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Black-Box Optimization
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Black-Box

𝒇𝑥, 𝑓 𝑥

Only need information on the decision space 

(i.e., the domain of 𝑓)

 number of decision variables

 their type or range 

 (constraints)

Goal: maximize 𝑓
find 𝑥∗ with 𝑓 𝑥∗ as large as possible

𝑦

𝑓 𝑦



Black-Box Optimization

6

Black-Box

𝒇𝑥, 𝑓 𝑥

𝑦, 𝑓 𝑦

Sampling-Based Optimization Heuristics

 sample solution candidates

 evaluate them

 adjust your sampling strategy

Iterative Optimization Heuristics
(IOHs)

 sample solution candidates at once

 evaluate all of them

 recommend a final solution

One-Shot Optimization Heuristics
(non-adaptive sampling)



Sampling-Based Optimization Heuristics
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 Broadly applicable and easy to re-use: 
sampling of solution candidates 
vs. “classic” optimization: construct solutions

 Avoids explicit problem formulation 𝑓: 𝑆 → ℝ

very important feature, since we often do not have such 
an explicit description! (black-box problem)



Sampling-Based Optimization Heuristics
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 Broadly applicable and easy to re-use: 
sampling of solution candidates 
vs. “classic” optimization: construct solutions

 Avoids explicit problem formulation 𝑓: 𝑆 → ℝ

But: SBOHs can be algorithms of choice even when 
problem is “grey-” or even “white-box”

Example: Low Autocorrelation Binary Sequence



Sampling-Based Optimization Heuristics
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 Broadly applicable and easy to re-use: 
sampling of solution candidates 
vs. “classic” optimization: construct solutions

 Avoids explicit problem formulation 𝑓: 𝑆 → ℝ

 Not so well understood. The sheer amount of design choices puts a high 
burden on the users of SBOHs (``Achille’s heel of Evolutionary Computation” [1])

Key question: Given a problem (instance) 𝑃, 
which algorithm should we use?

[1] Álvaro Fialho, Luis Da Costa, Marc Schoenauer, Michèle Sebag. Analyzing bandit-based 
adaptive operator selection mechanisms. Annals of Mathematics and Artificial Intelligence, 2010
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Empirical Approach

 real-world instances

 everything you can implement

 exact numbers

 typically easy to set up

 only a finite number of 

instances of bounded size

 representative?

 only tells you numbers

 depends on implementation

 only single algorithms

Mathematical Approach   

 only models for real-world instances

 limited scope, e.g., (1+1) EA

 limited precision, e.g., 𝑂 𝑛2

 finding proofs can be difficult

 results hold for whole classes of 

algorithms

 guarantee!

 proof tells you the reason

 implementation independent

 lower bounds (= performance limits)

Complementary Results



 What is the best possible performance that 
a SBOH can achieve for a given problem 𝑓?

 Performance measure: optimization time
𝑇 𝐴, 𝑓 : number of evaluations needed to find an optimal solution

 Objective: inf𝐴 𝔼 𝑇 𝐴, 𝑓

 Black-box complexity of ℱ: BBC ℱ = inf𝐴sup𝑓∈ℱ 𝔼 𝑇 𝐴, 𝑓

 2 Approaches to determine BBC ℱ :

 Algorithm Design and Analysis: upper bound for BBC ℱ

 Complexity Theory: lower bound for BBC ℱ
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When upper and lower bound match, 
we know for sure that we can stop searching for better algorithms



 𝒜-black-box complexity of ℱ: inf𝐴∈𝒜sup𝑓∈ℱ 𝔼 𝑇 𝐴, 𝑓

 Examples for 𝒜:

 Poly-time algorithms

 non-adaptive algorithms (one-shot optimizers)

 deterministic algorithms

 restricted memory

 type of distributions from which we sample solution candidates

 …
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Sampling-Based Optimization Heuristics

BBC ℱ,𝒜 ≤ BBC ℱ,ℬ for ℬ ⊆ 𝒜

 quantifies the loss incurred by restricting attention to ℬ

 identifies essential properties (e.g., learning dependencies between decision variables)



