
Research Report on Quantifying Opacity

Béatrice Bérard1?, John Mullins2??, and Mathieu Sassolas1? ? ?

1 Université Pierre & Marie Curie, LIP6/MoVe, CNRS UMR 7606, Paris, France
2 École Polytechnique de Montréal, Dept. of Comp. & Soft. Eng., Montreal

(Quebec), Canada

Abstract. Opacity is a general language-theoretic framework in which
several security properties of a system can be expressed. Its parameters
are a predicate, given as a subset of runs of the system, and an ob-
servation function, from the set of runs into a set of observables. The
predicate describes secret information in the system and, in the possi-
bilistic setting, it is opaque if its membership cannot be inferred from
observation.
In this paper, we investigate several notions of quantitative opacity for
probabilistic systems, where the predicate and the observation function
are seen as random variables. Our aim is to measure (i) the probability
of opacity leakage relative to these random variables and (ii) the level
of uncertainty about membership of the predicate inferred from observa-
tion. We show how these measures extend possibilistic opacity, we give
algorithms to compute them for regular secrets and observations, and we
apply these computations on several classical examples.

1 Introduction

1.1 Motivations

Opacity [1] is a very general framework allowing to specify a wide range of secu-
rity properties a system has to assume when interacting with a passive attacker.
The general idea behind it is that an attacker should not gain information by ob-
serving the system from the outside. The approach, as most existing information
flow-theoretic approaches, is possibilistic. We mean by this that non determinism
is used as a feature to model the random mechanism generation for all possible
system behaviors. As such, opacity is not accurate enough to take into account
two orthogonal aspects of security properties both regarding evaluation of the
information gained by a passive attacker.

The first aspect regards the quantification of security properties. If execu-
tions leaking information are negligible with respect to the rest of executions,
? Author partially supported by project DOTS (ANR-06-SETI-003) (French Govern-

ment).
?? Author partially supported by the NSERC of Canada under discovery grant No.

13321-2010.
? ? ? Author partially supported by project CoChaT (DIGITEO-2009-27HD) (Région Île

de France).

the overall security might not be compromised. For example if an error may
leak information, but appears only in 1% of cases, the program could still be
considered safe. The definitions of opacity [2,3] capture the existence of at least
one perfect leak, but do not grasp such a measure.

The other aspect regards the category of security properties a system has
to assume when interacting with an attacker able to infer from experiments on
the base of statistical analysis. For example, if every time the system goes bip,
there is 99% chances that action a has been carried out by the server, then every
bip can be guessed to have resulted from an a. Since more and more security
protocols make use of randomization to reach some security objectives [4,5], it
becomes important to extend specification frameworks in order to cope with it.

1.2 Contributions

In this paper we investigate several ways of extending opacity to a purely proba-
bilistic framework. Opacity can be defined either as the capacity for an external
observer to deduce that a predicate was true (asymmetrical opacity) or whether
a predicate is true or false (symmetrical opacity). Both notions can model rel-
evant security properties, hence deserve to be extended. On the other hand,
two directions can be taken towards the quantification of opacity. The first one
evaluates the degree of non-opacity of a system: how big is the security hole?
It aims at assessing the probability for the system to yield perfect information.
The second direction evaluates how opaque the system is: how robust is the secu-
rity? The goal here is to measure how reliable is the information gained through
observation. This yields up to four notions of quantitative opacity, displayed in
Table 1, which are formally defined in this paper. In addition, an information-

Asymmetric Symmetric

Liberal (Security hole) LPO (POA`) LPSO (POS`)

Restrictive (Robustness) RPO (POAr) RPSO (POSr)
Table 1. The four probabilistic opacity measures

theoretic point of view allows to assess how much information is gained through
observation, thus defining another measure of opacity.

Moreover, as opacity itself, all these measures can be instantiated into sev-
eral probabilistic security properties such as probabilistic non-interference and
anonymity. We also show how to compute these values in some regular cases and
apply the method to the dining cryptographers problem and the crowd protocols,
re-confirming in passing the correctness result of Reiter and Rubin [5].

Although the measures are defined in systems without nondeterminism, they
can be extended to the case of systems scheduled by an adversary. Nevertheless,
this case is so far computationally intractable.

1.3 Related Work

The notion of opacity was introduced recently with the aim to provide a uni-
form description for possibilistic security properties like non-interference and
anonymity [2]. Up to now, probabilistic approaches were mostly centered on
verifying specific security properties or computing information leakage and few
works tried to extend opacity to a probabilistic setting.

The authors of [6] study information leakage in systems modeled by pro-
cess algebras, but they address the specific point of view of probabilistic non-
interference and do not relate it to information theory. In [7], an information-
theoretic point of view is adopted to measure information leakage in process
algebras, but no relation is made with probabilistic security properties.

In [8], the author discusses several measures of information leakage for de-
terministic or probabilistic programs with probabilistic input. These measures
quantify the information concerning the input gained by a passive attacker ob-
serving the output. Exhibiting programs for which the value of entropy is not
meaningful, the author proposes to consider instead the notions of vulnerability
and min-entropy.

In [9], the authors present a probabilistic version of anonymity, also using the
tools of information theory. This approach was completed in [10] were anonymity
is computed using regular expressions. More recently, in [11], the authors consider
Interactive Information Hiding Systems that can be viewed as channels with
feedback, where the input is the secret and the output is an observation.

In [12], a notion of probabilistic opacity is defined, but restricted to properties
whose satisfaction depends only on the initial state of the run. The opacity there
corresponds to the probability for an observer to guess from the observation
whether the predicate holds for the run. In that sense our restrictive opacity
(Section 4) is close to that notion. However, the definition of [12] lacks clear ties
with the possibilistic notion of opacity.

1.4 Organization of the paper.

In Section 2, we recall the definitions of opacity and the probabilistic framework
used throughout the paper. Section 3 and 4 present respectively the liberal and
the restrictive version of probabilistic opacity, both for the asymmetrical and
symmetrical case. In Section 5, we investigate measures of symmetrical opacity
from the point of view of information theory. We present in Section 6 how to
compute these measures automatically if the predicate and observations are reg-
ular. Section 7 compares the different measures and what they allow to detect
about the security of the system, through abstract examples and a case study
of the Crowds protocol. In Section 8, we present the framework of probabilis-
tic systems dealing with nondeterminism, and open problems that arise in this
setting.

2 Preliminaries

In this section, we recall the notions of opacity, entropy, and probabilistic au-
tomata.

2.1 Possibilistic opacity

The original definition of opacity was given in [2] for transition systems.
Recall that a transition system is a tuple Π = 〈Σ,Q,∆, I〉 where Σ is a set

of actions, Q is a set of states, ∆ ⊆ Q×Σ ×Q is a set of transitions and I ⊆ Q
is a subset of initial states. A run in Π is a sequence of transitions written as:
ρ = q0

a1−→ q1
a2−→ q2 · · ·

an−−→ qn. For such a run, fst(ρ) (resp. lst(ρ)) denotes q0
(resp. qn). We will also write ρ · ρ′ for the run obtained by concatenating runs
ρ and ρ′ whenever lst(ρ) = fst(ρ′). The set of finite runs starting in state q is
denoted by Runq(Π) and Run(Π) denotes the set of finite runs starting from
an initial state.

Opacity qualifies a predicate ϕ, given as a subset of Run(Π) (or equivalently
as its characteristic function 1ϕ), with respect to an observation function O from
Run(Π) onto a (possibly infinite) set Obs of observables. Two runs ρ and ρ′ are
equivalent w.r.t. O if they produce the same observable: O(ρ) = O(ρ′). The set
O−1(o) is called an observation class. We sometimes write [ρ]O for O−1(O(ρ)).

A predicate ϕ is opaque on Π for O if for every run ρ satisfying ϕ, there is
a run ρ′ not satisfying ϕ equivalent to ρ.

Definition 1 (Opacity). Let Π be a transition system and O : Run(Π)→ Obs
a surjective function called observation. A predicate ϕ ⊆ Run(Π) is opaque on
Π for O if, for any o ∈ Obs, the following holds:

O−1(o) 6⊆ ϕ.

However, detecting whether an event did not occur can give as much informa-
tion as the detection that the same event did occur. In addition, the asymmetry
of this definition makes it impossible to use with refinement [3]: opacity would
not be ensured in a system derived from a secure one in a refinement-driven
engineering process. Hence we use the symmetric notion of opacity, where a
predicate is symmetrically opaque if it is opaque as well as its negation. More
precisely:

Definition 2 (Symmetrical opacity). A predicate ϕ ⊆ Run(Π) is symmet-
rically opaque on system Π for observation function O if, for any o ∈ Obs, the
following holds:

O−1(o) 6⊆ ϕ and O−1(o) 6⊆ ϕ.

The symmetrical opacity is a stronger security requirement. Security goals
can be expressed as either symmetrical or asymmetrical opacity, depending on
the property at stake. Usually, when the predicate breaks the symmetry of a
model, the asymmetric definition is more suited. Nonetheless, a noisy channel

with binary input can be seen as a system Π on which the input is the truth
value of ϕ and the output is the observation o ∈ Obs. If ϕ is symmetrically
opaque on Π with respect to O, then this channel is not perfect: there would
always be a possibility of noise.

2.2 Probabilities and information theory

Recall that, for a countable set Ω, a discrete distribution (or distribution for
short) is a mapping µ : Ω → [0, 1] such that

∑
ω∈Ω µ(ω) = 1. For any subset E

of Ω, µ(E) =
∑
ω∈E µ(ω). The set of all discrete distributions on Ω is denoted by

D(Ω). A discrete random variable with values in a set Γ is a mapping Z : Ω → Γ
where [Z = z] denotes the event {ω ∈ Ω | Z(ω) = z}.

The entropy of Z is a measure of the uncertainty or dually, information about
Z, defined by the expected value of log(µ(Z)):

H(Z) = −
∑
z

µ(Z = z) · log(µ(Z = z))

where log is the base 2 logarithm.
For two random variables Z and Z ′ on Ω, the conditional entropy of Z given

the event [Z ′ = z′] such that µ(Z ′ = z′) 6= 0 is defined by:

H(Z|Z ′ = z′) = −
∑
z

(µ(Z = z|Z ′ = z′) · log(µ(Z = z|Z ′ = z′)))

where µ(Z = z|Z ′ = z′) = µ(Z=z,Z′=z′)
µ(Z′=z′) .

