · · · yk ∈ {u, v}k,

x1 · · · xn = y1 · · · yk =⇒ (k = n ∧ ∀i ∈ {1, . . . , n}, xi = yi)

Proof. Let u and v be two words over A such that u · v 6= v · u and two
distinct non-empty words x = x1 · · · xn ∈ {u, v}n and y = y1 · · · yk ∈



{u, v}k such that x = y. These words can be chosen to be minimal in
the sense that for all 1 ≤ i ≤ i′ ≤ n and 1 ≤ j ≤ j′ ≤ k, xi · · · xi′ 6=
yj · · · yj′ ⇒ i = 1, i′ = n, j = 1, j′ = k. By minimality, x1 = u ⇒ y1 = v

and xn = u ⇒ yk = v (and symmetrically). Without loss of generality,
let us suppose that x1 = u, y1 = v, and |u| ≤ |v|. If |u| = |v|, having
x = y implies u = v, therefore u · v = v · u which is a contradiction. As
a result, |u| < |v|, and u is both a prefix and a suffix of v. There are
two cases to consider: either the occurrences of u in v overlap or they are
separated. More formally, either (1) there exist three words u1, u2, u

′ such
that u = u1 · u

′ = u′ · u2 and v = u1 · u
′ · u2, or (2) there exist a word v′

and two integers m1,m2 > 0 such that v = um1 · v′ · um2 and u is not a
prefix or a suffix of v′.

In case (1), u · v = u1 · u
′ · u1 · u

′ · u2 and v · u = u1 · u
′ · u2 · u

′ · u2.
Since u · v 6= v · u, u1 6= u2. Also remark that having two factorizations
for u yields that |u1| = |u2|. Note that n ≥ 2, since |u| ≤ |v|. Therefore x

starts with u1 · u
′ · u1 while y starts with u1 · u

′ · u2 and x 6= y.
In case (2), let i0 = min{i ∈ {1, . . . , n} |xi = v} be the index of the

first occurrence of v. There is such an occurrence since v′ cannot be the
empty word, because that would imply u · v = um1+m2+1 = v · u. By
hypothesis on x1, i0 > 1.

– If i0 ≤ m2, x starts with ui0+m1 ·v′ while y starts with um1 ·v′ ·ui0 (and
these prefixes have the same length). As a result ui0 ·v′ = v′·ui0 . Since u

is not a prefix of v′, then v′ is a prefix and a suffix of u = v′ ·v′′1 = v′′2 ·v
′.

But u · v 6= v · u implies that v′ · v′′1 · v′ = u · v′ 6= v′ · u = v′ · v′′2 · v′,
hence v′′1 6= v′′2 but |v′′1 | = |v′′2 |. Since ui0 · v′ starts with v′ · v′′1 while
v′ · ui0 starts with v′ · v′′2 , which are different but of the same length,
we have a contradiction.

– If i0 > m2, x starts with ui0+m1 · v′ while y starts with um1 · v′ · um2

(in this case these prefixes do not necesseraly have the same length).
Then v′ is a prefix of u = v′ ·v′′. Hence the prefix of x can be rewritten
um1 ·(v′ ·v′′)i0 ·v′ = um1 ·v′ ·(v′′ ·v′)i0 . Therefore um1 ·v′ ·(v ·v′)m2 is also
a prefix of x, of the same length as the prefix um1 · v′ · (v′ · v′′)m2 of y.
This yields v′ ·v′′ = v′′ ·v′ = u, but v′ ·v′′ ·v′ = v′ ·u 6= u ·v′ = v′ ·v′′ ·v′,
which is a contradiction. ⊓⊔

A pattern having been isolated in the encoder, we can prove the main
theorem of this paper. It states that the encoder can be reduced to this
very pattern and, by transforming the decoder accordingly, still have a
covert channel. More precisely, if two words forming a code can be trans-
mitted by the channel, then it is sufficient to encode 0 with one of these
words and 1 by the other.



In the following, we assume that τE and τM are prefix-closed.

Theorem 1. If M contains a covert channel, τE can be chosen as τ ′
E

depicted in Fig. 6(a), with h, h1, h2 ∈ H∗, and τD can be chosen as τ ′
D

depicted in Fig. 6(b),with l, l1, l2 ∈ L∗, h1 · h2 6= h2 · h1 and l1 · l2 6= l2 · l1.

q0 q1

0|hh1

1|hh2

0|h1

1|h2

(a) Transducer τ ′
E

q0 q1

l|ε

l1|0

l2|1

(b) Transducer τ ′
D

Fig. 6. General form of encoder and decoder.

Proof. Since transducer τE = (S, s0, {0, 1}
∗ × H∗,→τ ) is complete on

{0, 1}∗, by lemma 3, there exist words w,w1, w2 ∈ Dom(τE) = {0, 1}∗,
with w1 · w2 6= w2 · w1 such that s = s0 • w = s • w1 = s • w2.

Let h = s0 ∗ w, h1 = s ∗ w1 and h2 = s ∗ w2. We now prove that
h1 ·h2 6= h2 ·h1. By contradiction, suppose h1 ·h2 = h2 ·h1, then h·h1 ·h2 =
h ·h2 ·h1 ∈ τE(w ·w1 ·w2)∩τE(w ·w2 ·w1). We can choose τD ◦τM complete
on Im(τE), because we can replace τE by τ ′′

E = Id0(Dom(τD ◦ τM)) ◦ τE .
Thus τD◦τM(h·h1 ·h2) = w·w1 ·w2 because τD◦τM◦τE = Id({0, 1}∗). The
same reasoning on h·h2 ·h1 yields τD◦τM(h·h2 ·h1) = τD◦τM(h·h1 ·h2) =
w · w2 · w1, which is a contradiction with w1 · w2 6= w2 · w1.

