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Black-Box Optimization
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Black-Box

𝒇𝑥, 𝑓 𝑥

Only need information on the decision space 

(i.e., the domain of 𝑓)

 number of decision variables

 their type or range 

 (constraints)

Goal: maximize 𝑓
find 𝑥∗ with 𝑓 𝑥∗ as large as possible

𝑦

𝑓 𝑦



Black-Box Optimization
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Black-Box

𝒇𝑥, 𝑓 𝑥

𝑦, 𝑓 𝑦

Sampling-Based Optimization Heuristics

 sample solution candidates

 evaluate them

 adjust your sampling strategy

Iterative Optimization Heuristics
(IOHs)

 sample solution candidates at once

 evaluate all of them

 recommend a final solution

One-Shot Optimization Heuristics
(non-adaptive sampling)



Sampling-Based Optimization Heuristics
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 Broadly applicable and easy to re-use: 
sampling of solution candidates 
vs. “classic” optimization: construct solutions

 Avoids explicit problem formulation 𝑓: 𝑆 → ℝ

very important feature, since we often do not have such 
an explicit description! (black-box problem)



Sampling-Based Optimization Heuristics
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 Broadly applicable and easy to re-use: 
sampling of solution candidates 
vs. “classic” optimization: construct solutions

 Avoids explicit problem formulation 𝑓: 𝑆 → ℝ

But: SBOHs can be algorithms of choice even when 
problem is “grey-” or even “white-box”

Example: Low Autocorrelation Binary Sequence



Sampling-Based Optimization Heuristics
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 Broadly applicable and easy to re-use: 
sampling of solution candidates 
vs. “classic” optimization: construct solutions

 Avoids explicit problem formulation 𝑓: 𝑆 → ℝ

 Not so well understood. The sheer amount of design choices puts a high 
burden on the users of SBOHs (``Achille’s heel of Evolutionary Computation” [1])

Key question: Given a problem (instance) 𝑃, 
which algorithm should we use?

[1] Álvaro Fialho, Luis Da Costa, Marc Schoenauer, Michèle Sebag. Analyzing bandit-based 
adaptive operator selection mechanisms. Annals of Mathematics and Artificial Intelligence, 2010
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Empirical Approach

 real-world instances

 everything you can implement

 exact numbers

 typically easy to set up

 only a finite number of 

instances of bounded size

 representative?

 only tells you numbers

 depends on implementation

 only single algorithms

Mathematical Approach   

 only models for real-world instances

 limited scope, e.g., (1+1) EA

 limited precision, e.g., 𝑂 𝑛2

 finding proofs can be difficult

 results hold for whole classes of 

algorithms

 guarantee!

 proof tells you the reason

 implementation independent

 lower bounds (= performance limits)

Complementary Results



 What is the best possible performance that 
a SBOH can achieve for a given problem 𝑓?

 Performance measure: optimization time
𝑇 𝐴, 𝑓 : number of evaluations needed to find an optimal solution

 Objective: inf𝐴 𝔼 𝑇 𝐴, 𝑓

 Black-box complexity of ℱ: BBC ℱ = inf𝐴sup𝑓∈ℱ 𝔼 𝑇 𝐴, 𝑓

 2 Approaches to determine BBC ℱ :

 Algorithm Design and Analysis: upper bound for BBC ℱ

 Complexity Theory: lower bound for BBC ℱ
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When upper and lower bound match, 
we know for sure that we can stop searching for better algorithms



 𝒜-black-box complexity of ℱ: inf𝐴∈𝒜sup𝑓∈ℱ 𝔼 𝑇 𝐴, 𝑓

 Examples for 𝒜:

 Poly-time algorithms

 non-adaptive algorithms (one-shot optimizers)

 deterministic algorithms

 restricted memory

 type of distributions from which we sample solution candidates

 …
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Sampling-Based Optimization Heuristics

BBC ℱ,𝒜 ≤ BBC ℱ,ℬ for ℬ ⊆ 𝒜

 quantifies the loss incurred by restricting attention to ℬ

 identifies essential properties (e.g., learning dependencies between decision variables)



