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Abstract. We analyze how fast we can solve general systems of multivariate equations of various
low degrees over F2; this is a well known hard problem which is important both in itself and as part
of many types of algebraic cryptanalysis. Compared to the standard exhaustive search technique, our
improved approach is more efficient both asymptotically and practically. We implemented several
optimized versions of our techniques on CPUs and GPUs. Our technique runs more than 10 times
faster on modern graphic cards than on the most powerful CPU available. Today, we can solve 48+
quadratic equations in 48 binary variables on a 500-dollar NVIDIA GTX 295 graphics card in 21
minutes. With this level of performance, solving systems of equations supposed to ensure a security
level of 64 bits turns out to be feasible in practice with a modest budget. This is a clear demonstra-
tion of the computational power of GPUs in solving many types of combinatorial and cryptanalytic
problems.
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1 Introduction

Solving a system of m nonlinear polynomial equations in n variables over I, is a natural mathematical
problem that has been investigated by various research communities. The cryptographers are among the
interested parties since an NP-complete problem whose random instances seem hard could be used to
design cryptographic primitives, as witness the development of multivariate cryptography in the last few
decades, using one-way trapdoor functions such as HFE, SFLASH, and QUARTZ [13,22,23], as well as
stream ciphers such as QUAD [5].

Conversely, in “algebraic cryptanalysis” one distills from a cryptographic primitive a system of mul-
tivariate polynomial equations with the secret among the variables. This does not break AES as first
advertised, but does break KeeLoq [12], for a recent example, and find a faster collision on 58-round
SHA-1 [26].

Since the pioneering work by Buchberger [10], Grobner-basis techniques have been the most promi-
nent tool for this problem, especially after the emergence of faster algorithms such as F4 or F5 [16,17],
which broke the first HFE challenge [18]. The cryptographic community independently rediscovered
some of the ideas underlying efficient Grobner-basis algorithms as of the XL algorithm [14] and its vari-
ants. They also introduced techniques to deal with special cases, particularly that of sparse systems [1,25].

In this paper we take a different path, namely improving the standard and seemingly well-understood
exhaustive search algorithm. When the system consists of n randomly chosen quadratic equations in n
variables, all the known solution techniques have exponential complexity. In particular, Grobner-basis
methods have an advantage on very overdetermined systems (with many more equations than unknowns)
and systems with certain algebraic “weaknesses”, but were shown to be exponential on “generic” enough
systems in [2,3]. In addition, the computation of a Grobner basis is often a memory-bound process; since
memory is more expensive than time at the scale of interest, such sophisticated techniques can be inferior
in practice when compared to simple testing of all the possible solutions, which uses almost no memory.



For “generic” quadratic systems, experts believe [2,27] that Grobner basis methods will go up to
degree Dy, which is the minimum possible D where the coefficient of t in (1 + ¢)"(1 + 2)~™ goes
negative, and then require the solution of a system of linear equations with 7" 2> ( DO"_l) variables.
This will take at least poly(n) - T? bit-operations, assuming we can afford a sufficiently large amount
of memory and that we can solve such a linear system of equations with non-negligible probability in
O(N?+°() time for N variables. For example, if we assume we can operate a Wiedemann solver on
a T x T submatrix of the extended Macaulay matrix of the original system, then the polynomial is
3n(n —1)/2. When m = n = 200, Dy = 25, making the value of T exceeds 2'°2; even taking into
consideration guessing before solving [7, 28], we can still easily conclude that Grobner-basis methods
would not outperform exhaustive search in the practically interesting range of m = n < 200.

The questions we address are therefore: how far can we go, on both theoretical and practical sides, by
pushing exhaustive search further? Is it possible to design more efficient exhaustive search algorithms?
Can we get better performance using different hardware such as GPUs? Is it possible to solve in practice,
with a modest budget, a system of 64 equations in 64 unknowns over [Fo? Less than 15 years ago, this was
considered so difficult that it even underlied the security of a particular signature scheme [21]. Intuitively,
some people may consider an algebraic attack that reduces a cryptosystem to 64 equations of degree 4 in
64 [Fo-variables to be a successful practical attack. However, the matter is not that easily settled because
the complexity of a naive exhaustive search algorithm would actually be much higher than 254: simply
testing all the solutions in a naive way results in 2 (%) - 264 ~ 234 logical operations, which would make
the attack hardly feasible even on today’s best available hardware.

Our Contribution. Our contribution is twofold. On the theoretical side, we present a new type of ex-
haustive search algorithm which is both asymptotically and practically faster than existing techniques. In
particular, we show that finding all zeroes of a single degree-d polynomial in n variables requires just
d - 2™ bit operations. We then extend this technique and show how to find all the common zeroes of m
random quadratic polynomials in log, n - 22 bit operations, which is only slightly higher. Surprisingly,
this complexity is independent of the number of equations m.

On the practical side, we have implemented our new algorithms on x86 CPUs and on NVIDIA GPUs.
While our CPU implementation is fairly optimized using vector instructions, our GPU implementation
running on one single NVIDIA GTX 295 graphics card runs up to 13 times faster than the CPU imple-
mentation using all four cores of an Intel quad-code Core i7 at 3 GHz, one of the fastest CPUs currently
available. Today, we can solve 48+ quadratic equations in 48 binary variables using just an NVIDIA GTX
295 graphics card in 21 minutes. This device is available for about $500. It would be 36 minutes for cubic
equations and two hours for quartics. The 64-bit signature challenge [21] can thus be broken with 10 such
cards in 3 months, using a budget of $5000. Even taking into account Moore’s law, this is still quite an
achievement.

In contrast, the implementation of F4 in MAGMA-2 . 16, often cited as the best Grobner-basis solver
commercially available today, will completely use up 64 GB of RAM in solving just 25 cubic equations
in as many Fs-variables. We have also tested it with overdefined systems, for which Grobner-basis al-
gorithms are known to work better. While it does not run out of memory, the results are not satisfying:
2.5 hours to solve 20 cubic equations in 20 variables, half an hour for 45 quadratic equations in 30 vari-
ables, and 7 minutes for 60 quadratic equations in 30 variables on one 2.2-GHz Opteron core. Some very
recent improvements on Grobner-basis solvers have reported speed-up over MAGMA F 4 of two- to five-
fold [11]. However, even with such significant improvements, Grobner-basis solvers do not seem to be
able to compete with exhaustive search algorithms in this range, as each of the above is solved in a split
second using negligible amount of memory on the same CPU by the latter.



Table 1. Performance results for n = 48 and projected budgets for solving n = 64 in one month

Time (minutes) Testing platform #cores |est. cost
d= 2[d = 3[d =4 GHZ[Arch.[Name [USD[ (#used)| (USD)
1217| 2686| 3191|[2.2 |K10 |Phenom 9550 |120 || 4(1) | 54,000
1157| 1992| 2685|[2.3 |K10+|Opteron 2376  |184 || 4(1) 113316
142| 240 336|[2.3 |K10+|Opteron 2376x2|368 || 8(8) ’
780| 1364| 1819||2.4 |C2 |Xeon X3220 210 || 4(1) | 60,720
671] 1176| 1560|2.83 |C2+ |Core2 Q9550  |225 || 4(1)

179| 294| 390|/2.83 |C2+ |[Core2 Q9550  |225 || 4(4) 33,573
761| 1279] 1856||2.26 |Ci7 |Xeon E5520 385 || 4(1) 78720
95| 154| 225||2.26|Ci7 |Xeon E5520x2 |770 || 8(8) ’

41| 73] 271}|1.3 |G200|GTX 280 n/a 240 n/a
21 36| 126|[1.25|G200|GTX 295 500 || 480 | 15,500

Implications. The new exhaustive search algorithm can be used as a black box in cryptanalysis that
needs to solve quadratic equations. This includes, for instance, several algorithms for the Isomorphism of
Polynomials problem [8,24], as well as attacks that rely on such algorithms, e.g., [9].

We also show with a concrete example that (relatively simple) computations requiring 25 operations
can be easily carried out in practice with readily available hardware and a modest budget. Lastly, we
highlight the fact that GPUs have been used successfully by the cryptographic community to obtain very
efficient implementations of combinatorial algorithms or cryptanalytic attacks, in addition to the more
numeric-flavored cryptanalysis algorithm demonstrated by the implementation of the ECM factorization
algorithm on GPUs [6].

Organization of the Paper. Section 2 establishes a formal framework of exhaustive search algorithms
including useful results on Gray Codes and derivatives of multivariate polynomials. Known exhaustive
search algorithms are reviewed in Section 3. Our algorithm to find the zeroes of a single polynomial of any
degree is given in Section 4, and it is extended to find the common zeroes of a collection of polynomials in
Section 5. Section 6 describes the two platforms on which we implemented the algorithm, and Section 8
describes the implementation and performance evaluation results.