Selected Contributions to Black-Box Complexity Theory:
 Improved bounds for existing models

 unrestricted model: Mastermind, LeadingOnes
[Benjamin Doerr, Carola Doerr, Reto Spöhel, Henning Thomas: Playing Mastermind With Many Colors. J. ACM 2016]
[Peyman Afshani, Manindra Agrawal, Benjamin Doerr, Carola Doerr, Kasper Green Larsen, Kurt Mehlhorn: The query complexity 
of a permutation-based variant of Mastermind. Discret. Appl. Math. 2019]

 unbiased models: tight bounds for 1-ary case, Jump functions in 𝑘-ary model
[Benjamin Doerr, Carola Doerr, Jing Yang: Optimal parameter choices via precise black-box analysis. TCS 2020]
[Benjamin Doerr, Carola Doerr: The Impact of Random Initialization on the Runtime of Randomized Search Heuristics. 
Algorithmica 2016]
[Benjamin Doerr, Carola Doerr, Timo Kötzing: Unbiased Black-Box Complexities of Jump Functions. Evol. Comput. 2015]

 ranking-based models: tight bound for OneMax
[Benjamin Doerr, Carola Winzen: Ranking-Based Black-Box Complexity. Algorithmica 2014]

 memory-restricted models: tight bound for OneMax
[Benjamin Doerr, Carola Winzen: Playing Mastermind with Constant-Size Memory. Theory Comput. Syst. 2014]

 Design and analysis of new restricted models

 combinations of restrictions, e.g., memory and unbiased sampling
[Carola Doerr, Johannes Lengler: OneMax in Black-Box Models with Several Restrictions. Algorithmica 2017]

 elitist black-box model (to quantify potential loss of greedy search)
[Carola Doerr, Johannes Lengler: The (1+1) Elitist Black-Box Complexity of LeadingOnes. Algorithmica 2018. 
Best paper award at GECCO 2016]
[Carola Doerr, Johannes Lengler: Introducing Elitist Black-Box Models: When Does Elitist Behavior Weaken the Performance of 
Evolutionary Algorithms? Evol. Comput. 2017]

 Survey and tutorials
[Carola Doerr: Complexity Theory for Discrete Black-Box Optimization Heuristics. Theory of Evolutionary Computation. Springer 2020]
[tutorials at GECCO 2013 and 2014, with Benjamin Doerr]
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The Mastermind Game
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 𝑓𝑧: 1. . 𝑘
𝑛 → 0. . 𝑛 , 𝑥 ↦ # 𝑖 𝑥𝑖 = 𝑧𝑖 ,

max
𝜋

# 𝑖 𝑥𝜋 𝑖 = 𝑧𝜋 𝑖 } − # 𝑖 𝑥𝑖 = 𝑧𝑖})

The Mastermind Game

15

Player 1

𝒇
Player 2



The Mastermind Game

 𝑓𝑧: 1. . 𝑘
𝑛 → 0. . 𝑛 , 𝑥 ↦ # 𝑖 𝑥𝑖 = 𝑧𝑖 }

 ℱ𝑘 = 𝑓𝑧 𝑧 ∈ 1. . 𝑘 𝑛 }

 Theorem [2]: BBC ℱ𝑘=2 = Θ 𝑛/ log 𝑛

 Theorem [3]: BBC ℱ𝑘=𝑛 = 𝑂 𝑛 log𝑛
(several follow-up works improved leading constant and lower order terms)

 Theorem [4]: BBC ℱ𝑘=𝑛 = 𝑂 𝑛 loglog 𝑛

 can be achieved in poly-time

 can be achieved with deterministic algorithms

 cannot be achieved with non-adaptive algorithms (!) 

 Theorem [5]: BBC ℱ𝑘=𝑛 = Θ 𝑛

16

Player 1

𝒇
Player 2

[4] Benjamin Doerr, Carola Doerr, Reto Spöhel, Henning Thomas: Playing Mastermind With Many Colors. J. ACM, 2016

[2] Paul Erdős and Alfréd Rényi. On two problems of information theory. Magyar Tudományos Akadémia Matematikai Kutaté Intézet Közleményei, 1963. 