Selected Contributions to Black-Box Complexity Theory:
 Improved bounds for existing models

 unrestricted model: Mastermind, LeadingOnes
[Benjamin Doerr, Carola Doerr, Reto Spöhel, Henning Thomas: Playing Mastermind With Many Colors. J. ACM 2016]
[Peyman Afshani, Manindra Agrawal, Benjamin Doerr, Carola Doerr, Kasper Green Larsen, Kurt Mehlhorn: The query complexity 
of a permutation-based variant of Mastermind. Discret. Appl. Math. 2019]

 unbiased models: tight bounds for 1-ary case, Jump functions in 𝑘-ary model
[Benjamin Doerr, Carola Doerr, Jing Yang: Optimal parameter choices via precise black-box analysis. TCS 2020]
[Benjamin Doerr, Carola Doerr: The Impact of Random Initialization on the Runtime of Randomized Search Heuristics. 
Algorithmica 2016]
[Benjamin Doerr, Carola Doerr, Timo Kötzing: Unbiased Black-Box Complexities of Jump Functions. Evol. Comput. 2015]

 ranking-based models: tight bound for OneMax
[Benjamin Doerr, Carola Winzen: Ranking-Based Black-Box Complexity. Algorithmica 2014]

 memory-restricted models: tight bound for OneMax
[Benjamin Doerr, Carola Winzen: Playing Mastermind with Constant-Size Memory. Theory Comput. Syst. 2014]

 Design and analysis of new restricted models

 combinations of restrictions, e.g., memory and unbiased sampling
[Carola Doerr, Johannes Lengler: OneMax in Black-Box Models with Several Restrictions. Algorithmica 2017]

 elitist black-box model (to quantify potential loss of greedy search)
[Carola Doerr, Johannes Lengler: The (1+1) Elitist Black-Box Complexity of LeadingOnes. Algorithmica 2018. 
Best paper award at GECCO 2016]
[Carola Doerr, Johannes Lengler: Introducing Elitist Black-Box Models: When Does Elitist Behavior Weaken the Performance of 
Evolutionary Algorithms? Evol. Comput. 2017]

 Survey and tutorials
[Carola Doerr: Complexity Theory for Discrete Black-Box Optimization Heuristics. Theory of Evolutionary Computation. Springer 2020]
[tutorials at GECCO 2013 and 2014, with Benjamin Doerr]

13



The Mastermind Game
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 𝑓𝑧: 1. . 𝑘
𝑛 → 0. . 𝑛 , 𝑥 ↦ # 𝑖 𝑥𝑖 = 𝑧𝑖 ,

max
𝜋

# 𝑖 𝑥𝜋 𝑖 = 𝑧𝜋 𝑖 } − # 𝑖 𝑥𝑖 = 𝑧𝑖})

The Mastermind Game

15

Player 1

𝒇
Player 2



The Mastermind Game

 𝑓𝑧: 1. . 𝑘
𝑛 → 0. . 𝑛 , 𝑥 ↦ # 𝑖 𝑥𝑖 = 𝑧𝑖 }

 ℱ𝑘 = 𝑓𝑧 𝑧 ∈ 1. . 𝑘 𝑛 }

 Theorem [2]: BBC ℱ𝑘=2 = Θ 𝑛/ log 𝑛

 Theorem [3]: BBC ℱ𝑘=𝑛 = 𝑂 𝑛 log𝑛
(several follow-up works improved leading constant and lower order terms)

 Theorem [4]: BBC ℱ𝑘=𝑛 = 𝑂 𝑛 loglog 𝑛

 can be achieved in poly-time

 can be achieved with deterministic algorithms

 cannot be achieved with non-adaptive algorithms (!) 

 Theorem [5]: BBC ℱ𝑘=𝑛 = Θ 𝑛
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Player 1

𝒇
Player 2

[4] Benjamin Doerr, Carola Doerr, Reto Spöhel, Henning Thomas: Playing Mastermind With Many Colors. J. ACM, 2016

[2] Paul Erdős and Alfréd Rényi. On two problems of information theory. Magyar Tudományos Akadémia Matematikai Kutaté Intézet Közleményei, 1963. 