The conditional entropy of Z given the random variable Z ′ is defined by:

H(Z|Z ′) =
∑
z′

µ(Z ′ = z′) ·H(Z|Z ′ = z′)

= −
∑
z′

µ(Z ′ = z′) ·

[∑
z

(µ(Z = z|Z ′ = z′) · log(µ(Z = z|Z ′ = z′)))

]
= −

∑
z

∑
z′

(µ(Z = z, Z ′ = z′)) · log(µ(Z = z|Z ′ = z′))

which can be interpreted as the average entropy of Z that remains after the
observation of Z ′.

The mutual information between Z and Z ′ is given by:

I(Z;Z ′) = H(Z)−H(Z|Z ′) = H(Z ′)−H(Z ′|Z) = I(Z ′;Z)

and measures the decrease of uncertainty about Z resulting from the observation
of Z ′ or dually, the information gained about Z from the observation of Z ′.
See [13] for further properties of entropy and mutual information.

The vulnerability of a random variable Z, defined as:

V (Z) = max
z
µ(Z = z)

gives the probability of the likeliest event of a random variable. Vulnerability
evaluates the probability of a correct guess in one attempt.

Vulnerability can also be used as a measure of information, as [8,10] argue,
by defining the min-entropy and the conditional min-entropy by (respectively):

H∞(Z) = − log(V (Z)) and H∞(Z | Z ′) = − log(V (Z | Z ′))

where

V (Z | Z ′) =
∑
z′

µ(Z ′ = z′)·V (Z | Z ′ = z′) =
∑
z′

µ(Z ′ = z′)·max
z
µ(Z = z | Z ′ = z).

The corresponding mutual information is defined analogously:

I∞(Z;Z ′) = H∞(Z)−H∞(Z | Z ′)

2.3 Probabilistic models

In this work, systems are modeled using probabilistic automata behaving as
finite automata where non-deterministic choices for the next action and state
or deadlock are randomized. Extensions to the non-deterministic setting are
discussed in Section 8.

Recall that a finite automaton (FA) is a tuple Π = 〈Σ,Q,∆, I, F 〉 where
〈Σ,Q,∆, I〉 is a finite transition system and F ⊆ Q is a subset of final states. The
automaton is deterministic if I is a singleton and for all q ∈ Q and a ∈ Σ, the set
{q′ | (q, a, q′) ∈ ∆} is a singleton. Runs in Π, Runq(Π) and Run(Π) are defined
like in a transition system. A run of an FA is accepting if it ends in a state of F .
The trace of a run ρ = q0

a1−→ q1 · · ·
an−−→ qn is the word tr(ρ) = a1 · · · an ∈ Σ∗.

The language of Π, written L(Π), is the set of traces of accepting runs starting
in an initial state.

Replacing in a FA non-deterministic choices by choices based on a discrete
distribution results in a fully probabilistic automaton (FPA). Consistently with
the standard notion of substochastic matrices, we also consider a more general
class of automata, substochastic automata (SA), which allow to describe sub-
sets of behaviors from FPAs, see Fig. 1 for examples. In both models, no non-
determinism remains, thus the system is to be considered as autonomous: its
behaviors do not depend on an exterior probabilistic agent acting as a scheduler
for non-deterministic choices.

Definition 3 (Substochastic automaton). Let
√

be a new symbol represent-
ing a termination action. A substochastic automaton (SA) is a tuple 〈Σ,Q,∆, q0〉
where

– Σ is a finite set of actions,
– Q is a finite set of states,
– ∆ : Q→ ((Σ ×Q)] {

√
} → [0, 1]) is a mapping such that for any q ∈ Q,∑
x∈(Σ×Q)]{

√
}

∆(q)(x) ≤ 1

∆ defines substochastically the action and successor from the current state,
or the termination action

√
,

– q0 is the initial state.

A fully probabilistic automaton (FPA) is a particular case of SA where for
all q ∈ Q, ∆(q) = µ is a distribution in D((Σ ×Q)] {

√
}) i.e.∑

x∈(Σ×Q)]{
√
}

∆(q)(x) = 1.

In SA or FPA, we write q → µ for ∆(q) = µ and q
a−→ r whenever q → µ and

µ(a, r) > 0. We also write q ·
√

whenever q → µ and µ(
√

) > 0. In the latter
case, q is said to be a final state.

The notation above allows to define a run for an SA like in a transition system
as a finite sequence of transitions written ρ = q0

a1−→ q1
a2−→ q2 · · ·

an−−→ qn. The
sets Runq(Π) and Run(Π) are defined like in a transition system. A complete
run is a sequence denoted by ρ ·

√
where ρ is a run and ∆(lst(ρ))(

√
) > 0. The

set CRun(Π) denotes the set of complete runs starting from the initial state.
The trace of a run for an SA Π is defined like in finite automata. The language

of a substochastic automaton Π, written L(Π), is the set of traces of complete
runs starting in an initial state.

For an SA Π, a mapping PΠ into [0, 1] can be defined inductively on the set
of complete runs by:

PΠ(q
√

) = µ(
√

)

PΠ(q a−→ ρ) = µ(a, r) ·PΠ(ρ)

where q → µ and fst(ρ) = r.
When Π is clear from the context, PΠ will simply be written P. Since PΠ is

a (sub-)probability on CRun(Π), for any predicate ϕ ⊆ CRun(Π), we have
P(ϕ) =

∑
ρ∈ϕ P(ρ). The measure is extended to languages K ⊆ L(Π) by

P(K) = P
(
tr−1(K)

)
=
∑

tr(ρ)∈K P(ρ).
In the examples of Fig. 1, restricting the runs of A1 to those satisfying ϕ =

{ρ | tr(ρ) ∈ a∗} yields the SA A2, and PA1(ϕ) = PA2(CRun(A2)) = 1
2 .

A non probabilistic version of any SA is obtained by forgetting any informa-
tion about probabilities.

Definition 4. Let Π = 〈Σ,Q,∆, q0〉 be an SA. The (non-deterministic) finite
automaton unProb(Π) = 〈Σ,Q,∆′, q0, F 〉 is defined by:

– ∆′ = {(q, a, r) ∈ Q×Σ ×Q | q → µ, µ(a, r) > 0},
– F = {q ∈ Q | q → µ, µ(

√
) > 0} is the set of final states.

It is easily seen that L(unProb(Π)) = L(Π).
An observation function O : CRun(Π) → Obs can also be easily translated

from the probabilistic to the non probabilistic setting. For Π ′ = unProb(Π), we
define unProb(O) on Run(Π ′) by:
unProb(O)(q0

a1−→ q1 · · · qn) = O(q0
a1−→ q1 · · · qn

√
).

a, 1
2

b, 1
4

√
, 1

4

√
, 1

(a) FPA A1

a, 1
2

√
, 1

4

(b) SA A2

Fig. 1. A2 is the restriction of A1 to a∗.

3 Measuring non-opacity

3.1 Definition and properties

One of the aspects in which the definition of opacity could be extended to prob-
abilistic automata is by relaxing the universal quantifiers of Definitions 1 and 2.
Instead of wanting that every observation class should not be included in ϕ (resp.
ϕ or ϕ for the symmetrical case), we can just require that almost all of them
do. To obtain this, we give a measure for the set of runs leaking information.
To express properties of probabilistic opacity in an FPA Π, O is considered as
a random variable. The characteristic function 1ϕ of ϕ is also considered as a
random variable. Both the asymmetrical and the symmetrical notions of opacity
can be generalized in this manner.

Definition 5 (Liberal probabilistic opacity). The liberal probabilistic opac-
ity or LPO of predicate ϕ on FPA Π, with respect to observation function O is
defined by:

POA` (Π,ϕ,O) =
∑
o∈Obs
O−1(o)⊆ϕ

P(O = o).

The liberal probabilistic symmetrical opacity or LPSO is defined by:

POS` (Π,ϕ,O) = POA` (Π,ϕ,O) + POA` (Π,ϕ,O)

=
∑
o∈Obs
O−1(o)⊆ϕ

P(O = o) +
∑
o∈Obs
O−1(o)⊆ϕ

P(O = o).

This definition provides a measure of how insecure the system is. The fol-
lowing propositions shows that a null value for these measures coincides with
(symmetrical) opacity for the system, which is then secure.

For LPO, it corresponds to classes either overlapping both ϕ and ϕ or in-
cluded in ϕ as in Fig. 2(a). LPO measures only the classes that leak their in-
clusion in ϕ. So classes included in ϕ are not taken into account. On the other
extremal point, POA` (Π,ϕ,O) = 1 when ϕ is always true.

When LPSO is null, it means that each equivalence class O−1(o) overlaps
both ϕ and ϕ as in Fig. 3(a). On the other hand, the system is totally insecure
when, observing through O, we have all information about ϕ. In that case, the
predicate ϕ is a union of equivalence classesO−1(o) as in Fig. 3(c) and this can be
interpreted in terms of conditional entropy relatively to O. The intermediate case
occurs when some, but not all, observation classes contain only runs satisfying
ϕ or only runs not satisfying ϕ, as in Fig. 3(b).

(a) POA` (Π,ϕ,O) = 0 (b) 0 < POA` (Π,ϕ,O) <
1

ϕ

O−1(o)

Classes leaking
their inclusion
into ϕ

Fig. 2. Liberal probabilistic opacity.

(a) POS` (Π,ϕ,O) = 0 (b) 0 < POS` (Π,ϕ,O) <
1

(c) POS` (Π,ϕ,O) = 1

ϕ O−1(o)
Classes leaking
their inclusion
into ϕ or into ϕ

Fig. 3. Liberal probabilistic symmetrical opacity.

Proposition 1.
(1) 0 ≤ POA` (Π,ϕ,O) ≤ 1
(2) POA` (Π,ϕ,O) = 0 if and only if ϕ is opaque on unProb(Π) with respect to

unProb(O).

