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Abstract. In this paper we present a collection of attacks based on
generalisations of the complementation property of DES. We find sym-
metry relations in the key schedule and in the actual rounds, and we use
these symmetries to build distinguishers for any number of rounds when
the relation is deterministic. This can be seen as a generalisation of the
complementation property of DES or of slide/related-key attacks, using
different kinds of relations. We further explore these properties, and show
that if the relations have easily found fixed points, a new kind of attacks
can be applied.

Our main result is a self-similarity property on the SHA-3 candidate
Lesamnta, which gives a very surprising result on its compression function.
Despite the use of round constants which were designed to thwart any
such attack, we show a distinguisher on the full compression function
which needs only one query, and works for any number of rounds. We
also show how to use this self-similarity property to find collisions on the
full compression function of Lesamnta much faster than generic attacks.
The main reason for this is the structure found in these round constants,
which introduce an interesting and unexpected symmetry relation. This
casts some doubt on the use of highly structured constants, as it is the
case in many designs, including the AES and several SHA-3 candidates.

Our second main contribution is a new related-key differential attack
on round-reduced versions of the XTEA block-cipher. We exploit the
weakness of the key-schedule to suggest an iterative related-key differential.
It can be used to recover the secret key faster than exhaustive search
using two related keys on 37 rounds. We then isolate a big class of weak
keys for which we can attack 51 rounds out of the cipher’s 64 rounds.

We also apply our techniques to ESSENCE , PURE , SHAvite-3 , and
Lucifer.



1 Introduction

In this paper with study the existence of simple relations that can go trough
the rounds of a cipher with a very high probability. For example, in DES if all
the key bits are flipped, then all the subkeys are flipped as well. Moreover, if we
also negate the plaintext, then all the F functions receive the original input, and
the ciphertext is also negated: DESK(P ) = (DESK(P )). This is known as the
complementation property of DES.

A similar property is present in one round of AES [19]. If one rotates the
columns of an AES state, this rotates the column of the state after SubBytes,
ShiftRows, and MixColumns. A study of similarity relations of the AES round
operations is done in [19]. The authors show that the rotations by 1, 2 or 3
columns are the only byte-permutation to commute with the AES round. The
AES key-schedule is responsible for breaking those symmetry relations and one
should be very careful when using the AES round in a new construction.

Another well-known example is based on related-key attacks [4,5,16] and
slide attacks [8]. In the latter, two plaintexts such that one is the encryption
of the other by one round are used. If this is the case, then the ciphertexts are
also separated by one round of encryption. Hence, a slid pair (or a related-key
plaintext pair) suggests two equations for the round function, which in many
cases is sufficient to retrieve the secret key. We note that slide attacks were also
adapted for hash functions, where the slide property is used for several attack
scenarios [11].

In this paper we show new kinds of self-similarity properties in block ciphers
and hash functions. The new ideas generalize the previous attacks, by treating a
wider set of relations. Moreover, some of the similarity relations we use have fixed
points, which is not the case for the complementation property. The keys which
are mapped to themselves by the similarity relation can be treated as weak-keys,
and they even allow to mount various attacks when the cipher is used to build a
hash function.

Deterministic self-similarity properties can usually be detected with a very
small number of queries (one or two), over any number of rounds of a cipher,
making them very interesting properties to study. However, it should be noted
that most attacks involving self-similarity properties are expected to be in the
related-key setting and/or will only affect classes of weak keys. This restriction is
less problematic in the context of a hash function: there is no secret involved, and
the adversary has a greater control over the inputs to the primitive (depending
on how exactly the hash function is built, and the attack model).

We also stress that our distinguishers are very simple and efficient, so that
they can be practical if the block cipher is used in an unusual setting. For example,
a well-known self-similarity property of TEA is that each key has four equivalent
keys [15].3 This does not seem to be a practical threat for the block cipher (up
to a loss of two bits of security in exhaustive search). However, Microsoft used

3 We note that this property is commonly described as a related-key differential with
probability 1, or a complementation property.