[3] Vasek Chvátal: Mastermind. Combinatorica 1983

[5] Anders Martinsson, Pascal Su: Mastermind with a Linear Number of Queries. CoRR abs/2011.05921 (2020)



 Theorem [2]: BBC ℱ𝑘=2 ≥ 1 + 𝑜 1 𝑛/ log 𝑛

1-shot-learning-BBC ℱ𝑘=2 ≤ 2 + 𝑜 1 𝑛/ log 𝑛

 Theorem [4]: BBC ℱ𝑘=𝑛 = 𝑂 𝑛 loglog 𝑛
1-shot-learning-BBC ℱ𝑘=𝑛 = Θ 𝑛 log𝑛

17[4] Benjamin Doerr, Carola Doerr, Reto Spöhel, Henning Thomas: Playing Mastermind With Many Colors. J. ACM, 2016
[2] Paul Erdős and Alfréd Rényi. On two problems of information theory. Magyar Tudományos Akadémia Matematikai Kutaté Intézet Közleményei, 1963. 

16 iterations à 8 evals



Mastermind with 𝒌 = 𝟐 Colors (OneMax)

 Theorem by Erdős and Rényi: BBC ℱ𝑘=2 = Θ 𝑛/ log 𝑛

 Evolutionary algorithms need Ω 𝑛 log 𝑛

 Lehre, Witt [Algorithmica 2012]: 
The unary unbiased black-box complexity of ℱ𝑘=2 is Ω 𝑛 log𝑛 . 

(that is, all mutation-only algos need at least 𝑛 log 𝑛 evaluations to optimize OneMax)

 How can we use such info to design better algorithms?

18



Mastermind with 𝒌 = 𝟐 Colors (OneMax)

 Theorem by Erdős and Rényi: BBC ℱ𝑘=2 = Θ 𝑛/ log 𝑛

 Evolutionary algorithms need Ω 𝑛 log 𝑛

 Lehre, Witt [Algorithmica 2012]: 
The unary unbiased black-box complexity of ℱ𝑘=2 is Ω 𝑛 log𝑛 . 

(that is, all mutation-only algos need at least 𝑛 log 𝑛 evaluations to optimize OneMax)
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Mastermind with 𝒌 = 𝟐 Colors (OneMax)

 Theorem by Erdős and Rényi: BBC ℱ𝑘=2 = Θ 𝑛/ log 𝑛

 Evolutionary algorithms need Ω 𝑛 log 𝑛

 Lehre, Witt [Algorithmica 2012]: 
The unary unbiased black-box complexity of ℱ𝑘=2 is Ω 𝑛 log𝑛 . 

(that is, all mutation-only algos need at least 𝑛 log 𝑛 evaluations to optimize OneMax)

How can we learn from points 
of inferior objective values?

 Assume that we are close to the optimum already

 In this offspring 𝑥’, at least one bit is correct 
that is not correct in 𝑥
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Mastermind with 𝒌 = 𝟐 Colors (OneMax)

 Theorem by Erdős and Rényi: BBC ℱ𝑘=2 = Θ 𝑛/ log 𝑛

 Evolutionary algorithms need Ω 𝑛 log 𝑛

 Lehre, Witt [Algorithmica 2012]: 
The unary unbiased black-box complexity of ℱ𝑘=2 is Ω 𝑛 log𝑛 . 

(that is, all mutation-only algos need at least 𝑛 log 𝑛 evaluations to optimize OneMax)

How can we learn from points 
of inferior objective values?

