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= Time line:

= ~45 minutes: scientific résumé

= questions by the jury members
happy to take questions from the audience during the coffee break

= jury-internal discussion // virtual coffee break
different zoom location // here 2
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Black-Box Optimization

C;

Goal: maximize f
find x* with f(x*) as large as possible

(x, f ()

— y
-

f)

Only need information on the decision space
(i.e., the domain of f)

= number of decision variables
= their type or range

= (constraints)

Black-Box



Black-Box Optimization

(x, F(x))
(v.f)

-

Black-Box

Sampling-Based Optimization Heuristics

sample solution candidates
evaluate them
adjust your sampling strategy

sample solution candidates at once
evaluate all of them

recommend a final solution

lterative Optimization Heuristics

(IOHs)

One-Shot Optimization Heuristics
(non-adaptive sampling)




Sampling-Based Optimization Heuristics
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o) Black-Box

v" Broadly applicable and easy to re-use: .‘

sampling of solution candidates ' ‘
vs. “classic” optimization: construct solutions - ’

v Avoids explicit problem formulation f: S - R

very important feature, since we often do not have such
an explicit description! (black-box problem)




Sampling-Based Optimization Heuristics

y\

Black-Box
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v' Broadly applicable and easy to re-use:
sampling of solution candidates
vs. “classic” optimization: construct solutions

v Avoids explicit problem formulation f: S - R

very important feature, since we often do not have such
an explicit description! (black-box problem)
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y But: SBOHs can be algorithms of choice even when
problem is “grey-" or even “white-box”

Example: Low Autocorrelation Binary Sequence
N—1 N—k
2
ES)= > C (S C(S) =) sisitx
k=1 =1



Sampling-Based Optimization Heuristics
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Black-Box

)

v' Broadly applicable and easy to re-use:
sampling of solution candidates
vs. “classic” optimization: construct solutions

v Avoids explicit problem formulation f: S - R
P ™ Not so well understood. The sheer amount of design choices puts a high
h  « burden on the users of SBOHS (' Achille’s heel of Evolutionary Computation” [1])

Key question: Given a problem (instance) P,
which algorithm should we use?

[1] Alvaro Fialho, Luis Da Costa, Marc Schoenauer, Michéle Sebag. Analyzing bandit-based
adaptive operator selection mechanisms. Annals of Mathematics and Artificial Intelligence, 2010 9



Empirical Approach G Mathematical Approach

real-world instances only models for real-world instances

everything you can implement = limited scope, e.g., (1+1) EA
exact numbers = limited precision, e.g., 0(n?)
typically easy to set up = finding proofs can be difficult
only a finite number of » results hold for whole classes of
instances of bounded size algorithms
- representative? —> guarantee!
only tells you numbers = proof tells you the reason
depends on implementation = implementation independent
only single algorithms = |ower bounds (= performance limits)

Complementary Results
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Sampling-Based Optimization Heuristics

. y 7
-
Black-Box
o

What is the best possible performance that
a SBOH can achieve for a given problem f?

Performance measure: optimization time
T (A, f): number of evaluations needed to find an optimal solution

Objective: inf, E[T (4, )]
Black-box complexity of F:|BBC(F) = infysuprer E[T (4, f)]
2 Approaches to determine BBC(F):

= Algorithm Design and Analysis: upper bound for BBC(F)

= Complexity Theory: lower bound for BBC(F)

When upper and lower bound match,
we know for sure that we can stop searching for better algorithms

11



Sampling-Based Optimization Heuristics
y\’

Black-Box

)

= A-black-box complexity of F: infyc 4supser E[T (4, f)]
= Examples for A:
= Poly-time algorithms
" non-adaptive algorithms (one-shot optimizers)
= deterministic algorithms
= restricted memory
= type of distributions from which we sample solution candidates

BBC(F, A) < BBC(F,B) for B € A

- quantifies the loss incurred by restricting attention to B
- identifies essential properties (e.g., learning dependencies between decision variables)