2 Generalities

In this paper, we will mostly be working over the finite vector space (IF2)". The canonical basis is denoted
by (eg, - -, en_1). We use @ to denote addition in (F2)", and + to denote integer addition. We use i < k
(resp. i > k) to denote binary left-shift (resp. right shift) of the integer ¢ by £ bits.

Gray Code. Gray Codes play a crucial role in this paper. Let us denote by by (7) the index of the k-th
lowest-significant bit set to 1, or —1 if the hamming weight of i is less than k. For example, by (0) = —1,
bl(l) = 0, b1(2) = 1and b2(3) = 1.

Definition 1. GRAYCODE(:) =i @ (i > 1).
Lemma 1. Fori € N: GRAYCODE(i + 1) = GRAYCODE(%) @ ey, (i41)-
Lemma 2. Forj € N:

GRAYCODE (2%) @ (GRAYCODE(j) < (k + 1)) if j is even

GRAYCODE (2F + j - 2F1) =
( J ) GRAYCODE (2%) @ (GRAYCODE(j) < (k+1)) ® e, if j is odd.



Proof. Tt should be clear that 2F + j - 2F+1 and 2F @ j - 2**! in fact denote the same number. Also,
GRAYCODE is a linear function on (F3)". Thus it remains to establish that GRAYCODE(j - 2F+1) =
GRAYCODE(j) < k+ 1 (resp. e, & (GRAYCODE(j) < k + 1)) when j is even (resp. odd). Again,
j -2 = j < (k + 1), and by definition we have:

GRAYCODE(j - 28*1) = GRAYCODE(j < (k+1)) = (j < (k+ 1) @ ((j < (k+1)) > 1)
Now, we have :

G<k+1l)>1= > <k+1 when j is even
! (j>1)<k+1)@e, whenjisodd

and the result follows. O

Derivatives. Define the Fy derivative % of a polynomial with respect to its ¢-th variable as % DX
f(x+e;) + f(x). Then for any vector x, we have:

of

fx@e) = 160 @ S (x)

ey

If f is of total degree d, then % is a polynomial of degree d — 1. In particular, if f is quadratic, then
%’; is an affine function. In this case, it is easy to isolate the constant part (which is a constant in F5) :
¢ = % (0) = f(e;) ® f(0). Then, the function x — %(x) @ ¢; is by definition a linear form and can be
represented by a vector D; € (F3)". More precisely, we have D;[j] = f (e; ® €;)B f (e:) f (e;)® f (0).
Then equation (1) becomes:

fx®e)=fx)®D; - xD¢ 2)

Enumeration Algorithms. We are interested in enumeration algorithms, i.e., algorithms that evaluate
a polynomial f over all the points of (F3)" to find its zeroes. Such an enumeration algorithm is com-
posed of two functions: INIT and NEXT. INIT(f, 2, ko) returns a State containing all the information
the enumeration algorithm needs for the remaining operations. The resulting State is configured for the
evaluation of f over xo @ (GRAYCODE(%) < ko), for increasing values of . NEXT(State) advance to
the next value and updates State. Three values can be directly read from the state: State.x, State.y and
State.i. These are linked at all times by the following three invariants:

i) State.y = f(State.x)
1) State.x = xg @ (GRAYCODE(State.i) < ko).
1) NEXT(State).i = State.i+ 1.

Finding all the zeroes of f is then achieved with the loop shown in fig. 1.

3 Known Techniques for Quadratic Polynomials

We briefly discuss the enumeration techniques known to the authors.



1: procedure ZEROES(f)

2:  State + INIT(f,0,0)

3: forifromOto2" — 1

4: if State.y = 0 then State.x is a zero of f
5: NEXT(State)

6:  end for

7

end procedure

Fig. 1: Main loop common to all enumeration algorithms.

Naive Evaluation. The simplest way to implement an enumeration algorithm is to evaluate the polyno-
mial f from scratch at each point of (F3)". If f is of degree d, this requires (d — 1) AND per monomial,
and nearly one XOR per monomial. Since the evaluation takes place many times for the same f with
different values of the variables, we will usually assume that the polynomial can be hard-coded, and that
multiplication of a monomial by its coefficient come for free. Each call to NEXT would then require at
most d - (7)) bit operations, 1/d of which being XORs and the rest being ANDs (not counting the cost of
enumerating (F3)", i.e., incrementing a counter). This can be improved a bit, using what is essentially a
multivariate Horner evaluation technique. If f is quadratic, it can be written:

n—1 n—1
f(X)ZCEBZXi' c; &b Z Qij - Xj 3)
i=0 j=i+1
If f is cubic, it can be written:
n—1 n—1 n—1
f(X):C®ZXi' CjEB Z X Cij® Z Qijk Xk
i=0 j=i+1 k=j+1
And so on and so forth. The required numbers of operations in this representation is given by:
=1 /. d_
Nanp = ; (k) Nxor = ; (k:)

This method is not without its advantages, chiefly (a) insensitivity to the order in which the points of
(F3)™ are enumerated, and (b) we can bit-slice and get a speed up of nearly w, where w is the maximum
width of the CPU logical instructions.

The Folklore Differential Technique. It was pointed out in Section. 2 that once f(x) is known, comput-
ing f(x @ e;) amounts to compute %(x). If f is quadratic, and in this case only, this derivative happens
to be a linear function which can be efficiently evaluated by computing a vector-vector product and a few
scalar additions. This strongly suggests to evaluate f on (F2)" using a Gray Code, i.e., an ordering of the
elements of (F2)" such that two consecutive elements differ in only one bit (see lemma 1). This leads to
the algorithm shown in fig. 2.

We believe this technique to be folklore, and in any case it appears more or less explicitly in the
existing literature. Each call to NEXT requires n ANDs, as well as n + 2 XORs, which makes a total bit
operation count of 2(n + 1). This is about n/4 times less than the naive method applied to a quadratic f.
Note that when we describe an enumeration algorithm, the variables that appear inside NEXT are in fact
implicit functions of State. The dependency has been removed to lighten the notational burden.



1: function INIT(f, ko, X0) 1: function NEXT(State)
2: 1<+ 0 2 i 1+1
3: X < Xo 3: k‘Zbl(’L)
4:  y <+ f(x0) 4:  z < VECTORVECTORPRODUCT (Dy, X) @ ck
5: Forall 0 <k <n-1, 5 y<y®dz
initialize ¢ and Dy 6: X < X D ektkg
6: end function 7: end function

Fig. 2: The Folklore differential algorithm.

4 A Faster Recursive Algorithm for any Degree

We now describe one of the main contributions of this paper, a new algorithm which is both asymptotically
and practically faster than other known exhaustive search techniques in evaluating a polynomial of any
degree on all the points of (Fa)".

4.1 Intuition

In the folklore differential algorithm of fig. 2, the dominating part is the scalar product computed in line 4
of NEXT. It would be great if it were possible to exploit the fact that x is only slightly changed between
to calls to NEXT. The problem is that &k (defined on line 3) is never the same in two consecutive iterations.
Now assume we modify the function this way:

1: function NEXT(State)

2 1 1+1

3 k= 0b1(4)

4:  z[k] + VECTORVECTORPRODUCT (Dy,x) ® ck
5. x[k]+x

6: y<«ydzlk]

8 X — X P e

9: end function

Then, on line 4, the previous value of z[k|, when it exists, is still available, and this value is the scalar
product of Dy, with x[k] (which is the previous value of x for the same value of k). Thus, the new value of
z[k] is going to be z[k] ® Dy, - (x @ x[k]). The key observation is proposition 1 below, as its consequence
is that the computation of the scalar product can be done in constant time, with two ANDs and one XOR.

Proposition 1. At the beginning of the function, x| @ x[k]T has a hamming weight upper-bounded by
two.

Proof. Indeed, x[kzo]T is only accessed and modified when by (iT + 12 = ko, for any given kg. The
integers u such that by (u) = kg are precisely the integers written u = 270 4 j - 2ko+1 for 7 > 0. Then,
if we consider the values of the variables at the beginning of the function, by invariant ¢, we have for
some j:
x' = GRAYCODE (2" + (j + 1) - 2"1)
x[k]" = GRAYCODE (2% + j - 2"1)
Thus, it follows from lemma 2 that just before line 1 is executed, we have:
x' @x[k]" = e ® (GRAYCODE(j) < (k+1)) @ (GRAYCODE(j + 1) < (k + 1))
= ey, ® ((GRAYCODE (j) ® GRAYCODE (j + 1)) < (k + 1))



and by lemma 1,
x" ox[k]" = ex ® err1in (i) )

0

By looking closely at the proof of proposition 1, we can write an optimized differential algorithm.
However, before that, a few details still need to be addressed.