TEA as a hash function in Davies-Meyer mode to enforce limitations on the
Xbox, and this weakness of TEA has been used in practice to bypass the security
limitations [28].

We show an example of self-similarity properties in Lesamnta, and discuss a
probabilistic self-similarity for ESSENCE . Using this approach we have identified
an iterative related-key differential for XTEA. We also show a self-similarity
property in Lucifer, and find a class of weak keys in the block-cipher PURE .

One of the interesting outcomes of this research, is a new way to tackle round
constants. While differing round constants seem to thwart slide attacks, they are
not necessarily sufficient to protect against our more generalized approach, as we
present in the attack on the compression function of Lesamnta.

1.1 Road-map

First we formally define the notion of self-similarity in Section 2, and we show
some ways to exploit this property. In particular we discuss new attacks based
on keys which are fixed under the similarity relation. Then we show concrete
example of self-similarity relation: we study Lesamnta in Section 3, ESSENCE
in Section 4, PURE in Section 5, round-reduced XTEA in Section 6, Lucifer in
Section 7, and for a weak message, salt and counter combination in SHAvite-3
in Section 8. We conclude the paper in Section 9.

2 Self-Similarity

Following [2], we define self-similarity as follows:

Definition 1 (Self-similarity relation in a block cipher). A block cipher
E encrypts the plaintext P under the key K to EK(P ). A self-similarity relation
is given by invertible and easy to compute transformations4 φ, ψ and θ such that:

∀K,P : θ(EK(P )) = Eψ(K)(φ(P ))

If such relations exists then the cipher is self-dual according to the terminology
of [2]. Similarly, we can define self-similarity for compression functions and for
stream ciphers:

Definition 2 (Self-similarity relation in a compression function). A com-
pression function H maps a chaining value X and a messageM to a new chaining
value H(X,M). A self-similarity relation is given by invertible and easy to com-
pute transformations φ, ψ and θ such that:

∀X,M : θ(H(X,M)) = H(φ(X), ψ(M))

4 In this context, and for the reminder of the paper, we require that at least one of the
three transformations φ, ψ, and θ is not the identity.



Definition 3 (Self-similarity relation in a stream cipher). A stream ci-
pher G generates the key-stream GK(I) with the key K and the IV I. A self-
similarity relation is given by invertible and easy to compute transformations φ,
ψ and θ such that:

∀K, I : θ(GK(I)) = Gψ(K)(φ(I))

We say that a set of transformation is a weak self-similarity if this relation
only holds with a probability which is less than 1 (but higher than for a random
permutation). These definitions are wide enough to include several types of known
attacks such as the complementation property of DES, for which φ = ψ = θ, and
φ(x) = x. Other known results also fit our framework of self-similarity properties:

– The complementation property of LOKI [18]:

ψ(K) = K ⊕∆ φ(P ) = P ⊕∆ θ(C) = C ⊕∆

For several values of ∆.

– The equivalent keys of TEA [15]

ψ(K) = K ⊕∆ φ(P ) = P θ(C) = C

For several values of ∆.

– The recently found weakness in the compression function of the SHA-3
candidate CHI [1]:

ψ(K) = K φ(P ) = P θ(C) = C

It is possible to consider high probability differentials as (weak) self-similarity
properties. For example, in Section 6 we present some iterative related-key
differential for XTEA that was found using the self-similarity approach.

In this paper, we will consider iterated self-similarity properties. Let E be
a cipher defined by the iteration of a round function F , with the subkeys RK i

derived for the master key K by a function G: RK i = G(K, i), i.e., the cipher
can be described as:

RK i = G(K, i) X0 = P Xi+1 = F (Xi,RK i) EK(P )
4
= Xr.