[3] Vasek Chvátal: Mastermind. Combinatorica 1983

[5] Anders Martinsson, Pascal Su: Mastermind with a Linear Number of Queries. CoRR abs/2011.05921 (2020)



 Theorem [2]: BBC ℱ𝑘=2 ≥ 1 + 𝑜 1 𝑛/ log 𝑛

1-shot-learning-BBC ℱ𝑘=2 ≤ 2 + 𝑜 1 𝑛/ log 𝑛

 Theorem [4]: BBC ℱ𝑘=𝑛 = 𝑂 𝑛 loglog 𝑛
1-shot-learning-BBC ℱ𝑘=𝑛 = Θ 𝑛 log𝑛

17[4] Benjamin Doerr, Carola Doerr, Reto Spöhel, Henning Thomas: Playing Mastermind With Many Colors. J. ACM, 2016
[2] Paul Erdős and Alfréd Rényi. On two problems of information theory. Magyar Tudományos Akadémia Matematikai Kutaté Intézet Közleményei, 1963. 

16 iterations à 8 evals



Mastermind with 𝒌 = 𝟐 Colors (OneMax)

 Theorem by Erdős and Rényi: BBC ℱ𝑘=2 = Θ 𝑛/ log 𝑛

 Evolutionary algorithms need Ω 𝑛 log 𝑛

 Lehre, Witt [Algorithmica 2012]: 
The unary unbiased black-box complexity of ℱ𝑘=2 is Ω 𝑛 log𝑛 . 

(that is, all mutation-only algos need at least 𝑛 log 𝑛 evaluations to optimize OneMax)

 How can we use such info to design better algorithms?

18



Mastermind with 𝒌 = 𝟐 Colors (OneMax)

 Theorem by Erdős and Rényi: BBC ℱ𝑘=2 = Θ 𝑛/ log 𝑛

 Evolutionary algorithms need Ω 𝑛 log 𝑛

 Lehre, Witt [Algorithmica 2012]: 
The unary unbiased black-box complexity of ℱ𝑘=2 is Ω 𝑛 log𝑛 . 

(that is, all mutation-only algos need at least 𝑛 log 𝑛 evaluations to optimize OneMax)
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Mastermind with 𝒌 = 𝟐 Colors (OneMax)

 Theorem by Erdős and Rényi: BBC ℱ𝑘=2 = Θ 𝑛/ log 𝑛

 Evolutionary algorithms need Ω 𝑛 log 𝑛

 Lehre, Witt [Algorithmica 2012]: 
The unary unbiased black-box complexity of ℱ𝑘=2 is Ω 𝑛 log𝑛 . 

(that is, all mutation-only algos need at least 𝑛 log 𝑛 evaluations to optimize OneMax)

How can we learn from points 
of inferior objective values?

 Assume that we are close to the optimum already

 In this offspring 𝑥’, at least one bit is correct 
that is not correct in 𝑥

20
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Mastermind with 𝒌 = 𝟐 Colors (OneMax)

 Theorem by Erdős and Rényi: BBC ℱ𝑘=2 = Θ 𝑛/ log 𝑛

 Evolutionary algorithms need Ω 𝑛 log 𝑛

 Lehre, Witt [Algorithmica 2012]: 
The unary unbiased black-box complexity of ℱ𝑘=2 is Ω 𝑛 log𝑛 . 

(that is, all mutation-only algos need at least 𝑛 log 𝑛 evaluations to optimize OneMax)

How can we learn from points 
of inferior objective values?

 Uniform crossover: take entry from 

 𝑥′ with probability 𝑐

 𝑥 with probability 1 − 𝑐

 we just need to do this often enough 

 Theorem [5]: The 1 + 𝜆, 𝜆 GA achieves 𝑜 𝑛 log 𝑛 expected optimization 

time on 2-color Mastermind. 

21
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[5] Benjamin Doerr, Carola Doerr, Franziska Ebel: From black-box complexity to designing new genetic algorithms.
TCS 2015. Best paper award at GECCO 2013
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Mastermind with 𝒌 = 𝟐 Colors (OneMax)

 Theorem by Erdős and Rényi: BBC ℱ𝑘=2 = Θ 𝑛/ log 𝑛

 Evolutionary algorithms need Ω 𝑛 log 𝑛

 Lehre, Witt [Algorithmica 2012]: 
The unary unbiased black-box complexity of ℱ𝑘=2 is Ω 𝑛 log𝑛 . 