 Uniform crossover: take entry from 

 𝑥′ with probability 𝑐

 𝑥 with probability 1 − 𝑐

 we just need to do this often enough 

 Theorem [5]: The 1 + 𝜆, 𝜆 GA achieves 𝑜 𝑛 log 𝑛 expected optimization 

time on 2-color Mastermind. 
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[5] Benjamin Doerr, Carola Doerr, Franziska Ebel: From black-box complexity to designing new genetic algorithms.
TCS 2015. Best paper award at GECCO 2013
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Mastermind with 𝒌 = 𝟐 Colors (OneMax)

 Theorem by Erdős and Rényi: BBC ℱ𝑘=2 = Θ 𝑛/ log 𝑛

 Evolutionary algorithms need Ω 𝑛 log 𝑛

 Lehre, Witt [Algorithmica 2012]: 
The unary unbiased black-box complexity of ℱ𝑘=2 is Ω 𝑛 log𝑛 . 

(that is, all mutation-only algos need at least 𝑛 log 𝑛 evaluations to optimize OneMax)

How can we learn from points 
of inferior objective values?

 Uniform crossover: take entry from 

 𝑥′ with probability 𝑐

 𝑥 with probability 1 − 𝑐

 we just need to do this often enough 

 Theorem [4]: The 1 + 𝜆, 𝜆 GA achieves 𝑜 𝑛 log 𝑛 expected optimization 

time on 2-color Mastermind. This proves that ``crossover” is provably better 
than ``mutation’’-only algorithms even for OneMax. 

22
[5] Benjamin Doerr, Carola Doerr, Franziska Ebel: From black-box complexity to designing new genetic algorithms.
TCS 2015. Best paper award at GECCO 2013
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than ``mutation’’-only algorithms even for OneMax. 
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[5] Benjamin Doerr, Carola Doerr, Franziska Ebel: From black-box complexity to designing new genetic algorithms.
TCS 2015. Best paper award at GECCO 2013

Theorem [5]: For 𝑘 ≤ log 𝑛, 
the 𝑘-ary unbiased black-box complexity of 
2-color Mastermind (OneMax) is 𝑂(𝑛/𝑘).

[5] Benjamin Doerr, Carola Winzen: Reducing the arity in unbiased black-box complexity. TCS 2014. Best paper award at GECCO 2012.
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The (1+(𝝀, 𝝀)) GA

1. Initialization: Sample 𝑥 ∈ 0,1 𝑛 u.a.r.

2. Optimization: for 𝑡 = 1,2,3, … do

3. Mutation phase:

4. Sample ℓ from Bin(𝑛, 𝑝 = 𝜆/𝑛);

5. for 𝑖 = 1,… , 𝜆 do Sample 𝑥(𝑖) ← mutℓ 𝑥 ;

6. Choose 𝑥’ ∈ {𝑥 1 , … , 𝑥(𝜆)} with 𝑓(𝑥’) = max{𝑓 𝑥 1 , … , 𝑓(𝑥(𝜆))};

7. Crossover phase:

8. for 𝑖 = 1,… , 𝜆 do Sample 𝑦(𝑖) ← cross𝑐=1/𝜆 𝑥, 𝑥′ ;

9. Choose 𝑦 ∈ {𝑦 1 , … , 𝑦(𝜆)} with 𝑓(𝑦) = max{𝑓 𝑦 1 , … , 𝑓(𝑦(𝜆))};

10. Selection step: if 𝑓 𝑦 ≥ 𝑓(𝑥) then replace 𝑥 by 𝑦;

Adaptive parameter setting works very well: 

Theorem [5,6]: For 𝜆 = max
n

n−𝑓(x)
, 2 ,

the runtime on OneMax is Θ 𝑛 . This is optimal.

[5] Benjamin Doerr, Carola Doerr, Franziska Ebel: From black-box complexity to designing new genetic algorithms. TCS 2015
[6] Benjamin Doerr, Carola Doerr: Optimal static and self-adjusting parameter choices for the (1+(λ, λ)) genetic algorithm. Algorithmica 2018



1. Initialization: Sample 𝑥 ∈ 0,1 𝑛 u.a.r.

2. Optimization: for 𝑡 = 1,2,3, … do

3. Mutation phase:

4. Sample ℓ from Bin(𝑛, 𝑝 = 𝜆/𝑛);

5. for 𝑖 = 1,… , 𝜆 do Sample 𝑥(𝑖) ← mutℓ 𝑥 ;