12



Selected Contributions to Black-Box Complexity Theory:
=  |mproved bounds for existing models

= unrestricted model: Mastermind, LeadingOnes

[Benjamin Doerr, Carola Doerr, Reto Spohel, Henning Thomas: Playing Mastermind With Many Colors. ). ACM 2016]
[Peyman Afshani, Manindra Agrawal, Benjamin Doerr, Carola Doerr, Kasper Green Larsen, Kurt Mehlhorn: The query complexity
of a permutation-based variant of Mastermind. Discret. Appl. Math. 2019]

= unbiased models: tight bounds for 1-ary case, Jump functions in k-ary model

[Benjamin Doerr, Carola Doerr, Jing Yang: Optimal parameter choices via precise black-box analysis. TCS 2020]
[Benjamin Doerr, Carola Doerr: The Impact of Random Initialization on the Runtime of Randomized Search Heuristics.
Algorithmica 2016]

[Benjamin Doerr, Carola Doerr, Timo Kotzing: Unbiased Black-Box Complexities of Jump Functions. Evol. Comput. 2015]

= ranking-based models: tight bound for OneMax
[Benjamin Doerr, Carola Winzen: Ranking-Based Black-Box Complexity. Algorithmica 2014]

= memory-restricted models: tight bound for OneMax
[Benjamin Doerr, Carola Winzen: Playing Mastermind with Constant-Size Memory. Theory Comput. Syst. 2014]

= Design and analysis of new restricted models

= combinations of restrictions, e.g., memory and unbiased sampling
[Carola Doerr, Johannes Lengler: OneMax in Black-Box Models with Several Restrictions. Algorithmica 2017]

= elitist black-box model (to quantify potential loss of greedy search)
[Carola Doerr, Johannes Lengler: The (1+1) Elitist Black-Box Complexity of LeadingOnes. Algorithmica 2018.
Best paper award at GECCO 2016]
[Carola Doerr, Johannes Lengler: Introducing Elitist Black-Box Models: When Does Elitist Behavior Weaken the Performance of
Evolutionary Algorithms? Evol. Comput. 2017]

=  Survey and tutorials

[Carola Doerr: Complexity Theory for Discrete Black-Box Optimization Heuristics. Theory of Evolutionary Computation. Springer 2020]
[tutorials at GECCO 2013 and 2014, with Benjamin Doerr] 13



The Mastermind Game
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The Mastermind Game

Player 2 — O O ‘ ‘

y_/
-

Player 1

®00 olel Jo

= |l k]" > [0.n], x> (#li]|x; =2},
mélx #{i Ixn(i) = Zn(i) J—#{i | x =2z})
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The Mastermind Game

Player 2 — O O ‘ ‘

) Player 1

O
= 1 k"> [0.n], x> #{i|x; =2}
» Fro={f,lze[1..k]"}
= Theorem [2]: BBC(Fj=,) = O0(n/logn)
= Theorem [3]: BBC(F\=,) = O(nlogn)

(several follow-up works improved leading constant and lower order terms)
= Theorem [4]: BBC(F\=,) = O(nloglogn)
= can be achieved in poly-time

= can be achieved with deterministic algorithms
= cannot be achieved with non-adaptive algorithms (!)
= Theorem [5]: BBC(Fj=,) = 0(n)

[2] Paul Erd6s and Alfréd Rényi. On two problems of information theory. Magyar Tudomanyos Akadémia Matematikai Kutaté Intézet Kézleményei, 1963.