We look for a self-similarity property of the round function F , i.e., two trans-
formations Θ, Ψ such that Θ(F (X,RK )) = F (Θ(X), Ψ(RK )). Then assuming
we can find (or construct) K, K ′ such that G(K ′, i) = Ψ(G(K, i)), we have
Ek′(θ(P )) = θ(Ek(P )). Note that the relation we are using on the subkeys is
defined as RK ′i = Ψ(RK i): each subkey of the second cipher is related to the
corresponding subkey of the original cipher. This is in contrast with related-key
attacks where the relation is RK ′i+1 = RK i.



2.1 Attacks Based on Self-Similarity

Self-similarity properties obviously offer an efficient distinguisher in the related-
key setting. If one is given access to an oracle EK∗ and an oracle Eψ(K∗) for
an unknown K∗, he can distinguish the block cipher E from an ideal cipher by
querying EK(P ) and Eψ(K)(φ(P )) for a random P .

Moreover, a self-similarity property can be used to speed up the exhaustive
search of the key by a small factor, as explained in [4]. Let n be the size of the
longest cycle of the permutation ψ. In most cases, n will be quite small (if n is big
then the attack will actually be more efficient). Then, query Ci = EK∗(φ

(i)(P ))

for i ∈ 0, 1, . . . , n− 1, and compute Ĉi = θ(−i)(Ci). Now, compute EK(P ) for a

set of keys K and look for a match with one of the Ĉi. If there is a match, then
ψ(i)(K) is likely to be the key:

EK(P ) = Ĉi ⇐⇒ EK(P ) = θ(−i)(Ci)

⇐⇒ Eψ(i)(K)(φ
(i)(P )) = Ci = EK∗(φ

(i)(P )).

The idea of the attack is that the set of tested keys has to include only one
key per each cycle of ψ. Each time a new EK(P ) is computed, this allows to
test all the key candidates in the cycle of K, by applying θ iteratively to the
obtained ciphertext, and comparing the resulting ciphertext with the respective
pre-computed ciphertext. Hence, if the evaluation of θ is faster than Eψ(K), one
can reduce the time of exhaustive search.

2.2 Attacks Based on Fixed points of Self-Similarity relations

Some of the φ and ψ relations that we show have a large number of fixed points.
These points can be used in several different attack scenarios. The fixed points
of ψ will be weak key, so we consider the fixed points of φ as weak plaintexts.

First, let us show that the set of the fixed points of ψ is a weak-key class.
If a weak plaintext is encrypted under a weak key, the ciphertext will also be
a fixed point of the similarly relation, i.e., θ(C) = θ(EK(P )) = Eψ(K)(φ(P )) =
EK(P ) = C. This allows to distinguish the weak keys with a single query using
a weak plaintext.

In the context of hash functions, fixed points in the similarity relations allow
to find collisions in the compression function more efficiently than exhaustive
search. One just has to evaluate the compression function on weak inputs, and
the output would lie in the set of fixed point of θ. Note that the attack becomes
more efficient when the number of fixed-points in θ becomes smaller. For example,
this can be used on a Matyas-Meyer-Oseas (MMO) transformation of Lucifer
into a compression function (cf. Section 7).

In Section 3.1 we show how to use the self-similarity property of Lesamnta
to reduce its security in several usage scenarios. These attacks are based on the
idea that one can randomly reach a fixed point of φ, and from there it is easy to
reach any fixed point of θ. In this case, the attacks become more efficient when
the number of fixed points of φ grows.



2.3 How to Find Self-Similarity Properties

The main part of a self-similarity attack is to find a suitable self-similarity
property. Here are a few candidates that should be considered:

Related-key/Slide Attack. If the key schedule can be seen as the iteration of
a fixed function ψ, then we can have a self-similarity by guessing the subkey used
in the first round and after the last round. We define φ and θ that correspond
to one round of the cipher with the guessed keys, and if the guess is right we
have θ(EK(C)) = Eψ(K)(φ(C)). This idea was first in [4,5,16] against LOKI and
Lucifer.

Bit Flipping. An obvious possibility is to negate some or all of the bits of
the state or of the key. It is very efficient against Feistel schemes where the
key schedule only selects some subset of the key bits for each round because
the flipping in the key is cancelled by the flipping in the state and the input
of the non-linear function is not changed. This self-similarity is known as the
complementation property of DES and LOKI [18]: DESK(P ) = DESK(P ). It
has also been used to build a distinguisher of GOST in [17].