(that is, all mutation-only algos need at least 𝑛 log 𝑛 evaluations to optimize OneMax)

How can we learn from points 
of inferior objective values?

 Uniform crossover: take entry from 

 𝑥′ with probability 𝑐

 𝑥 with probability 1 − 𝑐

 we just need to do this often enough 

 Theorem [4]: The 1 + 𝜆, 𝜆 GA achieves 𝑜 𝑛 log 𝑛 expected optimization 

time on 2-color Mastermind. This proves that ``crossover” is provably better 
than ``mutation’’-only algorithms even for OneMax. 

22
[5] Benjamin Doerr, Carola Doerr, Franziska Ebel: From black-box complexity to designing new genetic algorithms.
TCS 2015. Best paper award at GECCO 2013



Mastermind with 𝒌 = 𝟐 Colors (OneMax)

 Theorem by Erdős and Rényi: BBC ℱ𝑘=2 = Θ 𝑛/ log 𝑛

 Evolutionary algorithms need Ω 𝑛 log 𝑛

 Lehre, Witt [Algorithmica 2012]: 
The unary unbiased black-box complexity of ℱ𝑘=2 is Ω 𝑛 log𝑛 . 

(that is, all mutation-only algos need at least 𝑛 log 𝑛 evaluations to optimize OneMax)

How can we learn from points 
of inferior objective values?

 Uniform crossover: take entry from 

 𝑥′ with probability 𝑐

 𝑥 with probability 1 − 𝑐

 we just need to do this often enough 

 Theorem [4]: The 1 + 𝜆, 𝜆 GA achieves 𝑜 𝑛 log 𝑛 expected optimization 

time on 2-color Mastermind. This proves that ``crossover” is provably better 
than ``mutation’’-only algorithms even for OneMax. 
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[5] Benjamin Doerr, Carola Doerr, Franziska Ebel: From black-box complexity to designing new genetic algorithms.
TCS 2015. Best paper award at GECCO 2013

Theorem [5]: For 𝑘 ≤ log 𝑛, 
the 𝑘-ary unbiased black-box complexity of 
2-color Mastermind (OneMax) is 𝑂(𝑛/𝑘).

[5] Benjamin Doerr, Carola Winzen: Reducing the arity in unbiased black-box complexity. TCS 2014. Best paper award at GECCO 2012.
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The (1+(𝝀, 𝝀)) GA

1. Initialization: Sample 𝑥 ∈ 0,1 𝑛 u.a.r.

2. Optimization: for 𝑡 = 1,2,3, … do

3. Mutation phase:

4. Sample ℓ from Bin(𝑛, 𝑝 = 𝜆/𝑛);

5. for 𝑖 = 1,… , 𝜆 do Sample 𝑥(𝑖) ← mutℓ 𝑥 ;

6. Choose 𝑥’ ∈ {𝑥 1 , … , 𝑥(𝜆)} with 𝑓(𝑥’) = max{𝑓 𝑥 1 , … , 𝑓(𝑥(𝜆))};

7. Crossover phase:

8. for 𝑖 = 1,… , 𝜆 do Sample 𝑦(𝑖) ← cross𝑐=1/𝜆 𝑥, 𝑥′ ;

9. Choose 𝑦 ∈ {𝑦 1 , … , 𝑦(𝜆)} with 𝑓(𝑦) = max{𝑓 𝑦 1 , … , 𝑓(𝑦(𝜆))};

10. Selection step: if 𝑓 𝑦 ≥ 𝑓(𝑥) then replace 𝑥 by 𝑦;

Adaptive parameter setting works very well: 

Theorem [5,6]: For 𝜆 = max
n

n−𝑓(x)
, 2 ,

the runtime on OneMax is Θ 𝑛 . This is optimal.