[3] Vasek Chvatal: Mastermind. Combinatorica 1983

[4] Benjamin Doerr, Carola Doerr, Reto Spohel, Henning Thomas: Playing Mastermind With Many Colors. J. ACM, 2016
[5] Anders Martinsson, Pascal Su: Mastermind with a Linear Number of Queries. CoRR abs/2011.05921 (2020) 16
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. = Theorem [2]: BBC(Fy=2) = (1 + 0(1))
| 1-shot-learning-BBC(Fj=5) < (2 + 0(1))

= Theorem [4]: BBC(Fy=,) = O(nloglog
1-shot-learning-BBC(Fy~,,) = O(nlogn)

n/logn
n/logn

n)

One-Shot Optimization

k iterations

— fully adaptive case

‘o\" .,
blact \‘ NEURALINFORMATION
2% PROCESSING SYSTEMS
LEADERBEOARD EEmDOX .
l‘.l

Team

AutoML.org & IOHprofiler, featuring the switching squirrel

DeepWisdom f : e
16 iterations a 8 evals Huawei Noah's Ark Lab ; ‘

. S
=
-

dangnguyen

[2] Paul Erd6s and Alfréd Rényi. On two problems of information theory. Magyar Tudomanyos Akadémia Matematikai Kutaté Intézet Kézleményei, 1963.
[4] Benjamin Doerr, Carola Doerr, Reto Spdhel, Henning Thomas: Playing Mastermind With Many Colors. ). ACM, 2016

sAutoML.org

BIFreiburg-Hannover

Score Prize
94.845 $3,000
93.380

93.241

93.082
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Mastermind with k = 2 Colors (OneMax)

Theorem by Erdds and Rényi: BBC(Fy=,) = 0(n/logn)
Evolutionary algorithms need Q(nlogn)

Lehre, Witt [Algorithmica 2012]:
The unary unbiased black-box complexity of Fj—, is Q(nlogn).
(that is, all mutation-only algos need at least nlog n evaluations to optimize OneMax)

How can we use such info to design better algorithms?

18



Best-so-far f(x)-value

Mastermind with k = 2 Colors (OneMax)

Theorem by Erdds and Rényi: BBC(Fy=,) = 0(n/logn)
Evolutionary algorithms need Q(nlogn)

Lehre, Witt [Algorithmica 2012]:
The unary unbiased black-box complexity of Fj—, is Q(nlogn).
(that is, all mutation-only algos need at least n log n evaluations to optimize OneMax)
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Mastermind with k = 2 Colors (OneMax)

Theorem by Erdds and Rényi: BBC(Fy=,) = 0(n/logn)
Evolutionary algorithms need Q(nlogn)
Lehre, Witt [Algorithmica 2012]:

The unary unbiased black-box complexity of Fj—, is Q(nlogn).
(that is, all mutation-only algos need at least nlog n evaluations to optimize OneMax)

11001111011111

| : How can we learn from points
‘7 of inferior objective values? 01001011011011
10000110011111
2. 11001111000011

Assume that we are close to the optimum already * 11010111010111

In this offspring x’, at least one bit is correct
that is not correct in x

—\
| _e000l— rw-¢
\ /
\ /
N

20



Mastermind with k = 2 Colors (OneMax)

Theorem by Erdds and Rényi: BBC(Fy=,) = 0(n/logn)
Evolutionary algorithms need Q(nlogn)
Lehre, Witt [Algorithmica 2012]:

The unary unbiased black-box complexity of Fj—, is Q(nlogn).
(that is, all mutation-only algos need at least n log n evaluations to optimize OneMax)

11001111011111
| : How can we learn from points
9 of inferior objective values?
il
Uniform crossover: take entry from + 11010111010111
= x’ with probability c = 11000111011111
= x with probability 1 — ¢ = 11001111010111
e o
we just need to do this often enough
. NS 1101111101111

Theorem [5]: The (1 + (4, A)) GA achieves o(nlogn) expected optimization
time on 2-color Mastermind.

[5] Benjamin Doerr, Carola Doerr, Franziska Ebel: From black-box complexity to designing new genetic algorithms. 21
TCS 2015. Best paper award at GECCO 2013



Mastermind with k = 2 Colors (OneMax)

Theorem by Erdds and Rényi: BBC(Fy=,) = 0(n/logn)
Evolutionary algorithms need Q(nlogn)

Lehre, Witt [Algorithmica 2012]:

The unary unbiased black-box complexity of Fj—, is Q(nlogn).