— The first time that by (i) = k, then z[k] is not defined. In this case, we in fact know that i = 2*.
Therefore, special care must be taken to initialize z[k] when bo(i) = —1, which is equivalent to
saying that the hamming weight of ¢ is less than two. In that case, by invariant ii, we have:

eo ifi=1
X =
er®er_q ifi=2Fandk >0
— Also note that with the notation k1 = b () and ko = bo (%), then if by (¢) # —1, equation (4) becomes:
X D X[k‘} = ek, D ek,

And thus,
VECTORVECTORPRODUCT(Dy,, x @ x[k1]) = Dy, [k1] ® D, [k2]

This last formula can be further simplified by observing that Dy, [k1] = 0.

All these considerations lead to the algorithm shown in fig. 3. Note that the conditional statement
could be removed by unrolling the loop carefully. The critical part of the algorithm is therefore an ex-
tremely reduced section of the code, that performs two XORs, increment a counter, and evaluate b; as
well as by. The cost of maintaining ¢, k; and k2 can again be reduced greatly by unrolling the loop.

: function INIT(f, ko, x0)

End for if k2 # —1 then
Z[lﬁ] — Z[lﬁ] (&2} Dkl [kQ]
end if
y <y @ zlki]
: X 4 XD ery+k;
0: end function

1

2 140

3 X  Xo function NEXT(State)
4:  y <« f(zo) ii+1

5: Forall0 <k<n-1, k1 = b1(3)

6: initialize c¢x and Dy, ko = ba(7)

7

8

i z[0] + co
9: Foralll <k<n-1,
10: Z[/C] <—Dk[l€—1]€BCk
11: End for
12: end function

=N AN A e

Fig. 3: An optimized differential enumeration algorithm for quadratic forms.

4.2 Recursive Generalization to Any Degree.

It is in fact possible to generalize the improvement of the folklore differential algorithm that lead to the
optimized differential algorithm in the quadratic case. The core idea is that in this algorithm, a given
derivative is evaluated on the consecutive points of something that looks very much like a Gray code.
This suggest using the technique recursively.



To make this thing explicit, we introduce a new State for each of the derivatives of f used in the
enumeration of f. Instead of storing x[k] and z[k], we will access Derivativelk].y and Derivativelk].y.
Also, Derivative[k].i will count the number of times b, (k) happened. We now reformulate our optimized
algorithm in this framework. However, know, the x( and k( parameters appearing in invariant ¢ will play
a more important role.

Terminal case when f is of degree 0

1: function INIT(f, ko, o) 1: function NEXT(State)
2 i< 0 2 i—i+1

3: X < Xo 3 k=0b (Z)

4 y < f(wo) 4 X+ XD eriry

5: end function 5: end function

Recursive case when deg f > 0.

: function INIT(f, ko, x0)

NEeXT(Derivative [k])
end function

end for
. end function

1
2 i< 0
3 X < X0
4 y < f(xo
(o) of 1: function NEXT(State)
7. Derivative[0] < INIT Pk’ ko + 1, xo> 2 i+l
6: forkfromlton —ky—1 3 k=bi(d)
L of 4 X XD eptk,
7 Derivative[k] < INIT (m, k+ko+1,20® ek0+k_1> 5.y« y® Derivative[k].y
8 6:
9 7.

Fig. 4: The recursive differential for all degrees.

Correctness. At first glance, it may not seem trivial that the combination of algorithms 1 and 4 results in
a method for finding all the zeroes of f.

We prove by induction on the degree of f that the INIT and NEXT functions described in fig. 4 main-
tain and preserve the three invariants of enumeration algorithms, described in section 2. The base case is
when f is a constant polynomial (i.e., of degree zero). we hope that the reader will be convinced that the
“base case” of the algorithm shown in fig. 1 correctly enumerates the values of a constant polynomial...

In the recursive case where f is not constant, it is not difficult to check that the three invariants are
enforced at the end of INIT. Let us now assume that f has degree d > 1. Let us assume that we are in the
middle of the main loop, and that the invariants defining our enumeration algorithm hold at the beginning
of NEXT. Our objective is to show that they still hold at the end, and that the state has been updated
correctly. Let us then focus on the NEXT part of algorithm 4. Invariant ii¢ is easily seen to be enforced
by line 2, while invariant ¢z follows from line 4, and from lemma 1. The non-trivial part is to show that
invariant 7 holds. The three following lemma are devoted to this task. We will always denote by x| (resp.
x1) the value that the 2 variable had at the begining of the execution of the function (resp. at the end).

Lemma 3. After k is updated on line 3 of NEXT, we have:

i" +1=2%+ Derivative[k].i x 28+,



Proof. Ttis not difficult to see that the /-th value of j such that by (j) = k is 2 + £ x 28+, The statement
of the lemma is equivalent to saying that Derivative[k].i counts the number of time where by (i) = k
happened since the beginning of the main loop (not counting i ' + 1). This simply follows from the fact
that Derivativelk].i counts the number of times NEXT (Derivative[k]) has been called. i

Lemma 4. Let IT : (Fy)" — (F2)" denote the projection that sets the (k + ko)-th coordinate to zero.
After k is updated on line 3, and before x is updated on line 4, we have:

IT (x" @ Derivative[k].x) = 0
Proof. By assuming that invariant ¢7 holds for the current state at the entry of NEXT, we have:
x' =20 ® (GRAYCODE (i) < ko).

Because after line 3 k is set to by (i + 1), it follows from lemma 1 that:

x" =120 ® ((GRAYCODE (i" + 1) @ e;,) < ko)
= To @ ex4r, ® (GRAYCODE (i| + 1) < ko)

Then, because lemma 3 grants us: i ' + 1 = 2% + Derivative[k].i x 2¥+1, this becomes:
x| =20 €tk D (GRAYCODE (2]C + Derivative[k].i x 2k+1) < ko)
Applying lemma 2 gives:
I(x")y=1 (:vo ) (GRAYCODE (2" < k()) ® (GRAYcODE(Derivative[k].z’) < (ko + Kk + 1)))
We now distinguish two cases.

— Either &k > 0, agd sin'ce % is of strictly smaller degree than f, then by induction hypothesis on
Derivativelk], invariant 47 grants:

Derivativelk].x = xo @ (GRAYCODE (Derivative[k].i) < k + ko + 1) D Ehtko—1
And thus:
I (XT &) Derivative[k‘].x) =11 ((GRAYCODE (Qk) < ko) @ ek_HgO_l)

=1 ((€k+k0 & €k+k0—1) P ek+k071)
=0

— Or k = 0, and by induction hypothesis invariant iz yields:
Derivativel0].x = xo ® (GRAYCODE (Derivative[0].7) < ko + 1)
Next,

IT (x" @ Derivative[0].x) = IT (GRAYCODE (2¥) < ko)
=11 (6}%)
=0



Lemma 5. We have y*~ = f(x). In other terms, invariant i is preserved.

Proof. By induction hypothesis on Derivative[k], invariant ¢ :

__of
T Ok + ko

Derivativelk].y (Derivativelk].x)

However, because we are in characteristic two, we have: hiks = kit

us:

oI, and lemma 4 in fact grants

Derivativelk].y of (XT)

= 9k 1+ ko

So, this yields (using lemma 1):

vr=yTe (T

ok + ko
xDerx)erx" +emmn)

(x7)

t=y
=f
=f

4.3 Time and Space Complexity Considerations

It should be clear from the description of NEXT that it has complexity O (d). Therefore, the complexity
of enumerating all the values of f on (IF2)" can be done with complexity O (d - 2™). What is the space
requirement of the algorithm? The answer to this question is twofold: there is an internal state that gets
modified by the algorithm, and that correspond to the y field of all the non-constant derivatives. There
is also an array of constants, which is only read from the memory, and that correspond to the y field of
degree-d derivatives.

INIT stores one bit per degree-d derivative 0 f /0i10is . .. Oig, with 1 < iy < i < -+ < ig < n.The
number of such tuples (i1, 2, . .., iq) is known to be ( dfl). This yields the following result:

d—1

Proposition 2. The algorithm allocates Z <n) bits of internal state and (Z) bits of constants

i
i=0

4.4 An iterative Version

In section 4.2, we gave a recursive algorithm that works for all degree, which is a generalized version
of the iterative algorithm described only in the quadratic case in section 4.1. Indeed, one could check
that unrolling the algorithm of fig. 4 with a quadratic f gives back the algorithm of fig. 3. We now move
on to write an iterative version of the general recursive algorithm. This iterative version allows more
optimization, such as the removal of extra useless work, and a more careful parallel scheduling.

But first, the function NEXTs shown in fig. 5 does exactly the same thing as NEXT, but in a slightly
different way. Instead of calling NEXT at the end, it calls it at the beginning, except the first time a given
value of k is reached, to avoid calling it an extra time at the begining.