(3) POA` (Π,ϕ,O) = 1 if and only if ϕ = Run(Π).

Proposition 2.
(1) 0 ≤ POS` (Π,ϕ,O) ≤ 1
(2) POS` (Π,ϕ,O) = 0 if and only if ϕ is symmetrically opaque on unProb(Π)

with respect to unProb(O).
(3) POS` (Π,ϕ,O) = 1 if and only if H(1ϕ|O) = 0.

Proof (Proof of Propositions 1 and 2.).
(1) The considered events are mutually exclusive, hence the sum of their prob-

abilities never exceeds 1.
(2) First observe that a complete run r0a . . . rn

√
has a non null probability in Π

iff r0a . . . rn is a run in unProb(Π). Suppose POA` (Π,ϕ,O) = 0. Then there
is no observable o with non-null probability such that O−1(o) ⊆ ϕ. Hence for
each observable o, O−1(o) 6⊆ ϕ. Conversely, if ϕ is opaque on unProb(Π),
there is no observable c ∈ Obs such that O−1(c) ⊆ ϕ, hence the null value
for POA` (Π,ϕ,O). The case of LPSO is similar, also taking into account the
dual case of ϕ in the above.

(3) For LPO, this is straightforward from the definition. For LPSO,H(1ϕ|O) = 0
iff ∑

o∈Obs

i∈{0,1}

P(1ϕ = i|O = o) · log(P(1ϕ = i|O = o)) = 0

Since all the terms have the same sign, this sum is null if and only if each
of its term is null. Setting for every o ∈ Obs, f(o) = P(1ϕ = 1|O = o) =
1−P(1ϕ = 0|O = o), we have: H(1ϕ|O) = 0 iff ∀ o ∈ Obs, f(o) · log(f(o)) +
(1−f(o))·log(1−f(o)) = 0. Since the equation x·log(x)+(1−x)·log(1−x) = 0
only accepts 1 and 0 as solutions, it means that for every observable o, either
all the runs ρ such that O(ρ) = o are in ϕ, or they are all not in ϕ. Therefore
H(1ϕ|O) = 0 iff for every observable o, O−1(o) ⊆ ϕ or O−1(o) ⊆ ϕ, which
is equivalent to POS` (Π,ϕ,O) = 1.

3.2 Example: Non-interference

Consider the systems A3 and A4 of Fig. 4. On these systems we define the
predicate ϕNI which is true if the trace of a run contains letter h. In both
cases the observation function OL returns the projection of the trace onto the
alphabet {`1, `2}. Remark that this example is an interference property [14] seen
as opacity. Considered unprobabilistically, both systems are interferent since an
`2 not preceded by an `1 betrays the presence of an h. However, they differ by
how often this case happens.

The runs of A3 and A4 and their properties are displayed in Table 2. Then
we can see that [ρ1]OL

= [ρ2]OL
overlaps both ϕNI and ϕNI , while [ρ3]OL

is
contained totally in ϕ. Hence the LPO can be computed for both systems:

POA` (A3, ϕNI ,OL) =
1
4

POA` (A4, ϕNI ,OL) =
3
4

Therefore A3 is more secure than A4. Indeed, the run that is interferent occurs
more often in A4, leaking information more often.

Note that in this example, LPO and LPSO coincide. This is not always the
case. Indeed, in the unprobabilistic setting, both symmetrical and asymmetrical
opacity of ϕNI with respect to OL express the intuitive notion that “an external
observer does not know whether an action happened or not”. The asymmetrical
notion corresponds to the definition of strong nondeterministic non-interference
in [14] while the symmetrical one was defined as perfect security property in [3].

`1,
1
2

h, 1
4

h, 1
4

`1, 1

`2, 1 `2, 1

√
, 1

(a) FPA A3

`1,
1
8

h, 3
4

h, 1
8

`1, 1

`2, 1 `2, 1

√
, 1

(b) FPA A4

Fig. 4. Interferent FPAs A3 and A4.

tr(ρ) PA3(ρ) PA4(ρ) ∈ ϕNI? OL(ρ)

tr(ρ1) = `1`2
√

1/2 1/8 0 `1`2
tr(ρ2) = h`1`2

√
1/4 1/8 1 `1`2

tr(ρ3) = h`2
√

1/4 3/4 1 `2
Table 2. Runs of A3 and A4.

4 Measuring the robustness of opacity

The completely opposite direction that can be taken to define a probabilistic
version is a more paranoid one: how much information is leaked through the
system’s uncertainty? For example, on Fig. 3(a), even though each observation
class contains a run in ϕ and one in ϕ, some classes are nearly in ϕ. In some other

classes the balance between the runs satisfying ϕ and the ones not satisfying ϕ
is more even. Hence for each observation class, we will not ask if it is included
in ϕ, but how likely ϕ is to be true inside this class with a probabilistic measure
taking into account the likelihood of classes. This amounts to measuring, inside
each observation class, ϕ in the case of asymmetrical opacity, and the balance
between ϕ and ϕ in the case of symmetrical opacity.

4.1 Restrictive Probabilistic Opacity

In this section we extend the notion of (asymmetrical) opacity in order to mea-
sure how secure the system is.

Definition and properties. In this case, an observation class is more secure
if ϕ is less likely to be true. That means that it is easy (as in “more likely”) to
find a run not in ϕ in the same observation class. Dually, a high probability for
ϕ inside a class means that few (again probabilistically speaking) runs will be
in the same class yet not in ϕ.

Restrictive probabilistic opacity is defined to measure this effect globally on
all observation classes. It is tailored to fit the definition of opacity in the classical
sense: indeed, if one class totally leaks its presence in ϕ, RPO will detect it.

Definition 6. Let ϕ be a predicate on the complete runs of an FPA Π and O
an observation function. The restrictive probabilistic opacity (RPO) of ϕ on Π,
with respect to O, is defined by

1
POAr (Π,ϕ,O)

=
∑
o∈Obs

P(O = o) · 1
P(1ϕ = 0 | O = o)

RPO is the harmonic means (weighted by the probabilities of observations)
of the probability that ϕ is false in a given observation class. Hence it will be
null if and only if there is one class that is contained in ϕ. On the other hand,
it will be 1 only if ϕ is always false.

Proposition 3.
(1) 0 ≤ POAr (Π,ϕ,O) ≤ 1
(2) POAr (Π,ϕ,O) = 0 if and only if ϕ is not opaque on unProb(Π) with respect

to unProb(O).
(3) POAr (Π,ϕ,O) = 1 if and only if ϕ = ∅.

Example: Debit Card System. Consider a Debit Card system in a store.
When a card is inserted, an amount of money x to be debited is entered, and
the client enters his pin number (all this being gathered as the action Buy(x)).
The amount of the transaction is given probabilistically as an abstraction of the
statistics of such transactions. Provided the pin is correct, the system can either
directly allow the transaction, or interrogate the client’s bank for solvency. In

order to balance the cost associated with this verification (bandwidth, server
computation, etc.) with the loss induced if an insolvent client was debited, the
decision to interrogate the bank’s servers is taken probabilistically according
to the amount of the transaction. When interrogated, the bank can reject the
transaction with a certain probability3 or accept it. This system is represented
by the FPA Acard of Fig. 5.

√
, 1

√
, 1

√
, 1

√
, 1

√
, 1

√
, 1

√
, 1

√
, 1

Buy(x)

x > 1000, 0.05

500 < x ≤ 1000, 0.2

100 < x ≤ 500, 0.45

x ≤ 100, 0.3

Call, 0.95

Accept, 0.8

Reject, 0.2

Accept, 0.05

Call, 0.75

Accept, 0.9

Reject, 0.1

Accept, 0.25

Call, 0.5

Accept, 0.95

Reject, 0.05

Accept, 0.5

Call, 0.2

Accept, 0.99

Reject, 0.01

Accept, 0.8

Fig. 5. The Debit Card system Acard.

Now assume an external observer can only observe if there has been a call
or not to the bank server. In practice, this can be achieved, for example, by
measuring the time taken for the transaction to be accepted (it takes longer
when the bank is called), or by spying on the telephone line linking the store to
the bank’s servers (detecting activity on the network or idleness). Suppose what
the external observer wants to know is whether the transaction was worth more
than 500e. By using RPO, one can assess how this knowledge can be derived
from observation.

Formally, in this case the observables are {ε,Call}, the observation function
OCall being the projection on {Call}. The predicate to be hidden to the user
3 Although the banks process to allow or forbid the transaction is deterministic, the

statistics of the result can be abstracted into probabilities.

is represented by the regular expression ϕ>500 = Σ∗(“x > 1000”+“500 < x ≤
1000”)Σ∗ (where Σ is the whole alphabet). By definition of RPO:

1
POAr (Acard, ϕ>500,OCall)

= P(OCall = ε) · 1
P(¬ϕ>500|OCall = ε)

+ P(OCall = Call) · 1
P(¬ϕ>500|OCall = Call)

For individual probabilities we have:

P(OCall = ε) = P(OCall = ε, x > 1000) + P(OCall = ε, 500 < x ≤ 1000)
+ P(OCall = ε, 100 < x ≤ 500) + P(OCall = ε, x ≤ 100)

P(OCall = ε) = P(OCall = ε|x > 1000) ·P(x > 1000)
+ P(OCall = ε|500 < x ≤ 1000) ·P(500 < x ≤ 1000)
+ P(OCall = ε|100 < x ≤ 500) ·P(100 < x ≤ 500)
+ P(OCall = ε|x ≤ 100) ·P(x ≤ 100)

P(OCall = ε) = 0.05 · 0.05 + 0.25 · 0.2 + 0.5 · 0.45 + 0.8 · 0.3 = 0.5175

P(OCall = Call) = 1−P(OCall = ε) = 0.4825

P(¬ϕ>500|OCall = ε) =
P(¬ϕ>500,OCall = ε)

P(OCall = ε)

P(¬ϕ>500|OCall = ε) =
P(x ≤ 100,OCall = ε) + P(100 < x ≤ 500,OCall = ε)

P(OCall = ε)

P(¬ϕ>500|OCall = ε) =
P(OCall = ε|x ≤ 100) ·P(x ≤ 100)