6. Choose 𝑥’ ∈ {𝑥 1 , … , 𝑥(𝜆)} with 𝑓(𝑥’) = max{𝑓 𝑥 1 , … , 𝑓(𝑥(𝜆))};

7. Crossover phase:

8. for 𝑖 = 1,… , 𝜆 do Sample 𝑦(𝑖) ← cross𝑐=1/𝜆 𝑥, 𝑥′ ;

9. Choose 𝑦 ∈ {𝑦 1 , … , 𝑦(𝜆)} with 𝑓(𝑦) = max{𝑓 𝑦 1 , … , 𝑓(𝑦(𝜆))};

10. Selection and update step:

11. if 𝑓 𝑦 > 𝑓(𝑥) then replace 𝑥 by 𝑦 and 𝜆 by 𝐹4𝜆;

12. if 𝑓 𝑦 = 𝑓(𝑥) then replace 𝑥 by 𝑦 and 𝜆 by 𝜆/𝐹;

13. if 𝑓 𝑦 < 𝑓(𝑥) then replace 𝜆 by 𝜆/𝐹;

The (1+(𝝀, 𝝀)) GA

1/5-th success rule 
[Rechenberg, Devroye, 

Schumer/Steiglitz]
here interpretation from: 

[Stefan Kern, Sibylle D. Müller, Nikolaus Hansen, Dirk Büche, Jiri Ocenasek, and Petros Koumoutsakos. Learning 
probability distributions in continuous evolutionary algorithms - a comparative review. Natural Computing 2004]
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𝜆 =
𝑛

𝑛 − 𝑓 𝑥

Theorem [6]: The self-adjusting 1 + 𝜆, 𝜆 GA with 1/5-th success rule has a linear 

(and hence optimal) expected running time on OneMax. No static parameter choice can 
achieve this, i.e., we have a super-constant speed-up from dynamic parameter choices

[6] Benjamin Doerr, Carola Doerr: Optimal static and self-adjusting parameter choices for the (1+(λ, λ)) genetic algorithm. Algorithmica 2018



Parameter 
control

Algorithm 
design

Main Contributions

I. Complexity theory for sampling-based heuristics
How do certain algorithmic characteristics influence the performance? 

II. Algorithm design
Crossover-based algorithms can be strictly better than mutation-based 
ones even for OneMax

III. Theoretical analyses for heuristics with dynamic parameter choices
More than just constant-factor speed-up

27

Black-box
complexity



Other Selected Contributions to Parameter Control

 Theoretical analysis of an 𝜀-greedy RL parameter control technique
[Benjamin Doerr, Carola Doerr, Jing Yang: k-Bit Mutation with Self-Adjusting k Outperforms Standard Bit Mutation. PPSN 2016]

 Key challenge: trade-off between 

 exploitation: we want to maximize reward 

 exploration: has quality of parameter changed? 

 MAB-literature: UCB, probability matching, …

 Our Theorem: For suitably chosen parameter values, 
the expected optimization time of the 𝜀-greedy RLS 

is almost optimal: 𝔼 𝑇 − 𝔼 𝑇opt,𝑟 = 𝑜 𝑛 . 
28

ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 5 ℓ = 37ℓ = 11

[11] Álvaro Fialho, Luís Da Costa, Marc Schoenauer, 
Michèle Sebag: Analyzing bandit-based adaptive 
operator selection mechanisms. Ann. Math. Artif. 
Intell. 2010

[12] Dirk Thierens: An adaptive pursuit strategy for 
allocating operator probabilities. GECCO 2005



Other Selected Contributions to Parameter Control

 Theoretical analysis of an 𝜀-greedy RL parameter control technique
[Benjamin Doerr, Carola Doerr, Jing Yang: k-Bit Mutation with Self-Adjusting k Outperforms Standard Bit Mutation. PPSN 2016]