We can therefore work on NEXT,. A first remark is that maintaining x is required by the invariants, but
is otherwise useless for the actual computation. A first step is to completely remove x from the algorithm.
Less obviously, we can also avoid maintaining . To see that, we first need to state an equivalent of
lemma 3 adapted to NEXTs, the proof of which is left to the reader.



1: function NEXT2(State)

2 14 1+1

3 k=0b1(3)

4:  ifi # 2" then

5: NEXTs (Derivative [k])
6: endif

7 X 4 XD ertkg

8: y <y ® Derivative[k].y
9: end function

Fig.5: An equivalent version of NEXT.

Lemma 6. After k is updated on line 3 of NEXTs, we have:
i +1=2% 4 (Derivativelk].i + 1) x 281,
It is an easy consequence of lemma 6 that in NEXTs, after k is updated on line 3, we have for any j:
bj(Derivative[k].i + 1) = bj1 (i +1).
Thus, it is possible to avoid storing the ¢ values, except in the main loop, and to re-generate online

by evaluating b; on the index of the main loop. These computations, although taking amortized constant
time, can be made negligible by unrolling. To ease notation, we introduce the following shorthand:

Diky, ko, ..., ki 2 State.Derivativelki]. Derivative[ks] . . . . Derivative[ke].y

With this notation, the algorithm of fig. 6 is just an unrolled version of the recursive algorithm of fig. 4
in which all the useless operations have been removed.

1: procedure ZEROES(f)

2:  State + INIT(f,0,0)

3 for i from 0 to 2" — 1

4: if State.y = 0 then GRAYCODE(%) is a zero of f

5: k1 = b1 (Z =+ 1)

6: ko =ba(i+1)

7

8: kg = bd(i -+ 1)

9: ifkd > —1 then D [k‘l, o 7kd71} «~— D [kjl, .o 7kdfl] & D [kh e ,kdfl, kd]

10:
11: if k3 > —1 then D [kl, k‘z} «~— D [kl, kz] @D [kl, kz, k:;]
12: if ko > —1thenD[k:1] — D[kﬂ @D[/Cth]

13: y < y® D k]

14: end for

15: end procedure

Fig. 6: Iterative algorithm for all degrees.



S Enumeration of Several Multivariate Polynomials Simultaneously

In the previous section, we discussed how to enumerate one single polynomial. We now move on to the
enumeration of several polynomial simultaneously.

We will use several time the following simple idea: all the techniques we discussed above perform a
sequence of operations that is independent of the coefficients of the polynomials. Therefore, m instances
of (say) the algorithm of fig. 6 could be run in parallel on f1, ..., f,,. All the parallel runs would execute
the same instruction on different data, making it efficient to implement on vector or SIMD architectures.
In each iteration of the main loop, it is easy to check if all the polynomials vanished on the current point
of (F2)". Evaluating all the m polynomials in parallel using the algorithm of fig. 6 would require roughly
m - d - 2" bit operations. The point of this section is that it is possible to do much better than this.

Let us first introduce a useful notation. Given an ordered set U, we denote the common zeroes of
fi,---, fmbelongingto U by Z([f1, .-, fm], U). Letus also denote Zy = (F2)",and Z; = Z ([fi], Zi—1)-
It should be clear that Z = Z,,, is the set of common zeroes of the polynomials, and therefore the object
we wish to obtain.

5.1 General Technique: Splitting the Problem

A possible strategy is to compute the Z; recursively: first Z1, then Zs, etc. However, while the algorithms
of section 4 can be used to compute Z1, they cannot be used to compute Z5 from Z;, because they
intrinsically enumerate all (F2)". In practice, the best results are in fact obtained by computing Zj;, for
some well-chosen value of k, using k parallel runs of the algorithm of fig. 6, and then computing Z,,
using a secondary algorithm. Computing Z, requires d - k - 2" bit operations. It then remains to compute
Zp, from Zj, and to find the best possible value of k.

Note that if m > n, we can focus on the first n equations, since a system of n randomly chosen
multivariate polynomial equations in n variables of constant degree d is expected to have a constant
number of solutions, which can in turn be checked against the remaining equations efficiently. If m < n,
then we can specialize m — n variables, and solve the m equations in m variables for any possible values
of the specialized variables. All-in-all, the interesting case is when m = n.

Also note that it makes sense to choose £ according to the targeted hardware platform (e.g., k = 32 if
only 32-bit registers are available), it is an interesting theoretical problem choose k in order to minimize
the global number of bit operations.

We now move on to discuss several secondary algorithms to compute Z,,, from Z, and discuss their
relative merits.

5.2 Naive Secondary Evaluation

We compute Z;,; from Z; using naive evaluation, for £ < ¢ < n — 1. It is clear that the expected
cardinality of Z; for random polynomial equations is 2"~ ¢. We will assume for the sake of simplicity that
evaluating a degree-d polynomial requires (Z), following the reasoning in section 3. Computing Z;;
then takes about (Z) - 2"~ bit ops. The expected cost of computing Z is then approximately:

Z (Z) S9Nl g (Z) - 2n=k+1 bit operations.

i=k

Minimizing the global cost means solving the equation:

n
k-d-2" = Lgn—kAl
(4



which is easily seen to be equivalent to:

In2

(k-In2)-exp(k-In2)=2- (Z) =2

Now, the Lambert W function is such that W (x) - exp(W (z)) = x. Thus, the solution of our equation is:

k=W ((Z) . 2';“2> /In2

Using the known fact [15] that when x goes to infinity:

W(z) =Inz —Inlnz + o(Inlnz)

k =1+ log, <<Z> . ;) + O (Inlnn)

The full cost of the algorithm is then approximately d? - log, n - 2" bit operations..

we find that when n — oo:

5.3 Differential Secondary Evaluation

We only describe the quadratic case, but this could be extended to higher degrees. We can efficiently
evaluate Z; 11 from Z; using an easy consequence of equation (1): given f(x), computing f(x + A)
takes 2|A| - n bit operations, where |A| denote the hamming weight of A, by computing |A| vector-
vector products with the derivatives. Let us order the elements of Z; by writing: Z; = {xﬁ, .. .xfh} (the
elements are ordered using the usual lexicographic order), and A% = x’ ; @ x}.

Computing Z, 1 therefore requires approximately:

qi—1
2n - Z |A;| bit operations.

Jj=1

Now, let us consider the Aé as integer number between 0 and 2" — 1. The :cé 4 are the zeroes of a set
of i random polynomials, and under the assumption that each point of (F2)" has one chance over 2 to be
such a zero, then the difference A} between two such consecutive zeros follows a geometric distribution
of parameter 2=, and thus has expectation 2. The hamming weight | A%| is upper-bounded by [log, Aj]
(considered as an integer), and therefore |A7J| has expectation less than 7.

Computing Z;; therefore requires in average 2n - ¢ - 2"~ bit op. Finally, computing Z from Zj,
requires on average:

n—1
2n - Z i-2"7" <d4n - (k+ 1) - 2" bit operations
i=k

An approximately optimal value of k would then satisfy
2% -2" =dn - (k+1)-2"7F

which is approximately ¥ = 1 4 log, n. The complexity of the whole procedure is then 4log, n - 2™.
However, implementing this technique efficiently looks like a lot of work for at best a 2x gain.



6 A Brief Description of the Hardware Platforms

6.1 Vector Units on x86-64

The most prevalent SIMD (single instruction, multiple data) instruction set today is SSE2, available on
all current Intel-compatible CPUs. SSE2 instructions operate on 16 architectural xmm registers, each of
which is 128-bit wide. We use integer operations, which treat xmm registers as vectors of 8-, 16-, 32- or
64-bit operands.

The highly non-orthogonal SSE instruction set includes Loads and Stores (to/from xmm registers,
memory — both aligned and unaligned, and traditional registers), Packing/Unpacking/Shuffling, Logical
Operations (AND, OR, NOT, XOR, Shifts Left, Right Logical and Arithmetic — bit-wise on units and
byte-wise on the entire xmm register), and Arithmetic (add, substract, multiply, max-min) with some or
all of the arithmetic widths. The interested reader is referred to Intel and AMD’s manuals for details on
these instructions, and to references such as [19] for throughput and latencies.

6.2 G2xx-series Graphics Processing Units from NVIDIA

We choose NVIDIA’s G2xx GPUs as they have the least hostile GPU parallel programming environment
called CUDA (Compute Unified Device Architecture). In CUDA, we program in the familiar C/C++
programming language plus a small set of GPU extensions.