[5] Benjamin Doerr, Carola Doerr, Franziska Ebel: From black-box complexity to designing new genetic algorithms. TCS 2015
[6] Benjamin Doerr, Carola Doerr: Optimal static and self-adjusting parameter choices for the (1+(λ, λ)) genetic algorithm. Algorithmica 2018



1. Initialization: Sample 𝑥 ∈ 0,1 𝑛 u.a.r.

2. Optimization: for 𝑡 = 1,2,3, … do

3. Mutation phase:

4. Sample ℓ from Bin(𝑛, 𝑝 = 𝜆/𝑛);

5. for 𝑖 = 1,… , 𝜆 do Sample 𝑥(𝑖) ← mutℓ 𝑥 ;

6. Choose 𝑥’ ∈ {𝑥 1 , … , 𝑥(𝜆)} with 𝑓(𝑥’) = max{𝑓 𝑥 1 , … , 𝑓(𝑥(𝜆))};

7. Crossover phase:

8. for 𝑖 = 1,… , 𝜆 do Sample 𝑦(𝑖) ← cross𝑐=1/𝜆 𝑥, 𝑥′ ;

9. Choose 𝑦 ∈ {𝑦 1 , … , 𝑦(𝜆)} with 𝑓(𝑦) = max{𝑓 𝑦 1 , … , 𝑓(𝑦(𝜆))};

10. Selection and update step:

11. if 𝑓 𝑦 > 𝑓(𝑥) then replace 𝑥 by 𝑦 and 𝜆 by 𝐹4𝜆;

12. if 𝑓 𝑦 = 𝑓(𝑥) then replace 𝑥 by 𝑦 and 𝜆 by 𝜆/𝐹;

13. if 𝑓 𝑦 < 𝑓(𝑥) then replace 𝜆 by 𝜆/𝐹;

The (1+(𝝀, 𝝀)) GA

1/5-th success rule 
[Rechenberg, Devroye, 

Schumer/Steiglitz]
here interpretation from: 

[Stefan Kern, Sibylle D. Müller, Nikolaus Hansen, Dirk Büche, Jiri Ocenasek, and Petros Koumoutsakos. Learning 
probability distributions in continuous evolutionary algorithms - a comparative review. Natural Computing 2004]
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𝜆 =
𝑛

𝑛 − 𝑓 𝑥

Theorem [6]: The self-adjusting 1 + 𝜆, 𝜆 GA with 1/5-th success rule has a linear 

(and hence optimal) expected running time on OneMax. No static parameter choice can 
achieve this, i.e., we have a super-constant speed-up from dynamic parameter choices

[6] Benjamin Doerr, Carola Doerr: Optimal static and self-adjusting parameter choices for the (1+(λ, λ)) genetic algorithm. Algorithmica 2018



Parameter 
control

Algorithm 
design

Main Contributions

I. Complexity theory for sampling-based heuristics
How do certain algorithmic characteristics influence the performance? 

II. Algorithm design
Crossover-based algorithms can be strictly better than mutation-based 
ones even for OneMax

III. Theoretical analyses for heuristics with dynamic parameter choices
More than just constant-factor speed-up

27

Black-box
complexity



Other Selected Contributions to Parameter Control

 Theoretical analysis of an 𝜀-greedy RL parameter control technique
[Benjamin Doerr, Carola Doerr, Jing Yang: k-Bit Mutation with Self-Adjusting k Outperforms Standard Bit Mutation. PPSN 2016]

 Key challenge: trade-off between 

 exploitation: we want to maximize reward 

 exploration: has quality of parameter changed? 

 MAB-literature: UCB, probability matching, …

 Our Theorem: For suitably chosen parameter values, 
the expected optimization time of the 𝜀-greedy RLS 

is almost optimal: 𝔼 𝑇 − 𝔼 𝑇opt,𝑟 = 𝑜 𝑛 . 
28

ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 5 ℓ = 37ℓ = 11

[11] Álvaro Fialho, Luís Da Costa, Marc Schoenauer, 
Michèle Sebag: Analyzing bandit-based adaptive 
operator selection mechanisms. Ann. Math. Artif. 
Intell. 2010

[12] Dirk Thierens: An adaptive pursuit strategy for 
allocating operator probabilities. GECCO 2005