 Theoretical analysis for self-adjusting strategy for problems with multi-choice 
decision variables [Benjamin Doerr, Carola Doerr, Timo Kötzing: Static and Self-Adjusting Mutation Strengths for Multi-

valued Decision Variables. Algorithmica 2018]

 Lower bounds for algorithms with dynamic parameters
[Benjamin Doerr, Carola Doerr, Jing Yang: Optimal parameter choices via precise black-box analysis. TCS 2020]
[Benjamin Doerr, Carola Doerr: Optimal static and self-adjusting parameter choices for the (1+(λ, λ)) genetic algorithm. Algorithmica
2018]

 Identification of optimal parameter values for RLS, (1+𝜆) EAs, …
[Nathan Buskulic, Carola Doerr: Maximizing drift is not optimal for solving OneMax. Evol. Comput., to appear]
[Maxim Buzdalov, Carola Doerr: Optimal Mutation Rates for the (1+λ ) EA on OneMax. PPSN 2020]

 Several empirical results
[Arina Buzdalova, Carola Doerr, Anna Rodionova: Hybridizing the 1/5-th Success Rule with Q-Learning for Controlling the Mutation 
Rate of an Evolutionary Algorithm. PPSN 2020]
[Anna Rodionova, Kirill Antonov, Arina Buzdalova, Carola Doerr: Offspring population size matters when comparing evolutionary 
algorithms with self-adjusting mutation rates. GECCO 2019]
[Furong Ye, Carola Doerr, Thomas Bäck: Interpolating Local and Global Search by Controlling the Variance of Standard Bit Mutation. 
CEC 2019]
[….]

 Tutorials at GECCO since 2017, WCCI/CEC 2020, PPSN 2018

 Book chapter with survey of theoretical results and new taxonomy
[Benjamin Doerr, Carola Doerr: Theory of Parameter Control for Discrete Black-Box Optimization: Provable Performance Gains 
Through Dynamic Parameter Choices. Book chapter in Theory of Evolutionary Computation, Springer 2020]
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30[10] Benjamin Doerr, Carola Doerr, Johannes Lengler: Self-adjusting mutation rates with provably optimal success rules. GECCO 2019 

[9] Carola Doerr, Markus Wagner: Simple on-the-fly parameter selection mechanisms for two classical discrete black-box optimization 
benchmark problems. GECCO 2018 

 (1+1) Evolutionary Algorithm with generalized 1/5-th success rule

 Empirical results in [9]

 Theoretical result
Theorem [10]: The (1+1) EA with 1/𝑒 success rule achieves 
asymptotically optimal running time on LeadingOnes. 
(which is around 12% better than that of the best static (1+1) EA)



Parameter 
control

Algorithm 
design

Main Contributions

I. Complexity theory for sampling-based heuristics
How do certain algorithmic characteristics influence the performance? 

II. Algorithm design
Crossover-based algorithms can be strictly better than mutation-based 
ones even for OneMax

III. Theoretical analyses for heuristics with dynamic parameter choices
More than just constant-factor speed-up

IV. Benchmarking
Modular benchmark design

31

Black-box
complexity

Bench-
marking



Benchmarking as Intermediate between 
Theoretical and Empirical Research

32

[11] Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M. Shir, Thomas Bäck: 
Benchmarking discrete optimization heuristics with IOHprofiler. Appl. Soft Comput. 2020

[12] IOHprofiler is available on GitHub and CRAN. Wiki: https://iohprofiler.github.io/

https://iohprofiler.github.io/
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Automated Algorithm Selection,
Configuration, Design

Benchmark Problems

…
..Problem Generators

Experimentation Analysis and 
Visualization

Data Repositories

Visualization
 Emp. Attainment Functions
 Search Space “Illumination” 

A posteriori Analyses
 Statistical Analyses

 DSCTool
 Bayesian Inference
 …

 Parameter importance
 …

Feature Extraction
 flacco
 LON
 …

Hand-Picked Problems

Algorithms

…
..Home-Made Heuristics

Algorithm Frameworks

Representation
Learning



Automated Algorithm Selection,
Configuration, Design

34

Benchmark Problems

…
..Problem Generators

IOHexperimenter IOHanalyzer

Data Repositories

Visualization
 Emp. Attainment Functions
 Search Space “Illumination” 