P(OCall = ε)

+
P(OCall = ε|100 < x ≤ 500) ·P(100 < x ≤ 500)

P(OCall = ε)

P(¬ϕ>500|OCall = ε) =
0.8 · 0.3 + 0.5 · 0.45

0.5175
=

0.465
0.5175

' 0.899

P(¬ϕ>500|OCall = Call) =
P(¬ϕ>500,OCall = Call)

P(OCall = Call)

P(¬ϕ>500|OCall = Call) =
P(x ≤ 100,OCall = Call) + P(100 < x ≤ 500,OCall = Call)

P(OCall = Call)

P(¬ϕ>500|OCall = Call) =
P(OCall = Call|x ≤ 100) ·P(x ≤ 100)

P(OCall = Call)

+
P(OCall = Call|100 < x ≤ 500) ·P(100 < x ≤ 500)

P(OCall = Call)

P(¬ϕ>500|OCall = Call) =
0.2 · 0.3 + 0.5 · 0.45

0.4825
=

0.285
0.4825

' 0.591

Hence
1

POAr (Acard, ϕ>500,OCall)
= 0.5175 · 0.5175

0.465
+ 0.4825 · 0.4825

0.285
1

POAr (Acard, ϕ>500,OCall)
=

57 · 0.5175 · 69 + 31 · 0.4825 · 193
3534

=
4922.125

3534

POAr (Acard, ϕ>500,OCall) =
3534

4922.125
' 0.718

4.2 Restricting symmetrical opacity

Symmetrical opacity offers a sound framework to analyze the secret of a binary
value. For example, consider a binary canal with n outputs. It can be modeled
by a tree-like system branching on 0 and 1 at the first level, then branching on
observables {o1, . . . , on}, as in Fig. 6. If the system wishes to prevent communi-
cation, the secret of predicate “the input of the channel was 1” is as important
as the secret of its negation; in this case “the input of the channel was 0”. Such
case is an example of initial opacity [2], since the secret appears only at the
start of each run. Note that any system with initial opacity and a finite set of
observables can be transformed into a channel [10].

0, pi 1, 1− pi

o1, p01

. .
.

on, p0n

o1, p11

..
.

on, p1n

(a) A system with initial secret

0

1

...

o1

on

p01

p0n

p11

p1n

(b) Channel with binary in-
put

Fig. 6. A system and its associated channel

The notion of asymmetrical opacity, however, fails to capture security in
terms of opacity for both ϕ and ϕ. And so does the RPO measure. Therefore we
define a symmetric version of RPO.

Definition and properties. Symmetrical opacity ensures that for each obser-
vation class o (reached by a run), the probability of both P(ϕ | o) and P(ϕ | o)

is strictly above 0. That means that the lower of these probabilities should be
above 0. In turn, the lowest of these probability is exactly the complement of
the vulnerability (since 1ϕ can take only two values). That is, the security is
measured with the probability of error in one guess (inside a given observation
class). Hence, a system will be secure if, in each observation class, ϕ is balanced
with ϕ.

Definition 7 (Restrictive probabilistic symmetric opacity). Let ϕ be a
predicate on the complete runs of an FPA Π and O an observation function.
The restrictive probabilistic symmetric opacity (RPSO) of ϕ on Π, with respect
to O, is defined by

POSr (Π,ϕ,O) =
−1∑

o∈Obs P(O = o) · log (1− V (1ϕ | O = o))

where V (1ϕ | O = o) = maxi∈{0,1}P(1ϕ = i | O = o).

In this definition, taking − log(1−V (1ϕ | O = o)) allows to give more weight
to very imbalanced classes, up to infinity for classes completely included either in
ϕ or in ϕ. It also gives a measure in terms of bits instead of probabilities. These
measures are then averaged with respect to the probability of each observation
class. The final inversion is a normalization operation. The above motivations
for the definition of RPSO yield some desired properties.

Proposition 4. (1) 0 ≤ POSr (Π,ϕ,O) ≤ 1
(2) POSr (Π,ϕ,O) = 0 if and only if ϕ is not symmetrically opaque on unProb(Π)

with respect to unProb(O).
(3) POSr (Π,ϕ,O) = 1 if and only if ∀o ∈ Obs, P(1ϕ = 1 | O = o) = 1

2 .

Examples.

Sale protocol. We consider the sale protocol introduced in [11] depicted in Fig. 7.
Two products can be put on sale, either a cheap or an expensive one, and two
clients, either a rich or a poor one, may want to buy it. The products are put
on sale according to a distribution (α and α = 1 − α) while buyers behave
probabilistically (through β and γ) although differently according to the price
of the item on sale. The price of the item is public, but the identity of the
buyer should remain secret. Hence the observation function Price yields cheap
or expensive, while the secret is, without loss of symmetry, the set ϕpoor of runs
ending with poor. The bias introduced by the preference of, say, a cheap item
by the poor client betrays the secret identity of the buyer. RPSO allows to
measure this bias, and more importantly, to compare the bias obtained globally
for different values of the parameters α, β, and γ.

poor, β rich, β

cheap,α

poor, γ rich, γ

expensive,α

√
, 1

√
, 1

√
, 1

√
, 1

Fig. 7. A simple sale protocol represented as an FPA Sale.

More formally, we have:

P(Price = cheap) = α P(Price = expensive) = α

V (1ϕpoor = 1 | O = cheap) = max(β, β)

V (1ϕpoor = 1 | O = expensive) = max(γ, γ)

POSr (Sale, ϕpoor, P rice) =
−1

α · log(min(β, β)) + α · log(min(γ, γ))

which is depicted for several values of α in Fig. 8, red meaning higher value for
RPSO.

Dining Cryptographers Protocol. Introduced in [4], this problem involves three
cryptographers C1, C2 and C3 dining in a restaurant. At the end of the meal,
their master secretly tells each of them if they should be paying: pi = 1 iff
cryptographer Ci pays, and pi = 0 otherwise. Wanting to know if one of the
cryptographers paid or if the master did, they follow the following protocol.
They flip a coin with each of their neighbor, the third one not seeing the result
of the flip, marking fi,j = 0 if the coin flip between i and j was heads and
fi,j = 1 if it was tails. Then each cryptographer Ci, for i ∈ {1, 2, 3}, announces
the value of ri = fi,i+1 ⊕ fi,i−1 ⊕ pi (where ‘3 + 1 = 1’, ‘1 − 1 = 3’ and ‘⊕’
represents the XOR operator). If

⊕3
i=1 ri = 0 then no one (i.e. the master)

paid, if
⊕3

i=1 ri = 1, then one of the cryptographers paid, but the other two do
not know who he is.

Here we will use a simplified version of this problem to limit the size of the
model. We consider that some cryptographer paid for the meal, and adopt the
point of view of C1 who did not pay. The anonymity of the payer is preserved if
C1 cannot know if C2 or C3 paid for the meal. In our setting, the predicate ϕ2

is, without loss of symmetry, “C2 paid”. Note that predicate ϕ2 is well suited for
analysis of symmetrical opacity, since detecting that ϕ2 is false gives information
on who paid (here C3). The observation function lets C1 know the results of its
coin flips (f1,2 and f1,3), and the results announced by the other cryptographers
(r2 and r3). We also assume that the coin used by C2 and C3 has a probability of
q to yield heads, and that the master flips a fair coin to decide if C2 or C3 pays.

0 0,25 0,5 0,75

0,25

0,5

0,75

1

β

γ

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

(a) POSr (Sale, ϕpoor, P rice) when α = 1
8

0 0,25 0,5 0,75

0,25

0,5

0,75

1

β

γ

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

(b) POSr (Sale, ϕpoor, P rice) when α = 1
2

Fig. 8. RPSO for the sale protocol.

It can be assumed that the coins C1 flips with its neighbors are fair, since it does
not affect anonymity from C1’s point of view. In order to limit the (irrelevant)
interleaving, we have made the choice to fix the ordering between the coin flips.

The corresponding FPA D is depicted on Fig. 9. On D, the runs satisfy-
ing predicate ϕ2 are the ones where action p2 appears. The observation func-
tion O1 takes a run and returns the sequence of actions over the alphabet
{h1,2, t1,2, h1,3, t1,3} and the final state reached, containing the value announced
by C2 and C3.

r2 = 1
r3 = 0

p2,
1
2

r2 = 0
r3 = 1

p3,
1
2

h2,3, q

r2 = 0
r3 = 1

p2,
1
2

r2 = 1
r3 = 0

p3,
1
2

t2,3, 1− q

h1,3,
1
2

r2 = 1
r3 = 1

p2,
1
2

r2 = 0
r3 = 0

p3,
1
2

h2,3, q

r2 = 0
r3 = 0

p2,
1
2

r2 = 1
r3 = 1

p3,
1
2

t2,3, 1− q

t1,3,
1
2

h1,2,
1
2

r2 = 0
r3 = 0

p2,
1
2

r2 = 1
r3 = 1

p3,
1
2

h2,3, q

r2 = 1
r3 = 1

p2,
1
2

r2 = 0
r3 = 0

p3,
1
2

t2,3, 1− q

h1,3,
1
2

r2 = 0
r3 = 1

p2,
1
2

r2 = 1
r3 = 0

p3,
1
2

h2,3, q

r2 = 1
r3 = 0

p2,
1
2

r2 = 0
r3 = 1

p3,
1
2

t2,3, 1− q

t1,3,
1
2

t1,2,
1
2

√
, 1
√
, 1
√
, 1
√
, 1
√
, 1
√
, 1
√
, 1
√
, 1
√
, 1
√
, 1
√
, 1
√
, 1
√
, 1
√
, 1
√
, 1
√
, 1

Fig. 9. The FPA corresponding to the Dining Cryptographers protocol.