An NVIDIA GPU contains anywhere from 2-30 streaming multiprocessors (MPs). There are 8 ALUs
(streaming processors or SPs in market-speak) and two super function units (SFUs) on each MP. A top-
end “GTX 295 card has two GPUs, each with 30 MPs, hence the claimed “480 cores”. The theoretical
throughput of each SP per cycle is one 32-bit integer or floating-point instruction (including add/subtract,
multiply, bitwise AND/OR/XOR, and fused multiply-add), and that of an SFU 2 floating-point multipli-
cations or 1 special operation. The arithmetic units have 20+-stage pipelines.

Main memory is slow and forms a major bottleneck in many applications. The read bandwidth from
memory on the card to the GPU is only one 32-bit read per cycle per MP and has a latency of > 200
cycles. To ease this problem, the MP has a register file of 64 KB (16,384 registers, max. of 128 per
thread), a 16-bank shared memory of 16 KB, and an 8-KB cache for read-only access to a declared
“constant region” of at most 64 KB. Every cycle, each MP can achieve one read from the constant cache,
which can broadcast to many thread at once.

Each MP contains a scheduling and dispatching unit that can handle a large number of lightweight
threads. However, the decoding unit can only decode once every 4 cycles. This is typically 1 instruction,
but certain common instructions are “half-sized”, so two such instructions can be issued together if
independent. Since there are 8§ SPs in an MP, CUDA programming is always on a Single Program Multiple
Data basis, where a “warp” of threads (32) should be executing the same instruction. If there is a branch
which is taken by some thread in a warp but not others, we are said to have a “divergent” warp; from then
on only part of the threads will execute until all threads in that warp are executing the same instruction
again. Further, as the latency of a typical instruction is about 24 cycles, NVIDIA recommends a minimum
of 6 warps on each MP, although it is sometimes possible to get acceptable performance with 4 warps.

7 Parallelization and Memory Bandwith Issues

The critical loop of the algorithm is very short, since it performs only d logical operations. However, it
accesses the memory d+1 times, which suggests that the memory bandwith will be the actual performance
bottleneck. We address this issue in two complementary ways. First we argue that the algorithm is cache-
oblivious [20], i.e., that is uses the cache efficiently regardless of its size. Then we argue that on massively
concurrent architectures such as GPUs, then any word read from the memory can be broadcast to all the
concurrently running threads almost systematically.



7.1 Spatial and Temporal Proximity on Iterative Architectures

We will study the behavior of the algorithm in the Ideal Cache Model. This model consists of a computer
with a two-level memory hierarchy consisting of an ideal (data) cache of Z words and an arbitrarily large
main memory. The cache is partitioned into cache lines, each consisting of L consecutive words that are
always moved together between cache and main memory. The processor can only reference words that
reside in the cache. If the referenced word belongs to a line already in cache, a cache hit occurs, and
the word is delivered to the processor. Otherwise, a cache miss occurs, and the line is fetched into the
cache. The ideal cache is fully associative: cache lines can be stored anywhere in the cache. If the cache
is full, a cache line must be evicted. The ideal cache uses the optimal off-line strategy of replacing the
cache line whose next access is farthest in the future, and thus it exploits temporal locality perfectly. An
algorithm with an input of size n is measured in the ideal-cache model in terms of the usual number of
operation performed by the processor, but also in terms of its Cache Complexity Q(n, Z, L) — the number
of cache misses it incurs as a function of Z and L. We now move on to evaluate the cache complexity
of the enumeration algorithm, as show in fig. 6. We will assume that the “memory cells” accessed by the
algorithm have the same size as the a word in the cache (if this were not the case, it would only incur a
constant multiplicative loss, and we are mostly interested in an asymptotic result).

The memory words accessed in the algorithm belong to arrays of various dimension, and are accessed
with indices of variable length. It should be clear from the description of the algorithm that for all £ < d,
the memory location of index [i1, ..., x| is accessed at step s if b;(s) = i , for all j < k. This memory
access pattern is in fact very regular. We say that a memory word is accessed with period 7' if, when it is
accessed at iteration 7, it is also accessed at iteration 7 + 7T, but not in-between.

Lemma 7. For all k < d, the memory location of index [iy, . . . ,ix] is accessed with period 2%+,

Proof. We associate with an index [i1, . .., %] the set £2;,, ;, of integers n such thatby(n) =i1,...,bk(n) =

1. The problem amounts to show that the difference between two consecutive elements of this set is
2%+1 But it is easily seen that if n € £2;, . 4,.thenn+j- 2kt ¢ {2;, ... i, for any positive integer j.
This follows from the fact that b;(n) = b;(n + 2°) if £ > j, and establishes the result. O

It should be clear that all the memory location accessed with period exactly 7' are accessed in the
first T iteration of the main loop. Moreover, they are accessed in a certain order. For instance, memory
words with period 8 are accessed in this order in the first 8 iterations: [2], [0, 2], [1, 2]. By definition of
the period, this access pattern is reproduced without modifications in the next 7" iterations. Thus, memory
words with period T are accessed in a cyclic fashion.

The algorithm easily defines a total order relation on the memory locations it accesses: z < y if and
only if the first access to x takes places before the first access to y. Let us assume that the actual memory
addresses are compatible with this order relation. Then, more frequently accessed words are stored with
the lowest addresses, and words with the same access frequency are stored contiguously in memory. There
are me (d=1.k) (k) memory locations that are accessed with period ok+1

This being said, we will focus on the case where all the ZZ o ( ) memory words accessed by the
algorithm do not fit into the cache, to avoid studying the trivial case. Let us define the critical period
2T=+1 to be the biggest integer such that all the memory words accessed with period 27+ fit in the

cache:
T, min(d—1,k) k
S x (f)=7

Under the (mild) assumption that the cache contains Z > 2¢ words, and thus that T, is greater than d,
this condition becomes:



This this is the summation in a rectangle inside Pascal’s triangle, then by applying Pascal’s rule recur-
sively, we may simplify this expression, and find that it is equivalent to:

d
(") =
=0

T, can be easily expressed as a function of Z when d is small:

BZ =71
PO
2
(3-(Z—1)+\/Z2—2Z+368/243)3 ~15
d=3 5T, +1=

Wl

(3 (Z-1)+/Z7 27 + 368/243)

The important point is that all memory words with period 27=*! fit in the cache and do not leave it.
This fact is almost true by definition of 7 .: the optimal off-line cache strategy will not evict a cache line
that will be accessed in 7" steps if it can evict a cache line that will only be accessed in 27 steps. And
there will always be a cache line not containing a word accessed with period 27¢*! or less. This being
said, we can state our result:

Proposition 3. Under the assumption that T, > 2d, the following two inequalities hold:

T.+1
) Q. zn <2t @y (B
. o g d-(d+1)
< 9gn 2-T, , .
1) Q(n,d, Z,L) <2 T 12 d Z

Proof. The second inequality is a nearly-direct consequence of the first one, and of the definition of 7.
Let us thus focus on the first one.

By definition of T, the algorithm may make a cache miss every time it accesses a memory location
whose index contain a coordinate bigger than 7T,.. Such memory words have period greater than 272, so
each of them is accessed at most 2~ 7<~2 times. Multiplying this by the number of such memory words
yields the total number of cache misses:

n

Qn.d, Z,L)= Y 2n—1-k-dzl(k)
Y - i=0 ‘

k=T.+1
d—1 oo k
< on! 27k
<27y ). ;
i=0 k=T.+1

It is well-known that 3°, (¥)2* = 2/(1 — z)"*1. Thus, we find with z = 1/2:
+oo
> ok <k> =2
k=0 !

We can therefore rewrite:

_ T.
Q(n,d, Z,L) <27 <2 _N"gk (’f))
X 5—0 A

K3

u
—

I
o



Now we claim:
() 507

It is not particularly difficult to estabhsh this by induction on %, by using Pascal’s rule. Going back to the
expression of Q(n, d, Z, L), we find:

d—1 3
Q(n,d,Z,L) < gn—Te—1 ZZ (T 4 1>

=0 j
d-1
T.+1
< 2n—1—Tc . (d _]) . ( + )
=0 J
And since (Z) =2 (Zj) we obtain:
d—1 d—1
T.+1 T,
Q(n,d, 7,T) < 21T d-Z( * )(Tc+1)' ( )
=0 N Pl il

We next claim that by applying Pascal’s rule recursively, we obtain:

25 ()05 5 ()

Jj=1 7=0

Substituting this into Q(n, d, Z, L) yields:

d—1 d—2
T.+1\ T.+1 T, T.+1
d,Z,L) <o 1T | 4. ¢ e e c
Qs = Z( J ) 2 (d—2)+2( j )
j=0 7=0
d—2
T.+1\ 2d-T.—1 T.+1\ T.+1 [ T
<2n717TC' d- c c . c _ tc . c
= (d—1)+ 2 Z( j ) 2 (d—2>
7=0
oot [ DT+ 1) ( T. ) 2T, -1 = (TCH)
= 2(d—1) d—2 2 =\
cgnoier, | (AL (To41)  2d-T.—1 il
= 2 d—1 2 =\

And under the (again mild) assumption that T,, > 2d, we find:

Q. z.ny <2 @) (1))

O

Let us consider a polynomial in 64 variables. If we assume an incredibly small cache of Z = 210 bits
and that our polynomial is of degree 2, then 7, = 44 and the enumeration will make about 22° cache
misses, for a running time of at least 2%°. If we assume that our polynomial is of degree 4, and that the
cache is 2!%-bit large, then T, = 24, and there will be 252 cache misses, for more than 266 memory
accesses.