Other Selected Contributions to Parameter Control

 Theoretical analysis of an 𝜀-greedy RL parameter control technique
[Benjamin Doerr, Carola Doerr, Jing Yang: k-Bit Mutation with Self-Adjusting k Outperforms Standard Bit Mutation. PPSN 2016]

 Theoretical analysis for self-adjusting strategy for problems with multi-choice 
decision variables [Benjamin Doerr, Carola Doerr, Timo Kötzing: Static and Self-Adjusting Mutation Strengths for Multi-

valued Decision Variables. Algorithmica 2018]

 Lower bounds for algorithms with dynamic parameters
[Benjamin Doerr, Carola Doerr, Jing Yang: Optimal parameter choices via precise black-box analysis. TCS 2020]
[Benjamin Doerr, Carola Doerr: Optimal static and self-adjusting parameter choices for the (1+(λ, λ)) genetic algorithm. Algorithmica
2018]

 Identification of optimal parameter values for RLS, (1+𝜆) EAs, …
[Nathan Buskulic, Carola Doerr: Maximizing drift is not optimal for solving OneMax. Evol. Comput., to appear]
[Maxim Buzdalov, Carola Doerr: Optimal Mutation Rates for the (1+λ ) EA on OneMax. PPSN 2020]

 Several empirical results
[Arina Buzdalova, Carola Doerr, Anna Rodionova: Hybridizing the 1/5-th Success Rule with Q-Learning for Controlling the Mutation 
Rate of an Evolutionary Algorithm. PPSN 2020]
[Anna Rodionova, Kirill Antonov, Arina Buzdalova, Carola Doerr: Offspring population size matters when comparing evolutionary 
algorithms with self-adjusting mutation rates. GECCO 2019]
[Furong Ye, Carola Doerr, Thomas Bäck: Interpolating Local and Global Search by Controlling the Variance of Standard Bit Mutation. 
CEC 2019]
[….]

 Tutorials at GECCO since 2017, WCCI/CEC 2020, PPSN 2018

 Book chapter with survey of theoretical results and new taxonomy
[Benjamin Doerr, Carola Doerr: Theory of Parameter Control for Discrete Black-Box Optimization: Provable Performance Gains 
Through Dynamic Parameter Choices. Book chapter in Theory of Evolutionary Computation, Springer 2020]
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30[10] Benjamin Doerr, Carola Doerr, Johannes Lengler: Self-adjusting mutation rates with provably optimal success rules. GECCO 2019 

[9] Carola Doerr, Markus Wagner: Simple on-the-fly parameter selection mechanisms for two classical discrete black-box optimization 
benchmark problems. GECCO 2018 

 (1+1) Evolutionary Algorithm with generalized 1/5-th success rule

 Empirical results in [9]

 Theoretical result
Theorem [10]: The (1+1) EA with 1/𝑒 success rule achieves 
asymptotically optimal running time on LeadingOnes. 
(which is around 12% better than that of the best static (1+1) EA)



Parameter 
control

Algorithm 
design

Main Contributions

I. Complexity theory for sampling-based heuristics
How do certain algorithmic characteristics influence the performance? 

II. Algorithm design
Crossover-based algorithms can be strictly better than mutation-based 
ones even for OneMax

III. Theoretical analyses for heuristics with dynamic parameter choices
More than just constant-factor speed-up

IV. Benchmarking
Modular benchmark design
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Black-box
complexity

Bench-
marking



Benchmarking as Intermediate between 
Theoretical and Empirical Research
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[11] Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M. Shir, Thomas Bäck: 
Benchmarking discrete optimization heuristics with IOHprofiler. Appl. Soft Comput. 2020

[12] IOHprofiler is available on GitHub and CRAN. Wiki: https://iohprofiler.github.io/

https://iohprofiler.github.io/
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Automated Algorithm Selection,
Configuration, Design

Benchmark Problems

…
..Problem Generators

Experimentation Analysis and 
Visualization

Data Repositories

Visualization
 Emp. Attainment Functions
 Search Space “Illumination” 