There are 16 possible complete runs in this system, that yield 8 equiprobable
observables:

Obs = {(h1,2h1,3(r2 = 1, r3 = 0)), (h1,2h1,3(r2 = 0, r3 = 1)),
(h1,2t1,3(r2 = 0, r3 = 0)), (h1,2t1,3(r2 = 1, r3 = 1)),
(t1,2h1,3(r2 = 0, r3 = 0)), (t1,2h1,3(r2 = 1, r3 = 1)),
(t1,2t1,3(r2 = 1, r3 = 0)), (t1,2t1,3(r2 = 0, r3 = 1)) }

Moreover, each observation results in a run in which C2 pays and a run in which
C3 pays, this difference being masked by the secret coin flip between them. For
example, runs ρh = h1,2h1,3h2,3p2(r2 = 1, r3 = 0) and ρt = h1,2h1,3t2,3p3(r2 =
1, r3 = 0) yield the same observable o0 = h1,2h1,3(r2 = 1, r3 = 0), but the predi-
cate is true in the first case and false in the second one. Therefore, if 0 < q < 1,
the unprobabilistic version of D is opaque. However, if q 6= 1

2 , for each observable,
one of them is more likely to be lying, therefore paying. In the aforementioned
example, when observing o0, ρh has occurred with probability q, whereas ρt has
occurred with probability 1− q. RPSO can measure this advantage globally.

For each observation class, the vulnerability of ϕ2 is max(q, 1−q). Hence the
RPSO will be

POSr (D, ϕ2,O1) =
−1

log(max(q, 1− q))

The variations of the RPSO when changing the bias on q are depicted in Fig. 10.
Analysis of RPSO according to the variation of q yields that the system is per-
fectly secure if there is no bias on the coin, and insecure if q = 0 or q = 1.

q

POSr (D, ϕ2,O1)

0

1

1
2

1

Fig. 10. Evolution of the restrictive probabilistic symmetric opacity of the Dining
Cryptographers protocol when changing the bias on the coin.

5 Tightening opacity through information theory

5.1 Information based opacity

We now adopt another point of view on how to measure the balance between
ϕ and ϕ in each observation class. Namely, the balance inside each class is
compared to the global balance, thus allowing to measure not the security per
se but what advantage is given to the attacker through observation. Since the
balance between ϕ and ϕ is measured, they are considered evenly; thus this
measure relates only to the symmetrical opacity.

Definition 8 (Information-based probabilistic opacity). Let ϕ be a pred-
icate on the complete runs of an FPA Π and O an observation function. The
information based probabilistic opacity (IPSO) of ϕ on Π, with respect to O, is
defined by

POSi (Π,ϕ,O) = 1− I(1ϕ;O)

Proposition 5.
(1) 0 ≤ POSi (Π,ϕ,O) ≤ 1
(2) If POSi (Π,ϕ,O) = 0, then ϕ is not opaque on unProb(Π) with respect to

unProb(O).

Proof.
(1) Since 1ϕ can take only two different values and entropy decreases with knowl-

edge, 0 ≤ H(1ϕ|O) ≤ H(1ϕ) ≤ log(2) = 1.
(2) This case is reached only when H(1ϕ) = 1 and H(1ϕ|O) = 0. When

H(1ϕ|O) = 0, by Proposition 2 case (3), POS` (Π,ϕ,O) = 1 > 0, then ϕ
is not opaque on unProb(Π) with respect to unProb(O).

A measure analogous to IPSO, but using the min-entropy instead of en-
tropy [8] can also be defined:

POSmin(Π,ϕ,O) = 1− I∞(1ϕ;O) = 1−H∞(1ϕ) +H∞(1ϕ | O)

It has roughly the same properties as IPSO, since in our context 1ϕ can only
take two values.

5.2 Example: the Dining Cryptographers Protocol

The Dining Cryptographers Protocol, as explained in Section 4.2 can be evalu-
ated in terms of information leak. For the next IPSO computation, we write 1ϕ
instead of 1ϕ2 and O instead of O1.

I(1ϕ;O) = H(1ϕ)−H(1ϕ|O) = 1 + Q

where

Q =
∑

o∈Obs

i∈{0,1}

P(O = o) ·P(1ϕ = i|O = o) · log(P(1ϕ = i|O = o))

For each observable o, P(1ϕ = 1|O = o) = 1 − P(1ϕ = 0|O = o). In addi-
tion, P(1ϕ = 1|O = o) is either q or 1 − q. This allows to compute the IPSO,
parametrized by q:

POSi (D, ϕ2,O1) = −(q · log(q) + (1− q) · log(1− q))

On this expression we can see that POSi (D, ϕ2,O1) = 1 if q = 1
2 , and POSi (D, ϕ2,O1) =

0 if q = 0 or q = 1. The variations of the IPSO when changing the bias on q
are depicted in Fig. 11. They bear the same features as for RPSO at extremal
points (q = 0, 1

2 , 1), although the shape of the curve is altered.

q

POSi (D, ϕ2,O1)

0

1

1
2

1

Fig. 11. Evolution of the restrictive probabilistic opacity of the Dining Cryptographers
protocol when changing the bias on the coin.

6 Computing opacity measures automatically

We now show how all measures defined above can be computed for regular pred-
icates and simple observation functions. The method relies on a synchronized
product between an SA Π and a deterministic FA K, similarly to [15]. This
product (which can be considered pruned of its unreachable states and states
not reaching a final state) constrains the unprobabilistic version of Π by synchro-
nizing it with K. The probability of L(K) is then obtained by solving a system of
equations associated with this product. The computation of all measures results
in applications of this operation with several automata.

6.1 Computing the probability of a substochastic automaton

Given an SA Π, a system of equations can be derived on the probabilities for
each state to yield an accepting run. This allows to compute the probability of
all complete runs of Π by a technique similar to those used in [15,16,17] for
probabilistic verification.

Definition 9 (Linear system of a substochastic automata). Let Π =
〈Σ,Q,∆, q0〉 be a substochastic automaton. The linear system associated with
Π is the following system SΠ of linear equations over R:

SΠ =

Xq =
∑
q′∈Q

αq,q′Xq′ + βq

q∈Q

where αq,q′ =
∑
a∈Σ

∆(q)(a, q′) and βq = ∆(q)(
√

)

When non-determinism is involved, for instance in Markov Decision Pro-
cesses [15,17], two systems of inequations are needed to compute maximal and
minimal probabilities. Here, without non-determinism, both values are the same,
hence the probability can be computed in polynomial time by solving the linear
system associated with the SA.

Lemma 1. Let Π = 〈Σ,Q,∆, q0〉 be a substochastic automaton and define for
all q ∈ Q, LΠq = P(CRunq(Π)). Then (LΠq)q∈Q is the unique solution of the
system SΠ .

6.2 Computing the probability of a regular language

In order to compute the probability of a language inside a system, we build a
substochastic automaton that corresponds to the intersection of the system and
the language, then compute the probability as above.

Definition 10 (Synchronized product). Let Π = 〈Σ,Q,∆, q0〉 be a sub-
stochastic automaton and let K = 〈Q×Σ×Q,QK , ∆K , qK , F 〉 be a deterministic
finite automaton. The synchronized product Π||K is the substochastic automaton
〈Σ,Q×QK , ∆′, (q0, qK)〉 where transitions in ∆′ are defined by: if q1 → µ ∈ ∆,
then (q1, r1)→ ν ∈ ∆′ where for all a ∈ Σ and (q2, r2) ∈ Q×QK ,

ν(a, (q2, r2)) =
{
µ(a, q2) if r1

q1,a,q2−−−−→ r2 ∈ ∆K

0 otherwise

and ν(
√

) =
{
µ(
√

) if r1 ∈ F
0 otherwise

In this synchronized product, the behaviors are constrained by the finite au-
tomaton. Actions not allowed by the automaton are trimmed, and states can
accept only if they correspond to a valid behavior of the DFA. Note that this
product is defined on SA in order to allow several intersections. The correspon-
dence between the probability of a language in a system and the probability of
the synchronized product is laid out in the following lemma.

Lemma 2. Let Π = 〈Σ,Q,∆, q0〉 be an SA and K a regular language over Q×
Σ×Q accepted by a deterministic finite automaton K = 〈Q×Σ×Q,QK , ∆K , qK , F 〉.
Then

PΠ(K) = L
Π||K
(q0,qK)

6.3 Computing all opacity measures

All measures defined previously can be computed as long as, for i ∈ {0, 1} and
o ∈ Obs, all probabilities

P(1ϕ = i) P(O = o) P(1ϕ = i,O = o)

can be computed. Indeed, even deciding whether O−1(o) ⊆ ϕ can be done by
testing P(O = o) > 0 ∧P(1ϕ = 0,O = o) = 0.

Now suppose Obs is a finite set, ϕ and all O−1(o) are regular sets. Then one
can build deterministic finite automata Aϕ, Aϕ, Ao for o ∈ Obs that accept
respectively ϕ, ϕ, and O−1(o).

Synchronizing automaton Aϕ with Π and pruning it yields a substochastic
automaton Π||Aϕ. By Lemma 2, the probability P(1ϕ = 1) is then computed by
solving the linear system associated with Π||Aϕ. Similarly, one obtain P(1ϕ = 0)
(with Aϕ), P(O = o) (with Ao), P(1ϕ = 1O = o) (synchronizing Π||Aϕ with
Ao), and P(1ϕ = 0O = o) (synchronizing Π||Aϕ with Ao).

Theorem 1. Let Π be an FPA. If Obs is a finite set, ϕ is a regular set and for
o ∈ Obs, O−1(o) is a regular set, then for PO∗ ∈ {POA` ,POS` ,POAr ,POSr ,POSi ,POSmin},
PO∗(Π,ϕ,O) can be computed.

The computation of opacity measures is done in polynomial time in the size of
Obs and DFAs Aϕ, Aϕ, Ao.

A prototype tool implementing this algorithm was implemented in Java,
yielding numerical values for measures of opacity.

7 Comparison of the measures of opacity

In this section we compare the discriminating power of the different measures
discussed above.

7.1 Abstract examples

The values of these metrics are first compared for pathologic cases of Fig. 12.
These values are displayed in Table 3.

(a) System Π1 (b) System Π2 (c) System Π3 (d) System Π4

(e) System Π5 (f) System Π6 (g) System Π7

ϕ

O−1(o)

Fig. 12. Example of repartition of probabilities of 1ϕ and O in 7 pathological cases.