7.2 Constrained Small Memory Chips on Concurrent Architectures

The problem is formulated in very different terms on some parallel architectures, such as GPUs, or the
Cell, in which the available “fast” memory is fairly restricted, and main memory is relatively slow.

Parallelizing the process is very easy, as it simply comes down to partition the search space into the
number of available cores. An interesting side effect is that when done properly, this partition reduces
the amount of data that needs to be transfered from the main memory. We will now assume that we have
32-bit registers, and we will use 32 parallel copies of the algorithm of fig. 6, to enumerate 32 polynomials
simultaneously.

For instance, the loop of fig. 4 can be split in independent chunks, as illustrated by fig. 7. An additional
benefit is that processing one such chunk only require access to a fraction of the memory used by the full
enumeration. In fact, by (¢ + 1) is greater or equal than L if the L rightmost bits of (i + 1) are zero, or,
in other terms, if (i + 1) is a multiple of 2%. This suggests to split the iteration in chunks of size 2.
Enumerating a chunk of size 2% amounts to enumerate a polynomial in L variables (it requires the same
amount of internal state, and it makes the same number of calls to NEXT). Let us now consider the k-th
chunk:

Cp={ieN|k-2F <i<(k+1)-2"}

1: procedure PARALLELZEROES(f, L, T)

2:  forbfrom0to2" “~7T —1do

2: parallel-for ¢ from 0 to 27 — 1 do

3 Statel[t] + INIT (f,0, GRAYCODE ((¢t +b-2") - 2%))
2: for i from 0 to 27 — 1 do

4: if State[t].y = O then State[t].x is a zero of f
5 NEXT(Statelt])

6: end for

7:  end-parallel for

6: end for

8:

end procedure

Fig.7: Parallel enumeration, assuming one processing unit capable of running 27 threads. It should be
possible to improve it using the enumeration algorithm itself for initialization.

Let 91, (i) denote the integer (i mod 2&). We will call ¢, (i) the local part of i when i € Cy, and we
will denote it by (), when not ambiguous. So, what can we say about b; (i), when i € C}? We define
the subset (25, ; of C}, to be such that if i € (2 ;, then b, (¢) only depends on the local part () of i. Very
clearly, we in fact have:

;= {i € C, | HAMMINGWEIGHT (¢(7)) > 5}
And the three following points are immediate to estalbish.

Lemma 8. For any k and j, we have the following properties:
i) If j1 < jo then §2y 5, C 24 5,

j—1
i) [ =28 =3 (?)

£=0
i11) If i € §2y, ;, then b;(i) < L.



Intuitively, lemma 8 tells us that on a chunk of size 2L the b; that we will compute will be smaller
than L except on O (L") points, and will only depend on the local part of the index. This has two
interesting consequences:

1. Instead of having to store and maintain an internal state of Z?;()l (7;) =0 (ndil) words, it is

sufficient to deal with an internal state of 37— (%) = O (L?~!) words.

2. If we were capable of processing all the chunks synchronously, the constant fetched from memory
in line 9 of fig. 6 could be used by all the chunks af the same time, except on O (L*~') points. This
means that most of the time, we can broadcast a single value to as many threads as possible, and we
can amortize the lattency of the memory over the huge number of chunks processed in parallel.

Now that we controlled what happened inside (2}, 4, we may take a look at what happens outside. Gener-
ally speaking, if ¢(7) has hamming weight h, and j > h, then b; (i) = L+b;_j (k). Thus, if only a subset
of all the chunks can be processed concurrently, it would make sense to treat simultaneously chunks for
which k& has similar least-significant bits. If a processing unit can handle at most 27" threads simultane-
ously, then the maximum sharing of values fetched from main memory is achieved by scheduling the 27
Chunks sharing the 7" most significant bit of & on it.

What level of broadcast should we expect in this situation, namely when 2¢ threads process chunks of
size 2L synchronously? To fully understand what is going on, let us define Hy, j, = 2, — 2k p41. Itis
easily seen that Hy, ;, describes the subset of C, formed of words of hamming weight exactly h, and thus
|Hp 1| = (ﬁ) Now, in all the chunks processed in parallel, the ¢ = n — L — ¢ least significant bits of
k remain fixed to v.(k), therefore we will call this value the “fixed part of k”. We already argued that if
i € Hp, i, then bj(i) = L+ bj_p,(k), and the 27 threads will fetch the same memory location if and only
if b;_n (k) only depends on the fixed part of &, or, in other terms, if 1.(k) has hamming weight at least
j—h.

An easy consequence of the previous considerations is that if ¢.(k) has hamming weight at least d,
then all the memory fetches issued on the 2 steps can be broadcast to all the 27 threads. If 1).(k) has
hamming weight d — 1, then all but one memory fetches can be broadcast.

This raises the following question: assume we enumerate the 2™ points on a processing unit han-
dling 27 concurrent threads, each thread processing a chunk of size 2° (we of course assume n >
L +T). How many times we will witness non-broadcast memory accesses? Let us denote this number by
]\71\/'3((1,’rL,T7 L)

Proposition 4.
=1, _ 1
Nyp(d,n,T,L) = .
NB( s T Ly ) ; ( i )
Proof. If our processing unit handles a batch of 27" chunks of length 2%, then 2¢ = 2"~ T~L batches will

have to be processed sequentially, with all the possible values of ¢ (k).

When processing a given batch, non-broadcast memory accesses may happen when (k) has ham-

ming weight less than d. Let us then assume that 1. (k) has hamming weight d — ¢. There are (”_dizL )

such batches in the whole enumeration. Then non-broadcast may happen inside such a batch for 7 €
Ck — {2 ¢, and we know by lemma 8 that this set has size Zﬁ;t (ﬁ) This gives:

d -1

—T—-L L

Nwa@dnT,L) =) (n d—1 ) Py (u)
/=1 u=0

And with a change of indices, we obtain:

d—1 n—T_—1 d—1—1i I
Nyp(d,n,T,L) = Z( ) Z(u> )

1=0



We now claim that Ny g (d,n, T, L) is in fact independent of L. Indeed, setting L = 0 in (5) yields the
expected result. Therefore, we now move on to prove that: Nyp(d,n,T,L) = Nyp(d,n,T,L + 1), as
this would allow to conclude by a trivial induction on L.

Let us introduce A(d) = Nyg(d+ 1,n,T,L +1) — Nyg(d+ 1,n,T, L). We have:

gl e

Xiu

It is easily seen that:
d
Ald)=Ad-1)+ Y Xiai
i=0

We now demonstrate by induction on d that A(d) = 0. This is trivial if d = 0. By induction hypothesis,
we find:

d
Ad) = Xiai
i=0
Now, we introduce the notations:

A d n—T-L-1\ (L+1
= i d—i

3

= (n_f_L) ' (ﬂi)

We clearly have A(d) = Ay — As. Applying Vandermonde’s indentity (see for instance [4, Identity 132])

yields:
n—T
a=a=("")

And the result is established. O

a |l

Ay

Fig. 8 shows how the algorithm can be run with 4 threads and obtain the number of non-broadcasts
advertised by the proposition.

8 Implementations

We describe the structure of our code, the approximate cost structure, our design choices and justify what
we did. Our implementation code always consists of three stages:

Partial Evaluation: We substitute all possible values for s variables (z,—s, ..., »—1) out of n, thus
splitting the original system into 2° smaller systems, of w equations each in the remaining (n — s)
variables (zq, ..., Zn—s—1), and output them in a form that is suitable for ...