(that is, all mutation-only algos need at least nlog n evaluation ize OneMax)

4 :
~ How can we learn from points

{) of inferior objective values?
i

Uniform crossover: take entry from
= x" with probability ¢
= x with probability 1 — ¢
we just need to do this often enough .\)
Theorem [4]: The (1 + (4, A)) GA achieves o(nlogn) expected optimization

time on 2-color Mastermind. This proves that "~ crossover” is provably better
than "mutation”-only algorithms even for OneMax.

[5] Benjamin Doerr, Carola Doerr, Franziska Ebel: From black-box complexity to designing new genetic algorithms. 22
TCS 2015. Best paper award at GECCO 2013



Mastermind with k = 2 Colors (OneMax)

= Theorem by Erdés and Rényi: BBC(Fj-,) = 0(n/logn)
= Evolutionary algorithms need Q(nlogn)

= Lehre, Witt [Algorithmica 2012]:

The unary unbiased black-box complexity of Fj—, is Q(nlogn).
(that is, all mutation-only algos need at least nlog n evaluations to optimize OneMax)

Theorem [5]: For k < logn,
the k-ary unbiased black-box complexity of 11001111011111
2-color Mastermind (OneMax) is O (n/k). 01001111110111

11100111011101
11010101011111

11111111111111

+ + ++

[5] Benjamin Doerr, Carola Winzen: Reducing the arity in unbiased black-box complexity. TCS 2014. Best paper award at GECCO 2012.

= Theorem [4]: The (1 + (4, A)) GA achieves o(nlogn) expected optimization
time on 2-color Mastermind. This proves that ~crossover” is provably better
than "mutation”-only algorithms even for OneMax.

[5] Benjamin Doerr, Carola Doerr, Franziska Ebel: From black-box complexity to designing new genetic algorithms. 723
TCS 2015. Best paper award at GECCO 2013



The (1+(4, 1)) GA

Initialization: Sample x € {0,1}" u.a.r.
Optimization: fort = 1,2,3, ... do
Mutation phase:
Sample € from Bin(n,p = 1/n);
fori = 1,..,2do Sample x¥ « mut,(x);
Choose x’ € {x), .., xMY with f(x") = max{f(xD), ..., fF(xP)};
Crossover phase:

fori = 1,..,1do Sample y() « Crossg=1,1(x, x');

Choose y € {y, ..., yMY with f(y) = max{f(y®P), ..., FyP)};
10.  Selection step: if f(y) = f(x) then replace x by y;

L 0 N O U B WD RE

Adaptive parameter setting works very well:

n
Theorem [5,6]: For A = max {n_f(x),Z},

the runtime on OneMax is ®(n). This is optimal.

[5] Benjamin Doerr, Carola Doerr, Franziska Ebel: From black-box complexity to designing new genetic algorithms. TCS 2015
[6] Benjamin Doerr, Carola Doerr: Optimal static and self-adjusting parameter choices for the (1+(A, A)) genetic algorithm. Algorithmica 2018



The (1+(4, 1)) GA

Initialization: Sample x € {0,1}" u.a.r.
Optimization: fort = 1,2,3, ... do
Mutation phase:
Sample € from Bin(n,p = A/n);
fori = 1,...,2do Sample x¥ « mut,(x);
Choose x’ € {x), .., xMY with f(x") = max{f(xD), ..., fF(xP)};
Crossover phase:

fori = 1,..,2do Sample y() « Crossc=1,1(x, x');

Choose y € {y, ..., yMY with f(y) = max{f(y®P), ..., FyP)};

10. Selection and update step:

11. if f(y) > f(x) then replace x by y and A by F*1;

12. if f(y) = f(x) then replace x by y and A by A/F; — 1/5-th success rule
13. if f(y) < f(x) then replace 1 by 1/F; Rechenberg, bevroye,

Schumer/Steiglitz]

here interpretation from:

[Stefan Kern, Sibylle D. Miiller, Nikolaus Hansen, Dirk Biiche, Jiri Ocenasek, and Petros Koumoutsakos. Learning
probability distributions in continuous evolutionary algorithms - a comparative review. Natural Computing 2004]

L 0 N O U B WD RE



1000
50 - f(x)
N— n
optimal choice of A A= —e)
a0 L 4 900
30 800
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0 | |
0 200 400 600 800 1000 1200 1400 1600 1800
iteration

Theorem [6]: The self-adjusting (1 + (4, /1)) GA with 1/5-th success rule has a linear
(and hence optimal) expected running time on OneMax. No static parameter choice can

achieve this, i.e., we have a super-constant speed-up from dynamic parameter choices

[6] Benjamin Doerr, Carola Doerr: Optimal static and self-adjusting parameter choices for the (1+(A, A)) genetic algorithm. Algorithmica 2018 26



Main Contributions

|.  Complexity theory for sampling-based heuristics
How do certain algorithmic characteristics influence the performance?

Il. Algorithm design
Crossover-based algorithms can be strictly better than mutation-based
ones even for OneMax

Ill. Theoretical analyses for heuristics with dynamic parameter choices
More than just constant-factor speed-up

Black-box Algorithm Parameter

complexity design control

27



Other Selected Contributions to Parameter Control

Theoretical analysis of an e-greedy RL parameter control technique
[Benjamin Doerr, Carola Doerr, Jing Yang: k-Bit Mutation with Self-Adjusting k Outperforms Standard Bit Mutation. PPSN 2016]

_EEp Cip HN ENnp Ep BN

= Key challenge: trade-off between

[11] Alvaro Fialho, Luis Da Costa, Marc Schoenauer,

u exp|0itati0n: we want to maximize reward Michéle Sebag: Analyzing bandit-based adaptive

operator selection mechanisms. Ann. Math. Artif.

= exploration: has quality of parameter changed? intell. 2010

[12] Dirk Thierens: An adaptive pursuit strategy for

| MAB-“terature: UCB’ probab|||ty matChing, allocating operator probabilities. GECCO 2005

=  Qur Theorem: For suitably chosen parameter values,
the expected optimization time of the &-greedy RLS

is almost optimal: E[T] — IE[Topt,r] = o(n).

28



Other Selected Contributions to Parameter Control

Theoretical analysis of an e-greedy RL parameter control technique
[Benjamin Doerr, Carola Doerr, Jing Yang: k-Bit Mutation with Self-Adjusting k Outperforms Standard Bit Mutation. PPSN 2016]

Theoretical analysis for self-adjusting strategy for problems with multi-choice

decision variables [Benjamin Doerr, Carola Doerr, Timo Kétzing: Static and Self-Adjusting Mutation Strengths for Multi-
valued Decision Variables. Algorithmica 2018]

Lower bounds for algorithms with dynamic parameters

[Benjamin Doerr, Carola Doerr, Jing Yang: Optimal parameter choices via precise black-box analysis. TCS 2020]
[Benjamin Doerr, Carola Doerr: Optimal static and self-adjusting parameter choices for the (1+(A, A)) genetic algorithm. Algorithmica
2018]

Identification of optimal parameter values for RLS, (1+A) EAs, ...

[Nathan Buskulic, Carola Doerr: Maximizing drift is not optimal for solving OneMax. Evol. Comput., to appear]
[Maxim Buzdalov, Carola Doerr: Optimal Mutation Rates for the (1+A ) EA on OneMax. PPSN 2020]

Several empirical results

[Arina Buzdalova, Carola Doerr, Anna Rodionova: Hybridizing the 1/5-th Success Rule with Q-Learning for Controlling the Mutation
Rate of an Evolutionary Algorithm. PPSN 2020]

[Anna Rodionova, Kirill Antonov, Arina Buzdalova, Carola Doerr: Offspring population size matters when comparing evolutionary
algorithms with self-adjusting mutation rates. GECCO 2019]