Li Ri

Li+1 Ri+1

Ki

⊕ F ⊕

Li ⊕M Ri ⊕M

Li+1 ⊕M Ri+1 ⊕M

Ki ⊕M

⊕ F ⊕

Some differential attacks on hash functions can also been seen as a self-
similarity property with bit flipping. Den Boer and Bosselaers show an at-
tack on MD5 [10] based on the fact MD5-Compress(H ⊕ ∆msb,M ⊕ ∆msb) =
MD5-Compress(H,M) with probability 2−64. Recently, it has been shown that
the SHA-3 candidate CHI has a similar weakness, i.e., CHI-Compress(H,M) =
CHI-Compress(H,M) with probability 1 [1].

Rotating or Swapping Parts of State. Another type of self-similarity rela-
tions may be using rotations. This is useful if the cipher uses layers of identical
S-Boxes or bitwise functions. A noteworthy example of transformation that com-
mutes with some rotations of the state is the AES’s round function. We use this
property in Section 3. Rotations can also give a weak self-similarity property on
ciphers using a linear function based on an LFSR, as shown in Section 4.



Algebraic Relations. If the cipher has a very strong algebraic structure, it
might be possible to find algebraic relations that interact nicely with the cipher
operations. In Section 5 we show a new attack using the squaring operation in a
field of characteristic 2.

Combination of Relations. It is possible to combine two relations of different
kinds to build a new one. For example, our attacks of Sections 3 and 5 combine
bit-flipping with a relation specific to the structure of the round function.

3 Application to Lesamnta

Our most interesting result is a self-similarity property of Lesamnta. This self-
similarity property is based on swapping the two halves of the state and XOR-ing
them with a constant. The most surprising part about this property is that it
can actually deal with the round constants, which are supposed to break all
symmetry relations.

Xi+4Xi+3Xi+2Xi+1Ki+4Ki+3Ki+2Ki+1

Xi+3Xi+3Xi+1XiKi+3Ki+2Ki+1Ki

F ⊕⊕G ⊕⊕
Ri+3

Fig. 1. The Round Function of Lesamnta. This Round Function is Iterated 32
Times.

A Short Description of Lesamnta. Lesamnta is a hash function proposal
by Hirose, Kuwakado, and Yoshida as a candidate in the SHA-3 competition [12].
It is based on a 32-round unbalanced Feistel scheme with four registers used in
MMO mode. The key schedule is also based on a similar Feistel scheme. The
round function is described by Figure 1 and can be written as:

Xi+4 = Xi ⊕ F (Xi+1 ⊕Ki+3)

Ki+4 = Ki ⊕G (Ki+1 ⊕Ri+3)

where R0, . . . , R31 are round constants, the state register X is initialized with
the message in X−3, X−2, X−1, X0, and the key register is initialized with the
chaining value in K−3, K−2, K−1, K0. The output of the compression function
is X−3 ⊕X29, X−2 ⊕X30, X−1 ⊕X31, X0 ⊕X32.



Lesamnta has two main variants: Lesamnta-256 with 64-bit registers (hence,
a message block and chaining value of 256 bits), and Lesamnta-512 with 128-bit
registers (hence, a message block and chaining value of 512 bits).

The round functions F and G are inspired by the AES round function. F uses
four round of transformations similar to SubBytes, ShiftRows and MixColumns,
while G uses only one round of similar transforms. The transformations used in
F and G are different, even though they are both heavily inspired by the AES. In
Lesamnta-256 a 64-bit register is represented by a 2-by-4 byte matrix in F , and
by a 4-by-2 matrix in G. In Lesamnta-512, a 128-bit register is seen as a 4-by-4
matrix. The round constants are defined by a simple counter: Ri = 2i+(2i+1)·232
for Lesamnta-256 and Ri = 2i+ (2i+ 1) · 264 for Lesamnta-512. For more details,
we refer the reader to the full specification [12].