System POA` POS` POAr POSr POSi POSmin

(a) Π1 0 0 1
2

1 1 1

(b) Π2 0 0 3
4

1
2

1 1

(c) Π3 0 0 3
8

1
2

2− 3
4

log 3 ' 0.81 2− log 3 ' 0.42

(d) Π4
1
4

1
4

0 0 log 15−10
8

' 0.80 1

(e) Π5
1
4

1
2

0 0 1
2

2− log 3 ' 0.42

(f) Π6
1
4

1
2

0 0 1− 3
8

log 3 ' 0.41 3− log 7 ' 0.19

(g) Π7 0 1
4

12
25

0 5 log 5−6
8

' 0.70 log 5
3
' 0.74

Table 3. Values of the different opacity measures for systems of Fig. 12(a)-(g).

First, the system Π1 of Fig. 12(a) is intuitively very secure since, with or
without observation, an attacker has no information whether ϕ was true or
not. This security is reflected in all symmetrical measures, with highest scores

possibles in all cases. It is nonetheless deemed more insecure for RPO, since
opacity is perfect when ϕ is always false.

The case of Π2 of Fig. 12(b) differs only from Π1 by the global repartition of
ϕ in Run(Π). The information an attacker gets comes not from the observation,
but from ϕ itself. Therefore both IPSO and minPO also evaluate Π2 as very
secure. But RPSO, which does not remove the information available before ob-
servation, evaluates this system as less secure than Π1. On the other hand, RPO
finds Π2 more secure than Π1: ϕ is verified less often. Note that the complement
would no change the value for symmetrical measures, while being insecure for
RPO (with POAr = 1

4).
However, since each observation class is considered individually, RPSO does

not discriminate Π2 and Π3 of Fig. 12(c). Here, the information is the same in
each observation class as fo Π2, but the repartition of ϕ gives no advantage at
all to an attacker without observation. Hence both IPSO and minPO measure
this difference well, since they are defined to measure the information gained
through observation.

System Π4 of Fig. 12(d) shows the limitation of minPO. Designed to accentu-
ate imbalance inside each observation class, they are however averaged out pro-
portionally to each P(o). In this case, the strong imbalance of the bottom-right
class is averaged by the balance of the three others, up to the same imbalance
of ϕ globally. Remark that POAr = POSr = 0 and both POA` > 0 and POS` > 0,
since Π4 is not opaque for the classical definitions.

When the system is not opaque (resp. symmetrically opaque), RPO (resp.
RPSO) cannot discriminate them, and LPO (resp. LPSO) becomes relevant.
For example, Π5 of Fig. 12(e) has a greater POS` than Π4. However, LPO is
unchanged since the class completely out of ϕ is not taken into account. Both
IPSO and minPO are also affected by the increase of (very) unbalanced obser-
vation classes, but do not reach a minimum nonetheless. This allows to measure
further variations of imbalance, and to compare Π5 to Π6 of Fig. 12(f). Similarly,
the difference of balance between Π4 and Π7 of Fig. 12(g) can also be captured
by IPSO and minPO. Remark that system Π7 is opaque but not symmetrically
opaque, hence the relevant measures are POS` and POAr .

7.2 Concrete examples

We shall now study more concrete examples. The first ones are inspired from [8].
We then use the previous study of the crowds protocol.

Consider the following programs P1 and P2, where k is a given parameter,
random select uniformly an integer value (in binary) between its two arguments
and & is the bitwise and :

P1: H := random(0, 28k − 1);
if H mod 8 = 0 then
L := H

else
L := −1

fi

P2: H := random(0, 28k − 1);
L := H & 07k1k

In these cases, the value of H, an integer over 8k bits, is supposed to remain
secret. Intuitively, P1 divulges the exact value of H with probability 1

8 . On the
other hand, P2 leaks the value of one eighth of its bits (the least significant
ones) at every execution. These programs can be translated into FPAs AP1 and
AP2 of Fig. 13. The observation is the “L = . . .” action. In order to have a
boolean predicate, the secret is not the value of variable H, but whether H = L:
ϕ= =

{
(H = x)(L = x) | x ∈ {0, . . . , 28k − 1}

}
. First remark that ϕ= is not

qi q0

q8·28k−3

q8

q1

H = 0, 1
28k

H = 8, 1
28k

H = 8 · 28k−3, 1
28k

H = 1, 1
28k H = 28k−1, 1

28k
. . .

r0
L = 0, 1

√
, 1

r8
L = 8, 1

√
, 1

r8·28k−3
L = 8 · 28k−3, 1

√
, 1

. .
.

r1
L = −1, 1

√
, 1

(a) FPA AP1

qi

q0

q2k−1

q1

H = 08k

H = 17k0k

H = 08k−11

H = 17k0k−11

H = 07k1k

H = 18k

. . .

..
.

. . .

r0
L = 0, 1

√
, 1

r8
L = 1, 1

√
, 1

r2k+1
L = 2k − 1, 1

√
, 1

. .
.

(b) FPA AP2

Fig. 13. FPAs for programs P1 and P2.

opaque on P1 in the classical sense (both symmetrically or not). Hence both
RPO and RPSO are null. On the other hand, ϕ= is opaque on P2, hence LPO
and LPSO are null. However, in both cases IPSO and minPO are meaningful.
The values for all measures are gathered in Table 4. Note that only restrictive

Program POA` POS` POAr POSr POSi POSmin

P1
1
8

1 0 0 7
8
· log 7− 2 ' 0.46 log 7− 2 ' 0.81

P2 0 0 1− 1
27k

1
7k

1 1
Table 4. Opacity measures for programs P1 and P2.

opacity for P2 depend on k. This comes from the fact that in all other cases,
both ϕ= and the equivalence classes scale at the same rate with k. In the case
of P2, adding length to the secret variable H dilutes ϕ= inside each class. Hence
the greater k is, the hardest it is for an attacker to know that ϕ= is true, thus to
crack asymmetrical opacity. Indeed, it will tend to get false in most cases, thus
providing an easy guess, and a low value for symmetrical opacity.

7.3 Case study: the Crowds protocol

The anonymity protocol known as crowds was introduced in [5] and recently
studied in the probabilistic framework in [9,10]. When a user wants to send a
message (or request) to a server without the latter knowing the origin of the
message, the user routes the message through a crowd of n users. To do so,
it selects a user randomly in the crowd (including himself), and sends him the
message. When a user receives a message to be routed according to this protocol,
it either sends the message to the server with probability 1 − q or forwards it
to a user in the crowd, with probability q. The choice of a user in the crowd
is always equiprobable. Under these assumptions, this protocol is known to be
secure, since no user is more likely than another to be the actual initiator; indeed
its RPO is very low. However, there can be c corrupt users in the crowd which
divulge the identity of the person that sent the message to them. In that case,
if a user sends directly a message to a corrupt user, its identity is no longer
protected. RPO can measure the security of this system, depending on n and c.

First, consider our protocol as the system in Fig. 14. The predicate we want
to be opaque is ϕi that contains all the runs in which i is the initiator of the
request. The observation function O returns the penultimate state of the run,
i.e. the honest user that will be seen by the server or a corrupt user.

For sake of brevity, we write ‘i ’ to denote the event “a request was ini-
tiated by i” and ‘ j’ when “j was detected by the adversary” i ∧ j is
abbreviated in i j. Notation ‘¬i ’ means that “a request was initiated by
someone else than i”; similarly, combinations of this notations are used in the
sequel. We also use the Kronecker symbol δij defined by δij = 1 if i = j and 0
otherwise.

0 1′

(n− c)′

. .
.

1
n−c

1
n−c

Server1

n− c

√
, 1

. . .

1− q

1− q

q · 1
n

q · 1
n

q · 1
n

q · 1
n

. . .n− c+ 1 n
√
, 1

√
, 1

1
n

1
n

1
n

1
n

1
n

1
n

1
n

1
n

q · 1
n

q · 1
n

q · 1
n q · 1

n

Fig. 14. FPA Ccn for Crowds protocol with n users, among whom c are corrupted.

Computation of the probabilities. All probabilities P(i j) can be au-
tomatically computed using the method described in Section 6. For example,
P(1 (n − c)), the probability for the first user to initiate the protocol while
the last honest user is detected, can be computed from substochastic automa-
ton Ccn||A1 (n−c) depicted on Fig. 15. The associated system is represented in
Table 5 where LS corresponds to the “Server” state. Resolving it yields, Li = q

n

for all i ∈ {1, . . . , n− c− 1}, Ln−c = 1− q·(n−c−1)
n , L1′ = 1

n , and L0 = 1
(n−c)·n .

Therefore, P(1 (n− c)) = 1
(n−c)·n .

In this case, simple reasoning on the symmetries of the model allows to derive
other probabilities P(i j). Remark that the probability for a message to go
directly from initiator to a corrupt user or the server is c

n : it only happens if a
corrupt user is chosen by the initiator. If a honest user is chosen by the initiator,
then the length will be greater, with probability n−c

n . By symmetry all honest
users have equal probability to be the initiator, and equal probability to be
detected. Hence P(i) = P(j) = 1

n−c .

Event i j occurs when i is chosen as the initiator (probability 1
n−c), and

either (1) if i = j and i chooses a corrupted user to route its message, or (2) if a
honest user is chosen and j sends the message to a corrupted user or the server

0 1′
1

n−c

Server1

n− c

√
, 1

. . . 1− q

q · 1
n

q · 1
n

q · 1
n

q · 1
n

. . .n− c+ 1 n
√
, 1

√
, 1

1
n

1
n

q · 1
n q · 1

n

Fig. 15. SA Ccn||A1 (n−c) corresponding to runs where user 1 initiates the protocol
and user (n− c) is detected

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

L0 = 1
n−c · L1′

L1′ =
Pn−c
i=1

1
n
· Li

L1 =
Pn−c
i=1

q
n
· Li

...

Ln−c−1 =
Pn−c
i=1

q
n
· Li

Ln−c = (1− q) · LS +
Pn
i=1

q
n
· Li

Ln−c+1 = 1
...