[Furong Ye, Carola Doerr, Thomas Back: Interpolating Local and Global Search by Controlling the Variance of Standard Bit Mutation.
CEC 2019]

[....]
Tutorials at GECCO since 2017, WCCI/CEC 2020, PPSN 2018

Book chapter with survey of theoretical results and new taxonomy

[Benjamin Doerr, Carola Doerr: Theory of Parameter Control for Discrete Black-Box Optimization: Provable Performance Gains
Through Dynamic Parameter Choices. Book chapter in Theory of Evolutionary Computation, Springer 2020]

29



(1+1) Evolutionary Algorithm with generalized 1/5-th success rule
= Empirical results in [9]

120

x10°

— fvverage ell Y

100 - 1‘?cupt
1.45
1.4
1.35
1.3
1.25

85 & & 8

12

1.15
0

3 8 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 98
LO(x)

1.1

1.05

Figure 3: Average and optimal mutation strengths for dif-
ferent Lo(x) values (n = 500, 10 independent runs of the
(1+1)EA, with A= 1.2,b=0.85 and py = 1/n)

= Theoretical result
Theorem [10]: The (1+1) EA with 1/e success rule achieves

asymptotically optimal running time on LeadingOnes.
(which is around 12% better than that of the best static (1+1) EA)

[9] Carola Doerr, Markus Wagner: Simple on-the-fly parameter selection mechanisms for two classical discrete black-box optimization
benchmark problems. GECCO 2018

[10] Benjamin Doerr, Carola Doerr, Johannes Lengler: Self-adjusting mutation rates with provably optimal success rules. GECCO 2019
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Main Contributions

Complexity theory for sampling-based heuristics
How do certain algorithmic characteristics influence the performance?

Algorithm design
Crossover-based algorithms can be strictly better than mutation-based
ones even for OneMax

Theoretical analyses for heuristics with dynamic parameter choices
More than just constant-factor speed-up

V.

Benchmarking
Modular benchmark design

Black-box Algorithm Parameter

complexity design control

31



Benchmarking as Intermediate between
Theoretical and Empirical Research

Proportion of (run, target, ...) pairs
(=
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[11] Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M. Shir, Thomas Béck:
Benchmarking discrete optimization heuristics with IOHprofiler. Appl. Soft Comput. 2020

[12] IOHprofiler is available on GitHub and CRAN. Wiki: https://iohprofiler.github.io/ 32



https://iohprofiler.github.io/

Automated Algorithm Selection,
Configuration, Design

Benchmark Problems

Problem Generators Data Repositories
Hand-Picked Problems

Feature Extraction
=  flacco
= |ON

Representation Experimentation Analysis and

Learning : Visualization
| .

Algorithms

A posteriori Analyses
= Statistical Analyses
Home-Made Heuristics = DSCTool

Algorithm Frameworks = Bayesian Inference

* Parameter importance

Visualization
=  Emp. Attainment Functions
= Search Space “lllumination” 33




irace

Automated Algorithm Selection,
Configuration, Design

Benchmark Problems

Problem Generators

Feature Extraction

Hand-Picked Problems
IOHproblems

VNevergrad

Data Repositories

Nevergrad

BBOB/COCO

v

IOHdata

= flacco
= LON

Representation
Learning

IOHexperimenter

IOHanalyzer

Algorithms

Home-Made Heuristics

Algorithm Frameworks

IOHalgorithms

@rodiseo

A posteriori Analyses
=  Statistical Analyses
= DSCTool
= Bayesian Inference

=  Parameter importance

I O I Profiler

Visualization
=  Emp. Attainment Functions
= Search Space “lllumination”
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better compatibility between tools
better documentation

better access to tools, code, data

NN N X

better re-usability
(format, ease of access, ...)