The Self-Similarity Relation of Lesamnta. The round functions F and G
are very similar to the AES round function, and they have the same self-similarity
property: if the two halves of the input are swapped, then the output is also
swapped. Indeed, it is easy to see that SubBytes, ShiftRows and MixColumns
do have this property. However, the key-schedule of Lesamnta includes round
constants Ri to avoid symmetry-based attacks.

Luckily, these constants are word-symmetric up to the least significant bit.
More precisely, if Ri = (R>i ‖R⊥i ), where the top and bottom parts of Ri are
32-bit (64-bit in Lesamnta-512), then the only difference between R>i and R⊥i is
in the least significant bit.

Let us introduce a few notations. We say that two words x and y are “half-
swapped” if the top half of x (denoted by x>) is the bottom half of y (denoted
by y⊥), and vice-versa. We denote the half-swapped value of x = (x>‖x⊥),
i.e., (x⊥‖x>), by ←→x . We also formalize the structural property of the round
constants: we define x̃ to be (x⊥ ⊕ 1‖x> ⊕ 1). Then, the following property of

rounds constants holds: Ri = R̃i. We extend these two relations to vectors of

words in the natural way, namely, (̃x, y) = (̃x′, y′) if x = x̃′ and y = ỹ′.
Our idea is to combine the swapping of halves of the state with flipping the

least significant bit of each half to compensate the difference in the constants.
The swapping commutes with the round functions F and G, and the masking is
canceled by the Feistel structure. For this purpose, let us mention the following
useful properties:

i) x̃⊕ ỹ =
←−→
x⊕ y

ii) x̃⊕←→y = x̃⊕ y

Hence, consider a master keys K of 4 words, and let K ′ = K̃, i.e., by definition,
K ′−3 = K̃−3, . . . , K ′0 = K̃0. The first property implies in particular that K ′−2 ⊕
R0 =

←−−−−−→
K−2 ⊕R0. Therefore, when computing K1 and K ′1, the two values that

enter G are half-swapped. This property goes through all the successive operations
in G (SubWords, KeyLinear, and ByteTranspose5). The output of G is therefore

5 We note that in the submission document [12] the term “ByteTranspos” is used.



half-swapped as well. Then, thanks to the second property, and thanks to the
fact that K ′−3 = K̃−3, we find that K ′1 = K̃1. This argument can be iterated,
and shows that if the master keys are related, then all the other subkeys are
related (we have K ′i = K̃i for all i).

Now, it is easy to see that as the subkeys in the two concurrent hash processes
are related and at the same time so are the “plaintexts”, then the same relation
will be maintained through the rounds. Specifically, let the plaintexts be P
and P ′ = P̃ . By definition again, we have X ′−3 = X̃−3, . . . , X ′0 = X̃0. The

argument above repeats: we have X ′−2 = X̃−2, K ′0 = K̃0, and thanks to the first
property, the input of F is half-swapped. This property goes trough F , and since
X ′−3 = X̃−3, the second property grants us X ′1 = X̃1. This argument can be

iterated again, and shows that X ′i = X̃i, for all i.
Lastly, there is a feed-forward operation: the output of the compression

function is Y0 = X−3 ⊕X29, . . . , Y3 = X0 ⊕X32. Thanks to the first property

again, we find that Y ′ =
←→
Y . This yields:

CF (K̃, M̃) =
←−−−−−−→
CF (K,M)

Self-Similarity of Lesamnta. Finally, we note that if we pick a chaining value
h which is weak (i.e., h = h̃), and a message block m which is also weak (i.e.,
m = m̃), then CF (h,m) is weak as well, but in a different manner (we have

CF (h,m) =
←−−−−−→
CF (h,m)), and this can be easily identified (the top and bottom

halves of each output word are the same). Hence, it is possible to distinguish
the compression function of Lesamnta using one single query. For example, in
Lesamnta-256

h = m =

(
(00000000, 00000001), (00000000, 00000001),
(00000000, 00000001), (00000000, 00000001)