Enumeration Kernel: Run the algorithm of Sec. 4 to find all candidate vectors x satisfying w equations
out of m (= 2™~ " of them), which are handed over to ...
Candidate Checking: Checking possible solutions x in remaining m — w equations.



thread 0 thread 1 thread 2 thread 3

k ’l/JL(’L) b1 (7,) bz(l) k 1/)L(Z) bl(l) bz(l) k wL(Z) bl (Z) bg(’t) k ’l/JL(’L) b1 (7,) bz(l) non-broadcast ?
0 1| 0 -1 ||100 11 0 5 (/1000 1| 0 6 (/1100 1| O 5 v
0 10| 1 -1 {|100 10| 1 5 (/1000 10| 1 6 [|1100 10| 1 5 v
0 11 0 1 |/100 11 0 1 {{1000 11 0 1 |[1100 11 0 1

0| 100 2 -1 (|100] 100| 2 5 (/1000 100 2 6 |[|1100| 100 2 5 v
0/ 101 0O 2 ||100{ 101| O 2 (/1000 101 O 2 ||1100| 101 O 2

ol 110f 1 2 |{100{ 110] 1 2 |{1000| 110| 1 2 |[1100f 110| 1 2

ol 111} O 1 |{100| 111] O 1 |{1000f 111} O 1 |j1100f 111} O 1

0 o 3 -1 ({100 o] 3 5 (/1000 0l 3 6 (/1100 ol 3 5 v
1 1] 0 3 ||101 11 0 3 ||1001 11 0 3 J|1101 1] 0 3

1 10| 1 3 |{101 10] 1 3 {{1001 10| 1 3 |{1101 10| 1 3

1 11 0 1 ({101 11y 0 1 {{1001 11 0 1 ({1101 11 0 1

1| 100 2 3 ||101| 100 2 3 (|1001| 100 2 3 ||1101| 100 2 3

1| 101 O 2 |{101| 101} O 2 |{1001| 101, O 2 ({1101} 101} O 2
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1 0l 4 -1 ({101 0| 4 5 ||1001 0l 4 6 [|1101 ol 4 5 v
10 11 0 4 (110 1| 0 4 {1010 1| O 4 |[1110 1l 0 4
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10| 100| 2 4 |(|[110f 100| 2 4 ||1010] 100 2 4 (|[1110] 100 2 4
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Fig. 8: Enumeration with n = 7, in chunks of 23 elements with 4 batches of 4 concurrent threads. “Non-
local” means that a constant of index greater than 3 is accessed, while “Non-broadcast” means that the 4
threads do not access the same memory location. In conformance with lemma 4, thereare 1 +7 -2 =6
non-broadcast memory accesses.



8.1 CPU Enumeration Kernel

Typical code fragments from the unrolled inner loops can be seen below:

(a) quadratics, C++ x86 instrinsics (b) quadratics, x86 assembly
. .L746:
diff0 "= deg2_block[ 1 1; movg 976 (3rsp), %rax //
res = diff0; pxor ($rax), %xmm2 // d_y *= C_yz
Mask = _mm_cmpeq_epil6 (res, zero); pxor $xmm2, $xmml // res "= d_y
mask = _mm_movemask_epi8 (Mask) ; pxor $xmm0, %$xmm0 //
if (mask) check (mask, idx, x"7155); pcmpegw $xmml, $xmmO // cmp words for eq
pmovmskb $xmm0, %eax // movemask
testw %$ax, %ax // set flag for branch
jne .L1266 // if needed, check and
LL747: // comes back here
.L1624:
movq 2616 (%rsp), %rax // load C_yza
movdga 2976 (%rsp), %xmm0 // load d_yz
pxor ($rax), %xmmO // d_yz "= C_yza
movdga $xmm0, 2976 (%rsp) // save d_yz
pxor 8176 (%rsp), %$xmm0 // d_y "= d_yz
pxor %xmm0, %$xmml // res "= d_y e
movdga %xmm0, 8176 (%rsp) // save d_y diff[0] "*= deg3_ptrl[0];
pxor $xmm0, %$xmm0 // diff[325] "= diff[0];
pcmpegqw  $xmml, %$xmm0 // cmp words for eq res "= diff[325];
pmovmskb $xmm0, %eax Mask = _mm_cmpeq_epil6 (res, zero);
testw %$ax, %ax /] ... mask = _mm_movemask_epi8 (Mask) ;
jne .L2246 // branch to check if (mask) check (mask, idx, x"2);
.L1625: // and comes back R
(c) cubics, x86 assembly (d) cubics, C++ x86 instrinsics

testing All zeroes in one byte, word, or dword in a XMM register can be tested cheaply on x86-64. We
hence wrote code to test 16 or 32 equations at a time. Strangely enough, even though the code above is
for 16 bits, the code for checking 32/8 bits at the same time is nearly identical, the only difference being
that we would subtitute the intrinsics _mm_cmpeq_epi32/8 for _mm_cmpeqg epil6 (leading to the
SSE2 instruction pcmpegd /b instead of pcmpeqgw). Whenever one of the words (or double words or
bytes, if using another testing width) is non-zero, the program branches away and queues the candidate
solution for checking.

unrolling One common aspect of our CPU and GPU code is deep unrolling by upwards of 1024 to
avoid the expensive bit-position indexing. To illustrate with quartics as an example, instead of having to
compute the positions of the four rightmost non-zero bits in every integer, we only need to compute the
first four rightmost non-zero bits in bit 10 or above, then fill in a few blanks. This avoids most of the
indexing calculations and all the calculations involving the most commonly used differentials.

We wrote similar Python scripts to generate unrolled loops in C and CUDA code. Unrolling is even
more critical with GPU, since divergent branching and memory accesses are prohibitively expensive.

8.2 GPU Enumeration Kernel

register usage Fast memory is precious on GPU and register usage critical for CUDA programmers. Our
algorithms’ memory complexity grows exponentially with the degree d, which is a serious problem when
implementing the algorithm for cubic and quartic systems, compounded by the immaturity of NVIDIA’s
nvcc compiler which tends to allocate more registers than we expected.

Take quartic systems as an example. Recall that each thread needs to maintain third derivatives, which
we may call d;;, for 0 <7 < j < k < K, where K is the number of variables in each small system. For
K = 10, there are 120 d;;;’s and we cannot waste all our registers on them, especially as all differentials
are not equal — d ;1 is accessed with probability 2~ (k+1),

Our strategy for register use is simple: Pick a suitable bound u, and among third differentials d;;,
(and first and second differentials d; and d;;), put the most frequently used — i.e., all indices less than u



— in registers, and the rest in device memory (which can be read every 8 instructions without choking).
We can then control the number of registers used and find the best v empirically.

fast conditional move We discovered during implementation an undocumented feature of CUDA for
G2xx series GPUs, namely that nvcc reliably generates conditional (predicated) move instructions, dis-
patched with exceptional adeptness.

xor.b32 $rl19, $rl19, c0[0x000c] // d_y~=d_yz diff0 *= deg2_block[ 3 1; // d_y~=d_yz

xor.b32 $pl|$r20, $rl7, S$r20 res ~= diff0; // res®=d_y
mov.b32 $r3, S$rl if( res == 0 ) y = z; // cmov
mov.b32 $rl, s[$ofsl1+0x0038] if( res == 0 ) z = code233; // cmov
xor.b32 $r4, $r4, c0[0x0010] diffl "= deg2_block[ 4 ];

xor.b32 $p0]$r20, $rl9, $r20 // res”=d_y res ~= diffl;

@$pl.eq mov.b32 $r3, Srl if( res == 0 ) y = z;

@Spl.eq mov.b32 $rl, s[Sofsl+0x003c] if( res == 0 ) z = code234;

xor.b32 $rl19, $rl9, c0[0x0000] diff0 "= deg2_block[ 0 ];

xor.b32 $pl|$r20, $r4, $r20 res ~= diffo0;

@$p0.eq mov.b32 $r3, S$rl // cmov if( res == 0 ) y = z;

@$p0.eq mov.b32 $rl, s[$ofsl+0x0040] // cmov if( res == 0 ) z = code235;

(a) decuda result from cubin (b) CUDA code for a inner loop fragment

Consider, for example, the code displayed above right. According to our experimental results, the
repetitive 4-line code segments average less than three SP (stream-processor) cycles. However, decuda
output of our program shows that each such code segment corresponds to at least 4 instructions including
2 XORs and 2 conditional moves [as marked in above left]. The only explanation is that conditional
moves can be dispatched by the SFUs (Special Function Units) so that the total throughput can exceed
1 instruction per SP cycle. Further note that the annotated segment on the right corresponds to actual
instructions far apart because an NVIDIA GPU does opportunistic dispatching but is nevertheless a purely
in-order architecture, so proper scheduling must interleave instructions from different parts of the code.

testing The inner loop for GPUs differs from CPUs due to the fast conditional moves.

Here we evaluate 32 equations at a time using Gray code. The result is used to set a flag if it happens
to be all zeroes. We can now conditional move of the index based on the flag to a register variable z, and
at the end of the loop write z out to global memory.

However, how can we tell if there are too many (here, rwo) candidate solutions in one small subsys-
tem? Our answer to that is to use a buffer register variable y and a second conditional move using the
same flag. At the end of the thread, (y, z) is written out to a specific location in device memory and sent
back to the CPU.