Ln = 1
LS = 1

Table 5. Linear system associated to SA Ccn||A1 (n−c) of Fig. 15

(the internal route between honest users before j is irrelevant). Therefore

P(i j) =
1

n− c
·
(
δij ·

c

n
+

1
n− c

· n− c
n

)
P(i j) =

1
n− c

·
(
δij ·

c

n
+

1
n

)
The case when i is not the initiator is derived from this probability:

P(¬i j) =
n−c∑
k=1
k 6=i

P(k j)

P(¬i j) =
1

n− c
·
(

(1− δij) ·
c

n
+
n− c− 1

n

)
Conditional probabilities thus follow:

P(i | j) =
P(i j)
P(j)

= δij ·
c

n
+

1
n

P(¬i | j) =
P(¬i j)

P(j)
= (1− δij) ·

c

n
+
n− c− 1

n

Interestingly, these probabilities do not depend on q4.

Computation of RPO. From the probabilities above, one can compute an
analytical value for POAr (Ccn,1ϕi

,O).

1
POAr (Ccnϕi,O)

=
n−c∑
j=1

P(j)
1

P(¬i | j)

= (n− c− 1) · 1
n− c

· n

n− 1
+

1
n− c

· n

n− c− 1

=
n

n− c

(
n− c− 1
n− 1

+
1

n− c− 1

)
1

POAr (Ccn, ϕi,O)
=

n · (n2 + c2 − 2nc− n+ 2c)
(n− c) · (n− 1) · (n− c− 1)

Hence

POAr (Ccn, ϕi,O) =
(n− c) · (n− 1) · (n− c− 1)
n · (n2 + c2 − 2nc− n+ 2c)

which tends to 1 as n increases to +∞ (for a fixed number of corrupted users).
The evolution of RPO is represented in Fig. 16(a) where blue means low and red
means high. If the proportion of corrupted users is fixed, say n = 4c, we obtain

POAr (Cc4c, ϕi,O) =
(4c− 1) · (9c− 3)

4c · (9c− 2)
4 This stems from the fact that the original models had either the server or the corrupt

users as attackers, not both at the same time.

which also tends to 1 as the crowds size increases. When there are no corrupted
users,

POAr (C0n, ϕi,O) =
n− 1
n

,

which is close to 1, but never exactly, since ϕi is not always false, although of
decreasing proportion as the crowds grows. This result has to be put in parallel
with the one from [5], which states that crowds is secure since each user is
“beyond suspicion” of being the initiator, but “absolute privacy” is not achieved.

2,5 5 7,5 10 12,5 15 17,5 20

5

10

15

20

n

c

0 2.5 5 7.5 10 12.5 15 17.5 20
0

5

10

15

20

(a) Evolution of POAr (Ccn, ϕi,O) with n and c.

2,5 5 7,5 10 12,5 15 17,5 20

5

10

15

20

n

c

0 2.5 5 7.5 10 12.5 15 17.5 20
0

5

10

15

20

(b) Evolution of POSi (Ccn, ϕi,O) with n and c.

Fig. 16.

Computation of RPSO. From the probabilities computed above, we obtain
that if i 6= j,

V (i | j) = max
(

1
n
,
n− 1
n

)
=

1
n

max(1, n− 1).

Except in the case of n = 1 (when the system is non-opaque, hence POSr (C01 , ϕ1,O) =
0), V (i | j) = n−1

n .

In the case when i = j

V (i | i) = max
(
c+ 1
n

,
n− c− 1

n

)
=

1
n

max(c+ 1, n− c− 1).

That means the vulnerability for the observation class corresponding to the case
when i is actually detected depends on the proportion of corrupted users in the
crowd. Indeed, V (i | i) = c+1

n if and only if c ≥ n
2 . The two cases shall be

separated.

When c ≥ n
2 . There are more corrupted than honest users:

n−c∑
j=1

P(j) · log(V (i | j)) =
1

n− c
·
(

(n− c− 1) · log
(

1
n

)
+ log

(
n− c− 1

n

))
=

1
n− c

· (log(n− c− 1)− (n− c) · log(n))

=
log(n− c− 1)

n− c
− log(n)

Hence POSr (Ccn, ϕi,O) =
1

log(n)− log(n−c−1)
n−c

When c < n
2 . There are more honest than corrupted users:

n−c∑
j=1

P(j) · log(V (i | j)) =
1

n− c
·
(

(n− c− 1) · log
(

1
n

)
+ log

(
c+ 1
n

))
=

1
n− c

· (log(c+ 1)− (n− c) · log(n))

=
log(c+ 1)
n− c

− log(n)

Hence POSr (Ccn, ϕi,O) =
1

log(n)− log(c+1)
n−c

The evolution of RPSO for c = 5 is depicted in Fig. 17.
One can see that actually the RPSO decreases when n increases. That is

because when there are more users in the crowd, user i is less likely to be the
initiator. Hence the predicate chosen does not model anonymity as specified in [5]
but a stronger property since RPSO is based on the definition of symmetrical
opacity. Therefore it is meaningful in terms of security properties only when
both the predicate and its negation are meaningful.

Computation of IPSO. We compute IPSO (tedious calculi being omitted due
to space constraints), denoting by 1i the random variable 1ϕi

and by O the

n

POSr (C5n, ϕi,O)

0 2 4 6 8 10 12 14 16 18 20
0

0.25

0.5

0.75

1

Fig. 17. Evolution of POSr (Ccn, ϕi,O) with n when c = 5.

observation function of the penultimate state of the run:

−H(1i|O) =
n−c∑
j=1

(P(i j) · log(P(i | j)) + P(¬i j) · log(P(¬i | j)))

=
1

n− c
·
(

(n− c− 1) · (n− 1)
n

· log(n− 1)

+
n− c− 1

n
· log(n− c− 1) +

c+ 1
n
· log(c+ 1)

)
− log(n)

On the other hand

H(1i) = P(i) · log(P(i)) + P(¬i) · log(P(¬i))

= log(n− c)− n− c− 1
n− c

· log(n− c− 1)

Hence

POSi (Ccn, ϕi,O) = 1 + log(n)− log(n− c) +
n− c− 1
n− c

· log(n− c− 1)

− 1
n− c

·
(

(n− c− 1) · (n− 1)
n

· log(n− 1)

+
n− c− 1

n
· log(n− c− 1) +

c+ 1
n
· log(c+ 1)

)
Remark that in the case where there is no corrupt user (i.e. when c = 0),

we obtain POSi (C0n, ϕi,O) = 1, thus re-confirming in passing the result from [5]
stating that the crowds protocol is secure. It can also be noted that, as expected,
more corrupt users decrease the security, while more honest users increase it. The
evolution of IPSO according to n and c for this protocol is shown on Fig. 16(b),
where blue means low (near 0) and red means high (near 1).

7.4 Discussion

As a result, LPO and RPO (and their symmetrical counterparts) provide mea-
sures tightly attached to the notions of opacity. The measure IPSO, however,
provides a measure of how much is leaked through the observation. Hence it
is a good measure to assess the power of observation in terms of security. It
does not however provide information as to whether the secrecy of predicate ϕ
is protected even without observation. Indeed, the information ϕ leaks by it-
self, as measured by H(1ϕ), is leveled out in IPSO. In the extreme case where
ϕ = Run(Π), ϕ is not secret (since it is always true), but no information is
gained through observation.

Such imbalance in the global repartition of ϕ can be measured by minPO.
Vulnerability, as discussed in [8], evaluates the probability of a correct guess in
one attempt. It can also be used to assess how much the observation renders the
system more vulnerable. However, any comparison of measure before and after
observation will suffer from the same drawbacks when ϕ is initially more likely
to be true than false, especially if this imbalance is respected by each observation
class.

8 Dealing with nondeterminism

The measures presented above were all defined in the case of fully probabilistic
automata. However, some systems present nondeterminism that cannot reason-
ably be abstracted away. For example, consider the case of a system, in which
a malicious user Alice can control certain actions. The goal of Alice is to es-
tablish a covert communication channel with an external observer Bob. Hence
she will try to influence the system in order to render communication easier.
Therefore, the actual security of the system as observed by Bob should be mea-
sured against the best possible actions for Alice. Formally, Alice is a scheduler
who, when facing several possible output distributions {µ1, . . . , µn}, can choose
whichever distribution ν on {1, . . . , n} as weights for the µis. The security as
measured by opacity is the minimal security of all possible successive choices.

8.1 The nondeterministic framework

Here we enlarge the setting of probabilistic automata considered before by al-
lowing nondeterminism. Instead of having a single outgoing distribution from a
given state, the model allows several.

Definition 11 (Nondeterministic probabilistic automaton). A nondeter-
ministic probabilistic automaton (NPA) is a tuple 〈Σ,Q,∆, q0〉 where

– Σ is a finite set of actions,
– Q is a finite set of states,
– ∆ : Q→ P(D((Σ×Q)]{

√
})) is a nondeterministic probabilistic transition

function.

– q0 is the initial state.

The choice over the several possible distributions is made by the scheduler.
It does not, however, selects one distribution to be used, but can give weight to
the possible distributions.

Definition 12 (Scheduler). A scheduler on Π = 〈Σ,Q,∆, q0〉 is a function

σ : Run(Π)→ D(D((Σ ×Q)] {
√
}))

such that σ(ρ)(ν) > 0⇒ ν ∈ ∆(lst(ρ)).
The set of all schedulers is for Π is denoted Sched (the dependence on Π is

implicit).

Observe that the choice made by a scheduler can depend on the (arbitrary
long) history of the execution. A scheduler σ is memoryless if there exists a
function σ′ : Q → D(D((Σ × Q)] {

√
})) such that σ(ρ) = σ′(lst(ρ)). Hence a

memoryless scheduler takes only into account the current state.

Definition 13 (Scheduled NPA). NPA Π = 〈Σ,Q,∆, q0〉 scheduled by σ is
the (infinite) FPA Π/σ = 〈Σ,Run(Π), ∆′, ε〉 where

∆′(ρ)(a, ρ′) =
∑
µ∈∆

σ(ρ)(µ)·µ(a, q) if ρ′ = ρ
a→ q and ∆′(ρ)(a, ρ′) = 0 otherwise.