)
leads to

CF (h,m) =

(
(52afa888, 52afa888), (61c0aebc, 61c0aebc),
(1c9d4d3a, 1c9d4d3a), (95f45a98, 95f45a98)

)
and in Lesamnta-512

h = m =


(0000000000000000, 0000000000000001),
(0000000000000000, 0000000000000001),
(0000000000000000, 0000000000000001),
(0000000000000000, 0000000000000001)


leads to

CF (h,m) =


(b0421baf4899c67e, b0421baf4899c67e),
(e6b528589fadd0ce, e6b528589fadd0ce),
(3547c4021eb4c7ee, 3547c4021eb4c7ee),
(a8188b26052d044d, a8188b26052d044d)


Following our findings, the designers of Lesamnta decided to tweak the

algorithm by changing the round constants. For the tweaked version we refer the
reader to [26].



3.1 Using These Properties on the Full Lesamnta

Faster Collisions in the Compression Function. It is possible to use the
above property to find collisions in the compression function faster than exhaustive
search. We pointed out that if we pick weak inputs, h = h̃ and m = m̃, then each
of the four output words has the same top and bottom halves. In other words,
the output of the compression function is restricted to a subspace of size 2n/2 for
Lesamnta-n.

Hence, by taking 2n/4 pairs of (chaining values, message blocks) which are
weak, we expect to find a collision in the output of the compression function.

Second Preimage Attack on Weak Messages. The self-similarity property
of the compression function induces a set of weak messages. In such messages,
one of the chaining values hi (which is the output of the compression function)

encountered during the hash process is such that hi =
←→
hi , i.e., it is of the form

hi = (S||S), (U ||U), (W ||W ), (Y ||Y ). A random (r + 1)-block long message is in
the weak set with probability r · 2−n/2. We now discuss how to find a second
preimage of a weak message in time 2n/2 and negligible memory. Finding a new
message of (i − 1) blocks yielding the chaining value hi immediately yields a
second preimage on the full hash function. To do so, an adversary may follow
these steps:

1. Choose an arbitrary prefix of (i− 2) message blocks.
2. Find a message block which yields a weak chaining value hi−1. Since there

are 2n/2 such chaining values, it is expected that 2n/2 random trials are
sufficient.

3. Find a weak message block m such that CF (hi−1,m) = hi. On average, for
each starting chaining value, there is one such message block, amongst 2n/2

possible choices. Thus, about 2n/2 random trials are expected to be necessary.
4. Concatenating all parts with the suffix of the original message starting from

the i-th block yields a second preimage.

The total complexity of the process is 2n/2.

Herding Attack on Lesamnta. The self-similarity property of the compression
can be used to propose a better herding attack on Lesamnta than the one of [14].
In the herding attack, the adversary commits to a hash value H∗, and is given
a challenge message M afterwards. His goal is to find a suffix S such that
H(M‖S) = H∗. The generic herding attack on hash functions of n bits presented
in [14] requires an offline time complexity of 2(n+`)/2+2 online time complexity
of 2n−` and memory of 2`+1. We now present a customized herding attack using
self-similarity for Lesamnta with complexity 2n/2 and negligible precomputation
and memory.

1. Choose a weak chaining value h∗, and choose an upper-bound L on the
number of message blocks of the prefix M . Then, compute the finalization



function on h∗, assuming a message of L + 2 full blocks. This yields the
committed value H∗ (of a message of length L+ 2 blocks).

2. Receive the challenge M , and append random suffixes S of L+1−|M | blocks,
until hitting a weak chaining value h. It is expected that 2n/2 random trials
are sufficient.

3. Try random weak message blocks S′. We know that H(M‖S‖S′) is weak,

with H(M‖S‖S′) =
←−−−−−−−→
H(M‖S‖S′). Therefore, we expect to reach h∗ after only

2n/2 trials.
4. Output M‖S‖S′ as the answer to the challenge.