A posteriori Analyses
 Statistical Analyses

 DSCTool
 Bayesian Inference
 …

 Parameter importance
 …

Feature Extraction
 flacco
 LON
 …

Hand-Picked Problems

Algorithms

…
..Home-Made Heuristics

Algorithm Frameworks

Representation
Learning



Automated Algorithm Selection,
Configuration, Design
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Benchmark Problems

…
..Problem Generators

IOHexperimenter IOHanalyzer

Data Repositories

Visualization
 Emp. Attainment Functions
 Search Space “Illumination” 

A posteriori Analyses
 Statistical Analyses

 DSCTool
 Bayesian Inference
 …

 Parameter importance
 …

Feature Extraction
 flacco
 LON
 …

Hand-Picked Problems

IOHproblems

…
..Nevergrad

BBOB/COCO

IOHdata

Algorithms

…
..Home-Made Heuristics

Algorithm Frameworks

IOHalgorithms

Representation
Learning

irace
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 better compatibility between tools

 better documentation

 better access to tools, code, data

 better re-usability

(format, ease of access, …)



Empirical Approach

 real-world instances

 everything you can implement

 exact numbers

 typically easy to set up

 only a finite number of 

instances of bounded size

 representative?

 only tells you numbers

 depends on implementation

 only single algorithms

Mathematical Approach   

 only models for real-world instances

 limited scope, e.g., (1+1) EA

 limited precision, e.g., 𝑂 𝑛2

 finding proofs can be difficult

 results hold for whole classes of 

algorithms

 guarantee!

 proof tells you the reason

 implementation independent

 lower bounds (= performance limits)

Complementary Results



…

Empirical Approach Mathematical Approach   



Empirical Approach Mathematical Approach   



PART II
Academic Activities
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Publication List
 1 software package

 7 editorials (3 edited proceedings, 2 edited special issues, 2 Dagstuhl reports)

 4 book chapters

 30 journal papers

 8 Algorithmica

 5 Theoretical Computer Science

 4 Evolutionary Computation 

 2 Information Processing Letters

 1 Journal of the ACM

 1 Theory of Computing Systems

 1 Journal of Complexity 

 1 SIAM Journal on Numerical Analysis

 60 conference papers

 8 tutorials

 3 theses

 19 workshop papers and other publications (e.g., articles in lightly refereed conference proceedings 

and summaries of my work that address a broader scientifically interested audience)
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 1 Discrete Applied Mathematics

 1 Random Structures & Algorithms

 1 Distributed Computing

 1 ACM Transactions on Economics and 
Computation

 1 Artificial Intelligence

 1 Applied Soft Computing

 1 Journal of Graph Algorithms and 
Applications



Student Supervision
 PostDocs

 Hao Wang 01/2020-08/2020
now Assistant Professor at LIACS, Leiden University

 Martin Krejca 01/2021-10/2022

 PhD students

 Diederick Vermetten (Leiden University, 01/2020-)
co-supervising with Thomas Bäck

 Quentin Renau (CIFRE Thales, 02/2019-)
co-supervising with Benjamin Doerr and Johann Dreo

 Anja Jankovic (Sorbonne Université, 10/2018-09/2021)
main supervisor

 Furong Ye (Leiden University, 10/2017-09/2021)
co-supervising with Thomas Bäck

 Jing Yang (École Polytechnique, 10/2015-09/2018)
co-supervised with Benjamin Doerr

 14 Master students, 1 Bachelor student, 1 PhD interns
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Teaching Activities

 Responsible for the course MPRI 2-24-2 on Solving Optimization Problems 
with Search Heuristics (with Christoph Dürr)

 Tutorial speaker at ACM GECCO, IEEE WCCI/CEC, PPSN

 Dynamic parameter choices in evolutionary computation

 GECCO 2020 and WCCI/CEC 2020 (with Gregor Papa)

 GECCO 2017, 2018, 2019 

 PPSN 2018

 Benchmarking and analyzing iterative optimization heuristics with IOHprofiler 

 GECCO 2020 (with Thomas Bäck, Ofer M. Shir, Hao Wang)

 WCCI/CEC 2020, 2019 (with Thomas Bäck, Ofer M. Shir, Hao Wang)

 Theory for non-theoreticians 

 GECCO 2016 (with Benjamin Doerr)