Now subsystems which have all zero constant terms are automatically satisfied by the vector of zeroes.
Hence we note them down during the partial evaluation phase include the zeros with the list of candidate
solutions to be checked, and never have to worry about for all-zero candidate solution. The CPU reads
the two doublewords corresponding to y and z for each thread, and:

1. z==0 means no candidate solutions,
2. z!=0 but y==0 means exactly one candidate solution, and
3. y!=0 means 2+ candidate solutions (necessitating a re-check).

8.3 Checking Candidates

Checking candidate solutions is always done on CPU because the programming involves branching and
hence is difficult on a GPU even with that available. However, the checking code for CPU enumeration
and GPU enumeration is different.



CPU With the CPU, the check code receives a list of candidate solutions. Today the maximum machine
operation is 128-bit wide. Therefore we should collect solutions into groups of 128 possible solutions.
We would rearrange 128 inputs of n bits such that they appear as n ___int128’s, then evaluate one
polynomial for 128 results in parallel using 128-bit wide ANDs and XORs. After we finish all candidates
for one equation, go through the results and discard candidates that are no longer possible. Repeat the
result for the second and any further equations (cf. Sec. 3).

We need to transpose a bit-matrix to achieve the effect of a block of w inputs n-bit long each, to
n machine-words of w-bit long. This looks costly, however, there is an SSE2 instruction PMOVMSKB
(packed-move-mask-bytes) that packs the top bit of each byte in an XMM register into a 16-bit general-
purpose register with 1 cycle throughput. We combine this with simultaneous shifts of bytes in an XMM
and can, for example, on a K10+ transpose a 128-batch of 32-bit vectors (0.5kB total) into 32 ___ int128’s
in about 800 cycles, or an overhead of 6.25 cycles per 32-bit vector. In general the transposition cost is at
most a few cycles per byte of data, negligible for large systems.

GPU As explained above, for the GPU we receive a list with 3 kinds of entries:

1. The knowledge that there are two or more candidate solutions within that same small system, with
only the position of the last one in the Gray code order recorded.

2. A candidate solution (and no other within the same small system).

3. Marks to subsystems that have all zero constant terms.

For Case 1, we take the same small system that was passed into the GPU and run the Enumerative Kernel
subroutine in the CPU code and find all possible small systems. Since most of the time, there are exactly
two candidate solutions, we expected the Gray code enumeration to go two-thirds of the way through
the subsystem. Merge remaining candidate solutions with those of Case 2+3, collate for checking in a
larger subsystem if needed, and pass off to the same routine as used in the CPU above. Not unexpectedly,
the runtime is dominated by the thread-check case, since those does millions of cycles for two candidate
solutions (most of the time).

8.4 Partial Evaluation

The algorithm for Partial Evaluation is for the most part the same Gray Code algorithm as used in the
Enumeration Kernel. Also the highest degree coefficients remain constant, need no evaluation and and
can be shared across the entire Enumeration Kernel stage. As has been mentioned in the GPU description,
these will be stored in the constant memory, which is reasonably cached on NVIDIA CUDA cards. The
other coefficients can be computed by Gray code enumeration, so for example for quadratics we have
(n — s) + 2 XOR per w bit-operations and per substitution. In all, the cost of the Partial Evaluation stage

n—s

for w’ equations is ~ 23% (( "73) + (smaller terms)) byte memory writes. The only difference in the

code to the Enumerative Kernel is we write out the result (smaller systems) to a buffer, and check for a
zero constant term only (to find all-zero candidate solutions).

Peculiarities of GPUS Many warps of threads are required for GPUs to run at full speed, hence we must
split a kernel into many threads, the initial state of each small system being provided by Partial Evaluation.
In fact, for larger systems on GPUs, we do two stages of partial evaluation because

1. there is a limit to how many threads can be spawned, and how many small systems the device memory
can hold, which bounds how small we can split; but

2. increasing s decreases the fast memory pressure; and

3. a small systems reporting two or more candidate solutions is costly, yet we can’t run a batch check

on a small system with only one candidate solution — hence, an intermediate partial evaluation so
we can batch check with fewer variables.



8.5 More Test Data and Discussion

Some minor points which the reader might find useful in understanding the test data, a full set of which
will appear in the extended version.

Candidate Checking. The check code is now 6-10% of the runtime. In theory (cf. Sec. 3) evaluation
should start with a script which hard-wires a system of equations into C and compiling to an excutable,
eliminating half of the terms, and leading to (”;S) SSE2 (half XORs and half ANDs) operations to check
one equation for w = 128 inputs. The check code can potentially become more than an order of magnitude
faster. We do not (yet) do so presently, because compiling may take more time than the checking code.
However, we may want to go this route for even larger systems, as the overhead from testing for zero bits,
re-collating the results, and wasting due to the number of candidate solutions is not divisible by w would
all go down proportionally.

Without hard-wiring, the running time of the candidate check is dominated by loading coefficients.
E.g., for quartics with 44 variables, 14 pre-evaluated, K10+ and Ci7 averages 4300 and 3300 cycles
respectively per candidate. With each candidate averaging 2 equations of (44114) terms each, the 128-
wide inner loop averages about 10 and 7.7 cycles respectively per term to accomplish 1 PXOR and 1
PAND.

Partial Evaluation. We point out that Partial Evaluation also reduces the complexity of the Checking
phase. The simplified description in Sec. 5 implies the cost of checking each candidate solution to be
~ L (") instructions. But we can get down to &~ 1 ("7*) instructions by partially evaluating v’ > w
equations and storing the result for checking. For example, when solving a quartic system with n =
48, m = 64, the best CPU results are s = 18, and we cut the complexity of the checking phase by factor

of at least 4x even if it was not the theoretical 7x (i.e., (1}) /(")) due to overheads.

The Probability of Thread-Checking for GPUs. If we have n variables, pre-evaluate s, and check w
equations via Gray Code, then the probability of a subsystem with 2" ~° vectors including at least two
candidates = (7, ") (1 —27%)2""(27%)? & 1/22(+ @™+ provided that n < s -+ w. As an example,
for n = 48, s = 22, w = 32, the thread-recheck probability is about 1 in 213 and we must re-check
about 27 threads using Gray Code. This pushes up the optimal s for GPUs.

Architecture and Differences. All our tests with a huge variety of machines and video cards show that the
kernel time in cycles per attempt is almost a constant of the architecture, and the speed-up in multi-cores is
almost completely linear for almost all modern hardware. So we can compute the time complexity given
the architecture, the frequency, the number of cores, and n. The marked cycle count difference between
Intel and AMD cores is explained by Intel dispatching three XMM (SSE2) logical instructions to AMD’s
two per cycle and handling branch prediction and caching better.

As the Degree d increases. We plot how many cycles is taken by the inner loop (which is 8 vectors per
core for CPUs and 1 vector per SP for GPUs) on different architectures in Fig. 9. As we can see, all
except two architectures have inner loop cycle counts that are increasing roughly linearly with the degree.
The exceptions are the AMD K10 and NVIDIA G200 architectures, which is in line with fast memory
pressure on the NVIDIA GPUs and fact that K10 has the least cache among the CPU architectures.

More Tuning. We can conduct a Gaussian elimination among the m equations and such that m /2 selected
terms in m /2 of the equations are all zero. We can of course make this the most commonly used coeffi-
cients (i.e., co1, Co2, C12, - - - for the quadratic case). The corresponding XOR instructions can be removed
from the code by our code generator. This is not yet automated and we have to test everything by hand.
However, this clearly leads to significant savings. On GPUs, we have a speed up of 21% on quadratic
cases, 18% for cubics, and 4% for quadratics. [The last is again due to the memory problems.]
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Fig.9: Cycles per candidate tested for degree 2,3 and 4 polynomials.

Table 2. Efficiency comparison: cycles per candidate tested on one core

n =32

n = 40

n =48

Testing platform

d=2

d=3

d=4

d=2

d=3

d=4

d=2

d=3

d=4

GHz

Arch.|Name USD

0.58

1.21

1.41

0.57

1.27

1.43

0.57

1.26

1.50

22

K10 |Phenom9550 (120

0.57

0.91

1.32

0.57

0.98

1.31

0.57

0.98

1.32

23

K10+|Opteron2376 |184

0.40

0.65

0.95

0.40

0.70

0.94

0.40

0.70

0.93

24

C2 |Xeon X3220 |210

0.40

0.66

0.96

0.41

0.71

0.94

0.41

0.71

0.94

2.83

C2+ |Core2 Q9550|225

0.50

0.66

1.00

0.38

0.65

0.91

0.37

0.62

0.89

2.26

Ci7 |Xeon E5520 |385

2.87

4.66

15.01

2.69

4.62

17.94

2.72

4.82

17.95

1.296

G200|GTX280 n/a

2.93

4.90

14.76

2.70

4.62

15.54

2.69

4.57

15.97

1.242

G200|GTX295 500
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