Distinguishing-H Attack on HMAC. The self-similarity property can also be
used to distinguish HMAC-Lesamnta from HMAC instantiated with another PRF.
The distinguisher follows the ideas of Wang et. al in [29], and the complexity
would be 23n/4. We note that this line of research may not be harmful, as
distinguishing HMAC from PRF (for any hash function) has a complexity of 2n/2.
We also note that the claimed security level of HMAC-Lesamnta is only 2n/2.

4 Application to ESSENCE

Ri Ri+1 Ri+2 Ri+3 Ri+4 Ri+5 Ri+6 Ri+7

F L

⊕ ⊕

⊕ Ki Ki+1 Ki+2 Ki+3 Ki+4 Ki+5 Ki+6 Ki+7

F L

⊕ ⊕

Fig. 2. ESSENCE Round Function (iterated 32 times).

Description of ESSENCE . ESSENCE is a hash function proposal by Martin
as a candidate in the SHA-3 competition [21]. The design is based on two shift
registers with 8 words each. One shift register is used to expand the message
by generating subkeys, while the other processes the chaining value with the
subkeys.

Ri+8 = Ri ⊕ F (Ri+1, Ri+2, . . . , Ri+7)⊕ L(Ri+7)⊕Ki

Ki+8 = Ki ⊕ F (Ki+1,Ki+2, . . . ,Ki+7)⊕ L(Ki+7)

The feedback function is designed with two functions: a non-linear bit-wise
function F , and a linear function L that mixes the bits inside the words. The
linear function is based on clocking an LFSR a fixed number of times. The



chaining value is loaded into R−7, R−6, . . . , R0, while the message block is
loaded into K−7, K−6, . . . , K0. After 32 rounds, the output is computed as
R−7 ⊕R25, R−6 ⊕R26,. . . , R0 ⊕R32.

ESSENCE has two main variants: ESSENCE -256 with 32-bit words (hence
a message block and a chaining value of 256 bits each), and ESSENCE -512
with 64-bit words (hence a message block and chaining value of 512 bits). The
best known attack on ESSENCE is a collision attack with complexity 268 [24].
The design of ESSENCE uses no constants. Therefore, it is possible to build a
distinguisher against ESSENCE using a slide attack [22].

The Self-Similarity Relation. Most of the components used in ESSENCE
are bitwise, and the L is the only part responsible of mixing the bits of the words.
Moreover, it is based on an LFSR, and LFSRs have a good behavior with regards
to rotations. More precisely we have Pr(L(x≪1) = L(x)≪1) = 1/4 as shown in
Figure 3. Therefore, we can build a new self-similarity attack based on rotating
the message and the chaining value. This gives subkeys such that K ′i = K≪1

i

as opposed to K ′i = Ki+1 in the slide attack. More precisely, we consider the
following relation:

K ′i = K≪1
i R′i = R≪1

i

x0, x1 xn−1

x1 xn−1, xn

xt xt+n−1

t− 1 step

x1 xn−1, x0

xt, xt+1 xt+n−1

t− 1 step

xt+1 xt+n−1, xt+n

= x

x′ =

if x0 = xn

= F (x)

F (x′) =

if xt = xt+n

Fig. 3. Symmetry relation on an LFSR-based function. L is a linear function
defined by clocking an LFSR a fixed number of times. If the initial state of the
LFSR is rotated by 1 place, there is a probability 2−2 that the output state is
rotated as well.