A posteriori Analyses
 Statistical Analyses

 DSCTool
 Bayesian Inference
 …

 Parameter importance
 …

Feature Extraction
 flacco
 LON
 …

Hand-Picked Problems

IOHproblems

…
..Nevergrad

BBOB/COCO

IOHdata

Algorithms

…
..Home-Made Heuristics

Algorithm Frameworks

IOHalgorithms

Representation
Learning

irace
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 better compatibility between tools

 better documentation

 better access to tools, code, data

 better re-usability

(format, ease of access, …)



Empirical Approach

 real-world instances

 everything you can implement

 exact numbers

 typically easy to set up

 only a finite number of 

instances of bounded size

 representative?

 only tells you numbers

 depends on implementation

 only single algorithms

Mathematical Approach   

 only models for real-world instances

 limited scope, e.g., (1+1) EA

 limited precision, e.g., 𝑂 𝑛2

 finding proofs can be difficult

 results hold for whole classes of 

algorithms

 guarantee!

 proof tells you the reason

 implementation independent

 lower bounds (= performance limits)

Complementary Results



…

Empirical Approach Mathematical Approach   



Empirical Approach Mathematical Approach   



PART II
Academic Activities
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Publication List
 1 software package

 7 editorials (3 edited proceedings, 2 edited special issues, 2 Dagstuhl reports)

 4 book chapters

 30 journal papers

 8 Algorithmica

 5 Theoretical Computer Science

 4 Evolutionary Computation 

 2 Information Processing Letters

 1 Journal of the ACM

 1 Theory of Computing Systems

 1 Journal of Complexity 

 1 SIAM Journal on Numerical Analysis

 60 conference papers

 8 tutorials

 3 theses

 19 workshop papers and other publications (e.g., articles in lightly refereed conference proceedings 

and summaries of my work that address a broader scientifically interested audience)
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 1 Discrete Applied Mathematics

 1 Random Structures & Algorithms

 1 Distributed Computing

 1 ACM Transactions on Economics and 
Computation

 1 Artificial Intelligence

 1 Applied Soft Computing

 1 Journal of Graph Algorithms and 
Applications



Student Supervision
 PostDocs

 Hao Wang 01/2020-08/2020
now Assistant Professor at LIACS, Leiden University

 Martin Krejca 01/2021-10/2022

 PhD students

 Diederick Vermetten (Leiden University, 01/2020-)
co-supervising with Thomas Bäck

 Quentin Renau (CIFRE Thales, 02/2019-)
co-supervising with Benjamin Doerr and Johann Dreo

 Anja Jankovic (Sorbonne Université, 10/2018-09/2021)
main supervisor

 Furong Ye (Leiden University, 10/2017-09/2021)
co-supervising with Thomas Bäck

 Jing Yang (École Polytechnique, 10/2015-09/2018)
co-supervised with Benjamin Doerr

 14 Master students, 1 Bachelor student, 1 PhD interns
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Teaching Activities

 Responsible for the course MPRI 2-24-2 on Solving Optimization Problems 
with Search Heuristics (with Christoph Dürr)

 Tutorial speaker at ACM GECCO, IEEE WCCI/CEC, PPSN

 Dynamic parameter choices in evolutionary computation

 GECCO 2020 and WCCI/CEC 2020 (with Gregor Papa)

 GECCO 2017, 2018, 2019 

 PPSN 2018

 Benchmarking and analyzing iterative optimization heuristics with IOHprofiler 

 GECCO 2020 (with Thomas Bäck, Ofer M. Shir, Hao Wang)

 WCCI/CEC 2020, 2019 (with Thomas Bäck, Ofer M. Shir, Hao Wang)

 Theory for non-theoreticians 

 GECCO 2016 (with Benjamin Doerr)

 WCCI/CEC 2016 (with Benjamin Doerr)