A scheduled NPA behaves as an FPA, where the outgoing distribution is the set
of all possible distributions weighted by the scheduler.

All measures defined in this paper on fully probabilistic automata can be ex-
tended to non-deterministic probabilistic automata. First note that all measures
can be defined on infinite systems, although they cannot in general be computed
automatically, even with proper restrictions on predicate and observables.

Definition 14. Let Π be an NPA, ϕ a predicate, and O an observation function.

For PO∗ ∈ {POA` ,POS` }, P̂O∗(Π,ϕ,O) = max
σ∈Sched

PO∗(Π/σ, ϕ,O).

For PO∗ ∈ {POAr ,POSr ,POSi ,POSmin}, P̂O∗(Π,ϕ,O) = min
σ∈Sched

PO∗(Π/σ, ϕ,O).

8.2 The expressive power of schedulers

In general, schedulers have arbitrary power, as stated in Definition 12. An infi-
nite memory yields untractable models. However, state-based schedulers are not
sufficiently expressive, as shown by the following counterexample.

Consider the NPA B of Fig. 18. Transitions on a and b going to state q1 (along
with the westbound

√
) are part of the same probabilistic transition indicated

by the arc linking the outgoing edges, and so are the a and b going to state q2
(along with the eastbound

√
). Let ϕ be the (regular) predicate consisting of runs

q0q1 q2

√
, 1

8

√
, 1

8

a, 3
4

b, 1
8

o1, 1

a, 1
8

b, 3
4

o2, 1

Fig. 18. A nondeterministic probabilistic automaton B

whose trace projected onto {a, b} is in (ab)+ + (ab)∗a. Let O be the observation
function that keeps the last oi of the run. Hence there are only three observables,
ε, o1, and o2. Intuitively, a scheduler can introduce a bias in the next letter read
from state q0.

Let us first consider a memoryless scheduler σp. This scheduler can only
choose once what weight will be affected to each transition. This choice is
parametrized by probability p that represents the weight of probability of the
q1 transition. The scheduled NPA is B/σp

is depicted on Fig. 19. The probabili-
ties can be computed using the technique laid out in Section 6. One obtain the
following probabilities:

P(ε) =
1
8

P(o1) =
7
8
· p P(o2) =

7
8
· (1− p) P(ϕ, ε) = 0

P(ϕ, o1) =
p

25p2 − 25p+ 58
· 5p+ 49

8
P(ϕ, o2) =

1− p
25p2 − 25p+ 58

· 5p+ 7
4

Which yields

1
POAr (B/σp

, ϕ,O)
=

1
8

+
49
8
· f(p) ·

(
p

7f(p)− 5p− 49
+

1− p
7f(p)− 10p− 14

)

with f(p) = 25p2−25p+58. It can be shown that regardless of p, POAr (B/σp
, ϕ,O)

never falls behind 1408
1597 ' 0.88.

q0q1 q2

√
, 1

8

a, 3
4
p

b, 1
8
p

o1, 1

a, 1
8
(1− p)

b, 3
4
(1− p)

o2, 1

Fig. 19. Fully probabilistic automaton B/σp

Now consider a scheduler σm with memory who will try to maximize the
realization of ϕ. In order to achieve that, it introduces a bias towards taking the
letter which will fulfill ϕ: first an a, then a b, etc. Hence on the even positions,
it will choose only transition to q1 (with probability 1) while it will choose the
transition to q2 on odd positions. The resulting FPA is depicted on Fig. 20. In
this case, the probabilities of interest are:

P(ε) =
1
8

P(o1) =
7
15

P(o2) =
7
8
· 7

15

P(ϕ, ε) = 0 P(ϕ, o1) =
3
10

P(ϕ, o2) =
3
4
· 3

10

Therefore POAr (B/σm
, ϕ,O) = 4400

10301 ' 0.42.

q0, e

q1 q0, o

q2
√
, 1

8

√
, 1

8

a, 3
4

b, 1
8

o1, 1

a, 1
8

b, 3
4

o2, 1

Fig. 20. Fully probabilistic automaton B/σm

Hence a lower security is achieved by a scheduler provided it has (a finite
amount of) memory. Note that this example used RPO, but a similar argument
could be adapted for the other measures.

8.3 Restricted schedulers

What made a scheduler with memory more powerful than the one without in
the counterexample of Section 8.2 was the knowledge of the truth value of ϕ and
exactly what was observed. More precisely, if the predicate and the observables
are regular languages represented by finite deterministic and complete automata
(FDCA), schedulers can be restricted to choices according to the current state of
these automata and the state of the system. We conjecture that this knowledge is
sufficient to any scheduler to compromise security at the best of its capabilities.

Let ϕ ⊆ Crun(Π) be a regular predicate represented by an FDCA Aϕ. Let
O : CRun(Π)→ {o1, . . . , on} be an observation function such that for 1 ≤ i ≤ n,
O−1(oi) is a regular set represented by an FDCA Aoi

. Consider the synchronized

product Aϕ,O = Aϕ||Ao1 || . . . ||Aon
, which is also an FDCA, and denote by Qϕ,O

its set of states. Let Aϕ,O(ρ) be the state of Aϕ,O reached after reading ρ.

Definition 15 (Restricted (ϕ,O)-scheduler). A scheduler σ for Π is said
(ϕ,O)-restricted if there exist a function σ′ : (Qϕ,O×Q)→ D(D((Σ×Q)]{

√
}))

such that for any run ρ ∈ Run(Π), σ(ρ) = σ′(Aϕ,O(ρ), lst(ρ)).
The set of (ϕ,O)-restricted schedulers is denoted Schedϕ,O.

Remark that memoryless schedulers are always (ϕ,O)-restricted.

Proposition 6. If σ is (ϕ,O)-restricted, then Π/σ is isomorphic to a finite
FPA.

Conjecture 1. Let Π be an NPA, ϕ a predicate, and O an observation function.

For PO∗ ∈ {POA` ,POS` }, arg max
σ∈Sched

PO∗(Π/σ, ϕ,O) ∈ Schedϕ,O.

For PO∗ ∈ {POAr ,POSr ,POSi ,POSmin}, arg min
σ∈Sched

PO∗(Π/σ, ϕ,O) ∈ Schedϕ,O.

9 Conclusion

In this paper we introduced two dual notions of probabilistic opacity. The liberal
one measures the probability for an attacker observing a random execution of
the system to be able to gain information he can be sure about. The restrictive
one measures the level of certitude in the information acquired by an attacker
observing the system. The extremal cases of both these notions coincide with
the possibilistic notion of opacity, which evaluates the existence of a leak of
sure information. These notions yield measures that generalize either the case
of asymmetrical or symmetrical opacity, thus providing four measures. Finally,
we define measures of opacity linked with information theory, that measure how
much is given away through observation, although these are less tightly tied to
the classical notion of symmetrical opacity.

However, probabilistic opacity is not always easy to compute, especially if
there are an infinite number of observables. Nevertheless, automatic computa-
tion is possible when dealing with regular predicates and finitely many regular
observation classes. A prototype tool was implemented in Java, and allows nu-
merical computation of the values of opacity.

In future work we plan to explore more of the properties of probabilistic opac-
ity, to instantiate it to known security measures (anonymity, non-interference,
etc.). Furthermore, we want to address the more general case of probabilistic
automata in which the non-determinism has not been resolved.

References

1. Mazaré, L.: Decidability of opacity with non-atomic keys. In: Proc. 2nd Workshop
on Formal Aspects in Security and Trust (FAST’04). Volume 173 of Intl. Federation
for Information Processing., Springer (2005) 71–84

2. Bryans, J.W., Koutny, M., Mazaré, L., Ryan, P.Y.A.: Opacity generalised to tran-
sition systems. Intl. Jour. of Information Security 7(6) (2008) 421–435

3. Alur, R., Černý, P., Zdancewic, S.: Preserving secrecy under refinement. In: Proc. of
the 33rd Intl. Colloquium on Automata, Languages and Programming (ICALP’06).
Volume 4052 of LNCS., Springer (2006) 107–118

4. Chaum, D.: The dining cryptographers problem: unconditional sender and recipi-
ent untraceability. Journal of Cryptology 1 (1988) 65–75

5. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans-
actions on Information and System Security 1(1) (1998) 66–92

6. Aldini, A., Bravetti, M., Gorrieri, R.: A process-algebraic approach for the analysis
of probabilistic noninterference. Journal of Computer Security 12(2) (2004) 191–
245

7. Boreale, M.: Quantifying information leakage in process calculi. Information and
Computation 207(6) (2009) 699–725

8. Smith, G.: On the foundations of quantitative information flow. In: Proc. 12th Intl.
Conf. on Foundations of Software Science and Computational Structures (FOS-
SACS ’09), Springer-Verlag (2009) 288–302

9. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as
noisy channels. Information and Computation 206(2-4) (February 2008) 378–401

10. Andrés, M.E., Palamidessi, C., van Rossum, P., Smith, G.: Computing the leakage
of information-hiding systems. In: Proc. 16th Intl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’10). Volume 6015 of LNCS.,
Springer (March 2010) 373–389

11. Alvim, M.S., Andrés, M.E., Palamidessi, C.: Information flow in interactive
systems. In Gastin, P., Laroussinie, F., eds.: Proceedings of the 21th Interna-
tional Conference on Concurrency Theory (CONCUR’10). Volume 6269 of LNCS.,
Springer (aug 2010) 102–116

12. Lakhnech, Y., Mazaré, L.: Probabilistic opacity for a passive adversary and its
application to Chaum’s voting scheme. Technical Report 4, Verimag (2 2005)

13. Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley Series in
Telecommunications and Signal Processing. Wiley-Interscience (July 2006)

14. Goguen, J.A., Meseguer, J.: Security policy and security models. In: Proc. of IEEE
Symposium on Security and Privacy, IEEE Computer Society Press (1982) 11–20

15. Courcoubetis, C., Yannakakis, M.: Markov Decision Processes and Regular Events.
IEEE Transactions on Automatc Control 43(10) (1998) 1399–1418

16. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5) (1994) 512–535

17. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Proc. 15th Conf. on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS’95). Volume 1026 of LNCS., Springer (1995)
499–513