Lorentz

center |

Benchmarked
Optimization Meets Machine Learning

9 - 13 November 2020, Leiden, the Netherlands

IEEE TRANSACTIONS ON

EVOLUTIONARY

Online Workshop

COMPUTATION

A PUBLICATION OF THE IEEE COMPUTATIONAL INTELLIGENCE SOCIETY

www.ioee-cis.org/pubs/tec

Open Optimization Competition 2020

. benchmarking-network
The Nevergrad and |IOHprofiler teams are happy to announce that we have paired up for the Open benchmark net Follows you

Optimization Competition 2020.
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Empirical Approach G Mathematical Approach

real-world instances only models for real-world instances

everything you can implement = limited scope, e.g., (1+1) EA
exact numbers = limited precision, e.g., 0(n?)
typically easy to set up = finding proofs can be difficult
only a finite number of » results hold for whole classes of
instances of bounded size algorithms
- representative? —> guarantee!
only tells you numbers = proof tells you the reason
depends on implementation = implementation independent
only single algorithms = |ower bounds (= performance limits)

Complementary Results
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Empirical Approach

50 - f(x) ——

A
optimal choice of A

1000
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Figure 3: Average and optimal mutation strengths for dif-
ferent Lo(x) values (n = 500, 10 independent runs of the

(1+1)EA, with A= 1.2,b = 0.85, and pg = 1/n)
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Figure 3: Average optimization times for 100 independent
runs, normalized by n?. (Initial) population size for the adap-
tive variants is 50.
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Empirical Approach

Case Choice

Discrete decision variables only

Noisy optimization with categorical variables Genetic algorithm mixed with bandits (Heidrich-Meisner & lgel,
2009} Liu et al.| 2020).
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Academic Activities
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Publication List

1 software package

7 editorials (3 edited proceedings, 2 edited special issues, 2 Dagstuhl reports)

4 book chapters

30 journal papers

8 Algorithmica

5 Theoretical Computer Science

4 Evolutionary Computation

2 Information Processing Letters

1 Journal of the ACM

1 Theory of Computing Systems

1 Journal of Complexity

1 SIAM Journal on Numerical Analysis

60 conference papers

8 tutorials

3 theses

1 Discrete Applied Mathematics
1 Random Structures & Algorithms
1 Distributed Computing

1 ACM Transactions on Economics and
Computation

1 Artificial Intelligence
1 Applied Soft Computing

1 Journal of Graph Algorithms and
Applications

19 WOI"kShOp papers and other pu blications (e.g., articles in lightly refereed conference proceedings
and summaries of my work that address a broader scientifically interested audience)
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Student Supervision

= PostDocs

* Hao Wang 01/2020-08/2020
now Assistant Professor at LIACS, Leiden University

= Martin Krejca 01/2021-10/2022
=  PhD students
= Diederick Vermetten (Leiden University, 01/2020-)

co-supervising with Thomas Back

= Quentin Renau (CIFRE Thales, 02/2019-)

co-supervising with Benjamin Doerr and Johann Dreo

= Anja Jankovic (Sorbonne Université, 10/2018-09/2021)

main supervisor

" Furong Ye (Leiden University, 10/2017-09/2021)

co-supervising with Thomas Back

= Jing Yang (Ecole Polytechnique, 10/2015-09/2018)

co-supervised with Benjamin Doerr

= 14 Master students, 1 Bachelor student, 1 PhD interns
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Teaching Activities

Responsible for the course MPRI 2-24-2 on Solving Optimization Problems
with Search Heuristics (with Christoph Diirr)

Tutorial speaker at ACM GECCO, IEEE WCCI/CEC, PPSN
= Dynamic parameter choices in evolutionary computation
= GECCO 2020 and WCCI/CEC 2020 (with Gregor Papa)
= GECCO 2017, 2018, 2019
= PPSN 2018
= Benchmarking and analyzing iterative optimization heuristics with IOHprofiler
= GECCO 2020 (with Thomas Back, Ofer M. Shir, Hao Wang)
= WCCI/CEC 2020, 2019 (with Thomas Back, Ofer M. Shir, Hao Wang)
= Theory for non-theoreticians
= GECCO 2016 (with Benjamin Doerr)
= WCCI/CEC 2016 (with Benjamin Doerr)
= Black-box complexity: from complexity theory to playing Mastermind
= GECCO 2014, 2013 (with Benjamin Doerr)
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Research Projects/Funding (PI)