Consider now τF as depicted in Fig. 7(a). We can easily see that
τ ′
E ⊆ τE ◦ τF . Let τ ′′

D = τG ◦ τD, with τG as depicted in Fig. 7(b). We have
τ ′′
D ◦ τM ◦ τ ′

E ⊆ τG ◦ τD ◦ τM ◦ τE ◦ τF = τG ◦ τF which is the identity.
So, ∀w ∈ {0, 1}∗, τ ′′

D ◦ τM ◦ τ ′
E(w) = w or τ ′′

D ◦ τM ◦ τ ′
E(w) = ∅. Since

Im(τ ′
E) ⊆ Im(τE) ⊆ Dom(τD ◦τM), ∀w ∈ {0, 1}∗, τD ◦τM ◦τ ′

E(w) 6= ∅. As
Im(τD◦τM◦τ ′

E(w)) ⊆ (τD◦τM◦τE◦τF ) = w.(w1+w2)
∗, τ ′′

D◦τM◦τ ′
E(w) 6= ∅

so τ ′′
D ◦ τM ◦ τ ′

E(w) = Id({0, 1}∗). Therefore τE can be chosen as τ ′
E

depicted in Fig. 6(a).

Transducer τ ′
M = Id(Dom(τ ′′

D))◦τM◦τ ′
E = (S′, s′0, {0, 1}

∗×L∗,→′
τ ) is

complete on {0, 1}∗. By lemma 3, there exist words u, u1, u2 ∈ Dom(τ ′
M) ⊆

{0, 1}∗, with u1 · u2 6= u2 · u1 such that s′ = s′0 • u = s′ • u1 = s′ • u2.
Let l = s′0 ∗ u, l1 = s′ ∗ u1 and l2 = s′ ∗ u2. Let τ ′

D as depicted in



Fig. 6(b). We have τ ′
D ◦ τ ′

M ◦ τ ′
G = Id({0, 1}∗) with τ ′

G the automaton
having the same form as τG, replacing w by u, w1 by u1, and w2 by u2.
τ ′
D ◦τ ′

M ◦τ ′
G = τ ′

D ◦Id(Dom(τ ′′
D))◦τM ◦τ ′

E ◦τ ′
G. As Dom(τ ′

D) ⊆ Dom(τ ′′
D),

τ ′
D ◦ Id(Dom(τ ′′

D)) = τ ′
D, and as τ ′

E ◦ τ ′
G can be put under the form de-

picted in Fig. 6(a), the theorem is proved. Note that l1 · l2 6= l2 · l1 as
h1 · h2 6= h2 · h1. ⊓⊔

q0 q1

0|ww1

1|ww2

0|w1

1|w2

(a) Transducer τF

q0 q1

ww1|0

ww2|1

w1|0

w2|1

(b) Transducer τG

Fig. 7. Transducers for the proof of Theorem 1

This proves that the automaton M2 depicted in Fig. 3 is not a covert
channel, since there are no words h1 and h2 in Dom(τM2

) = {h}∗ such
that h1 · h2 6= h2 · h1.

It is however still possible to further reduce the range of the search
for encoders and decoders by remarking that the specific form described
above can be adapted to produce only sequential encoders and decoders.

Definition 5. A system represented by an automaton M over alphabet
A = H ⊎ L contains a sequential covert channel of delay k if there exist
two sequential transducers τE : {0, 1}∗ → H∗ and τD : L∗ → {0, 1}∗ that
realize a covert channel of delay k.

Theorem 2. If a system has a covert channel of delay k, it has a se-
quential covert channel of delay 0.

Proof. By lemma 2, if there is a covert channel of delay k, there is a
covert channel of delay 0. By theorem 1, we can take τE as depicted in
Fig. 6(a) which is sequential and τD as in Fig. 6(b). Let ℓ = a1 · · · ak,
ℓ1 = b1 · · · bm, ℓ2 = c1 · · · cn. This transducer can be put under the form
depicted in Fig. 8, which is sequential. So a system that has a covert
channel has a sequential covert channel. ⊓⊔



p1 p2 . . . pk

q1 . . . qm−1

r1 . . . rn−1

a1|ε a2|ε ak|ε

b1|ε

b2|ε bm−1|ε

bm|0

c1|ε

c2|ε cn−1|ε

cn|1

Fig. 8. Transducer τ ′
D

5 Conclusion and future work

In this work, we proposed a new definition for covert channels, based on
transducer composition which significantly differs from the one based on
iterated interference. Decidability is difficult to obtain (as for questions
related to transducers). However, we proved that the problem of existence
of a covert channel can be be reduced from the class of general transducers
to the simpler class of sequential transducers.

Nonetheless, the existence problem itself is still open, as is the re-
alization problem for covert channel of delay k 6= 0. Future work will
consist in looking for algorithms to decide (i) if two transducers realize a
covert channel of delay k 6= 0 and (ii) the existence of a sequential covert
channel of delay 0. A further step would be to investigate the control
problem: can we find a controller to avoid covert channels in a system ?
Another direction consists in extending this notion of covert channel to
the framework of timed systems.
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