 Black-box complexity: from complexity theory to playing Mastermind 

 GECCO 2014, 2013 (with Benjamin Doerr)
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Research Projects/Funding (PI)

 DIM RFSI projects (Paris Ile-de-France region)

 2020-22: Optimization Meets Systems Biology (Opt4SysBio)

 2019-21: Automated Algorithm Selection for Discrete Black-Box Optimization 
(AlgoSelect)

 2018-20: Online Configuration of Heuristic Optimization Algorithms

 International Emerging Action CNRS/RFBR, with ITMO University, Saint Petersburg, RU

 2020-22: Theoretical Foundation of Dynamic Parameter Selection for Randomized 
Optimization Heuristics 

 PGMO projects

 2018: Analysis of Evolutionary Algorithms: Beyond Expected Optimization Times (PI) 

 2017: Self-Adjusting Parameter Choices in Heuristic Optimization (PI) 

 2016: Parameter Optimization via Drift Analysis (PI) 

 2014: Towards a Complexity Theory for Black Box Optimization (PI) 

 LIP6 laboratory projects

 2019: Interactive Multi-objective Optimization (with Thibaut Lust)

 PostDoc Fellowship by the Alexander von Humboldt foundation

 Google Europe PhD Fellowship 
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Research Projects/Funding (member)

 Vice chair of COST action Improving Applicability of Nature-Inspired Optimisation by 
Joining Theory and Practice (PI: Thomas Jansen)

 PGMO projects

 2020: Understanding and Developing Evolutionary Algorithms via Mathematical 
Runtime Analyses (member, PI: Benjamin Doerr) 

 2019: Passive Radar Coverage Optimization (member, PI: Benjamin Doerr) 

 2015: How Randomness Helps in Scheduling Problems (member, PI: Fanny Pascual) 
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Selected Community Services
 Editorial Activities:

 Associate Editor: ACM Transactions on Evolutionary Learning and Optimization

 Editorial Board member: Evolutionary Computation Journal 

 Guest editor for a special issue in IEEE Transactions on Evolutionary Computation on
Benchmarking Sampling-Based Optimization Heuristics: Methodology and Software 
(BENCH), with Thomas Bäck, Bernhard Sendhoff, and Thomas Stützle

 Guest editor for two special issues in Algorithmica:

 2017, with Francisco Chicano (for GECCO theory track 2015)

 2019, with Dirk Sudholt (for GECCO theory track 2017)

 Review editor: Optimization (Frontiers in Applied Mathematics and Statistics)

 Advisory board: Springer Natural Computing Book Series 

 Program Committee Chair

 PPSN 2020 (268 submissions, 99 accepted)

 ACM FOGA (31 submissions, 15 accepted)

 ACM GECCO theory track 2017 and 2015

 EC Technical Committee of the IEEE Computational Intelligence Society (member since 2020)

 Board member of the GT CoA of GDR-IM [French Algorithms and Complexity group]

 Conseil scientifique de l‘UFR (≈ scientific board of engineering department at Sorbonne U.)



Event Organization

 Benchmarking Network: consolidate and stimulate activities on benchmarking 
iterative optimization heuristics, https://sites.google.com/view/benchmarking-network/

 Workshops

 2 Dagstuhl seminars on Theory of Randomized Optimization Heuristics (‘17, ‘19)

 Lorentz Center Workshop Benchmarked: Optimization meets Machine Learning

 several workshops on benchmarking@GECCO, PPSN, CEC, women@GECCO, …

 Competitions 

 Open Optimization Competition (joint effort of IOHprofiler and Nevergrad
team@Facebook) 2021, 2020

 Special Session 

 Representation Learning for Meta-Heuristic Optimization at CEC 2021

 Summer School

 COST action Summer School on Theory and Applications of Nature-Inspired 
Optimization Heuristics (2017)

 Other activities

 Hot off the Press Chair at GECCO 2021

 Late Breaking Abstracts chair at GECCO 2019

 Tutorials chair at PPSN 2016 (with Nicolas Bredeche)
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https://sites.google.com/view/benchmarking-network/