 WCCI/CEC 2016 (with Benjamin Doerr)

 Black-box complexity: from complexity theory to playing Mastermind 

 GECCO 2014, 2013 (with Benjamin Doerr)
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Research Projects/Funding (PI)

 DIM RFSI projects (Paris Ile-de-France region)

 2020-22: Optimization Meets Systems Biology (Opt4SysBio)

 2019-21: Automated Algorithm Selection for Discrete Black-Box Optimization 
(AlgoSelect)

 2018-20: Online Configuration of Heuristic Optimization Algorithms

 International Emerging Action CNRS/RFBR, with ITMO University, Saint Petersburg, RU

 2020-22: Theoretical Foundation of Dynamic Parameter Selection for Randomized 
Optimization Heuristics 

 PGMO projects

 2018: Analysis of Evolutionary Algorithms: Beyond Expected Optimization Times (PI) 

 2017: Self-Adjusting Parameter Choices in Heuristic Optimization (PI) 

 2016: Parameter Optimization via Drift Analysis (PI) 

 2014: Towards a Complexity Theory for Black Box Optimization (PI) 

 LIP6 laboratory projects

 2019: Interactive Multi-objective Optimization (with Thibaut Lust)

 PostDoc Fellowship by the Alexander von Humboldt foundation

 Google Europe PhD Fellowship 
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Research Projects/Funding (member)

 Vice chair of COST action Improving Applicability of Nature-Inspired Optimisation by 
Joining Theory and Practice (PI: Thomas Jansen)

 PGMO projects

 2020: Understanding and Developing Evolutionary Algorithms via Mathematical 
Runtime Analyses (member, PI: Benjamin Doerr) 

 2019: Passive Radar Coverage Optimization (member, PI: Benjamin Doerr) 

 2015: How Randomness Helps in Scheduling Problems (member, PI: Fanny Pascual) 
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Selected Community Services
 Editorial Activities:

 Associate Editor: ACM Transactions on Evolutionary Learning and Optimization

 Editorial Board member: Evolutionary Computation Journal 

 Guest editor for a special issue in IEEE Transactions on Evolutionary Computation on
Benchmarking Sampling-Based Optimization Heuristics: Methodology and Software 
(BENCH), with Thomas Bäck, Bernhard Sendhoff, and Thomas Stützle

 Guest editor for two special issues in Algorithmica:

 2017, with Francisco Chicano (for GECCO theory track 2015)

 2019, with Dirk Sudholt (for GECCO theory track 2017)

 Review editor: Optimization (Frontiers in Applied Mathematics and Statistics)

 Advisory board: Springer Natural Computing Book Series 

 Program Committee Chair

 PPSN 2020 (268 submissions, 99 accepted)

 ACM FOGA (31 submissions, 15 accepted)

 ACM GECCO theory track 2017 and 2015

 EC Technical Committee of the IEEE Computational Intelligence Society (member since 2020)

 Board member of the GT CoA of GDR-IM [French Algorithms and Complexity group]

 Conseil scientifique de l‘UFR (≈ scientific board of engineering department at Sorbonne U.)



Event Organization

 Benchmarking Network: consolidate and stimulate activities on benchmarking 
iterative optimization heuristics, https://sites.google.com/view/benchmarking-network/

 Workshops

 2 Dagstuhl seminars on Theory of Randomized Optimization Heuristics (‘17, ‘19)

 Lorentz Center Workshop Benchmarked: Optimization meets Machine Learning

 several workshops on benchmarking@GECCO, PPSN, CEC, women@GECCO, …

 Competitions 

 Open Optimization Competition (joint effort of IOHprofiler and Nevergrad
team@Facebook) 2021, 2020

 Special Session 

 Representation Learning for Meta-Heuristic Optimization at CEC 2021

 Summer School

 COST action Summer School on Theory and Applications of Nature-Inspired 
Optimization Heuristics (2017)

 Other activities

 Hot off the Press Chair at GECCO 2021

 Late Breaking Abstracts chair at GECCO 2019

 Tutorials chair at PPSN 2016 (with Nicolas Bredeche)
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https://sites.google.com/view/benchmarking-network/