DIM RFSI projects (Paris lle-de-France region)
= 2020-22: Optimization Meets Systems Biology (Opt4SysBio)

= 2019-21: Automated Algorithm Selection for Discrete Black-Box Optimization
(AlgoSelect)

= 2018-20: Online Configuration of Heuristic Optimization Algorithms
International Emerging Action CNRS/RFBR, with ITMO University, Saint Petersburg, RU

= 2020-22: Theoretical Foundation of Dynamic Parameter Selection for Randomized
Optimization Heuristics

PGMO projects
= 2018: Analysis of Evolutionary Algorithms: Beyond Expected Optimization Times (PI)
= 2017: Self-Adjusting Parameter Choices in Heuristic Optimization (Pl)
= 2016: Parameter Optimization via Drift Analysis (PI)
= 2014: Towards a Complexity Theory for Black Box Optimization (PI)
LIP6 laboratory projects
= 2019: Interactive Multi-objective Optimization (with Thibaut Lust)
PostDoc Fellowship by the Alexander von Humboldt foundation
Google Europe PhD Fellowship

43



Research Projects/Funding (member)

Vice chair of COST action Improving Applicability of Nature-Inspired Optimisation by
Joining Theory and Practice (Pl: Thomas Jansen)

PGMO projects

= 2020: Understanding and Developing Evolutionary Algorithms via Mathematical
Runtime Analyses (member, Pl: Benjamin Doerr)

= 2019: Passive Radar Coverage Optimization (member, Pl: Benjamin Doerr)
= 2015: How Randomness Helps in Scheduling Problems (member, Pl: Fanny Pascual)

44



Selected Community Services

=  Editorial Activities:

Associate Editor: ACM Transactions on Evolutionary Learning and Optimization
Editorial Board member: Evolutionary Computation Journal

Guest editor for a special issue in IEEE Transactions on Evolutionary Computation on
Benchmarking Sampling-Based Optimization Heuristics: Methodology and Software
(BENCH), with Thomas Béack, Bernhard Sendhoff, and Thomas Stiitzle

Guest editor for two special issues in Algorithmica:

= 2017, with Francisco Chicano (for GECCO theory track 2015)

= 2019, with Dirk Sudholt (for GECCO theory track 2017)
Review editor: Optimization (Frontiers in Applied Mathematics and Statistics)
Advisory board: Springer Natural Computing Book Series

=  Program Committee Chair

PPSN 2020 (268 submissions, 99 accepted)
ACM FOGA (31 submissions, 15 accepted)
ACM GECCO theory track 2017 and 2015

=  EC Technical Committee of the IEEE Computational Intelligence Society (member since 2020)

=  Board member of the GT CoA of GDR-IM [French Algorithms and Complexity group]

= Conseil scientifigue de I'UFR (= scientific board of engineering department at Sorbonne U.)



Event Organization

Benchmarking Network: consolidate and stimulate activities on benchmarking
iterative optimization heuristics, https://sites.google.com/view/benchmarking-network/

Workshops

= 2 Dagstuhl seminars on Theory of Randomized Optimization Heuristics (17, ‘19)

= Lorentz Center Workshop Benchmarked: Optimization meets Machine Learning

= several workshops on benchmarking@GECCO, PPSN, CEC, women@GECCO, ...
Competitions

= QOpen Optimization Competition (joint effort of IOHprofiler and Nevergrad
team@Facebook) 2021, 2020

Special Session

= Representation Learning for Meta-Heuristic Optimization at CEC 2021
Summer School

=  COST action Summer School on Theory and Applications of Nature-Inspired
Optimization Heuristics (2017)

Other activities
= Hot off the Press Chair at GECCO 2021
= |ate Breaking Abstracts chair at GECCO 2019
= Tutorials chair at PPSN 2016 (with Nicolas Bredeche)
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