Constructing a Good Pair. Let us rotate the master key: K ′−7 = K≪1
−7 ,

K ′−6 = K≪1
−6 , . . . , K ′0 = K≪1

0 . For each round, there is a probability 1/4 that



the new subkey K ′i is equal to K≪1
i , because we only need the LSFR-based

function to commute with a rotation of 1 bit. The full compression function uses
the subkeys K−7 to K24, so a random message K and its related message K ′

will give related subkeys with probability 2−48.
To find a suitable chaining value we will use something similar to message

modification techniques to get 8 rounds for free. We start from round 31 (one
before the last round) and make a random choice of R24, R25, . . . , R31 such
that each of these value satisfy L(R≪1

i ) = L(Ri)
≪1. We use the related state

R′24 = R≪1
24 , R′25 = R≪1

25 ,. . . , R′31 = R≪1
31 . We first compute round 32 forward,

and R32 follows the relation with probability 1 because the non bitwise part is
L(R31) and R31 was chosen so that L(R≪1

31 ) = L(R31)≪1. Then we compute the
remaining round backwards and check that the new values still satisfy R′i = R≪1

i :

Ri = Ri+8 ⊕ F (Ri+1, Ri+2, . . . , Ri+7)⊕ L(Ri+7)⊕Ki.

In rounds 23, 22, . . . , 17, the non-bitwise part is respectively L(R30), L(R29),
. . . , L(R24) so they go through with probability 1. Then, we compute rounds 16
to −7, and each of cost a probability 1/4. In total we have a probability 2−48

that a random choice of R25, R26, . . . , R32 gives a correct chaining value.
Hence, with complexity 248, we can construct a pair of messages and chaining

values such that:

K ′ = K≪1 R′ = R≪1 G(K ′, R′) = G(K,R)≪1

It might be possible to use advanced message modifications to further improve
this complexity.

5 Application to PURE

PURE is a block cipher introduced by Jakobsen and Knudsen to demonstrate
the interpolation attack [13]. It is designed as a block cipher with a very strong
algebraic structure, and good resistance to differential and linear cryptanalysis.
However, it is weak against algebraic attacks, which was the point of the article.
Later, Buchmann et al. defined Flurry, which can be seen as a generalized
version of PURE with a key schedule [9]. Again, the point of Flurry was to show
that a block cipher can be secure against differential and linear cryptanalysis, but
weak against algebraic attack (Gröbner basis techniques in the case of Flurry).
PURE and Flurry are not to be used as real ciphers, but serve as demonstration
that algebraic attacks can be useful against ciphers with a very strong algebraic
structure.

By applying a self-similarity attack to PURE , we intend to show that the
algebraic structure of a block cipher can be used to mount a simple self-similarity
attack that does not need complex polynomial computation (as opposed to
the interpolation attack or Gröbner basis techniques). Moreover, we build a
distinguisher with only one query as well as a class of weak keys, both for any
number of round, whereas the previous algebraic attacks could only break a
limited number of rounds.



Description of PURE. PURE is a simple Feistel cipher with a monomial
S-Box. All the operations are carried in the finite field F2m ;6 the plaintext is
composed of two field elements, and the key is given as r field elements, where r
is the number of rounds:

L0 = PL R0 = PR

Li+1 = Ri Ri+1 = Li ⊕ (Ri ⊕Ki)
3.

There is no key schedule in PURE , the key is given as r field elements K0, K1,
. . . , Kr−1 which are used as round subkeys.

The Self-Similarity Relation. Because of the strong algebraic structure of
PURE , it is natural to look for algebraic relations. In particular we can use the
Frobenius mapping (x 7→ x2) in the field F2m : it commutes with any monomial
S-Box, and it is linear. It is straightforward to check that the following is a
self-similarity relation for PURE :

θ(z) = ψ(z) = φ(z) = z2

More precisely, if K ′i = K2
i for all rounds and P ′L = P 2

L, P
′
R = P 2

R, then we will
have L′i = L2

i and R′i = R2
i for all rounds. This gives a very efficient distinguisher

for PURE in the related-key setting. However, we note that since PURE has
no key-schedule, it is trivial to make a related-key attack. Nevertheless, a slight
generalization of this initial observation leads to the discovery of a class of weak
keys for PURE .

A Class of Weak Keys. Given some α ∈ F2m , and 0 < k < m, we now consider
the following self-similarity relation:

θ(z) = ψ(z) = φ(z) = z2
k

⊕ α⊕ α2k

Again, it is easy to check that this is actually a self-similarity. If K ′i = ψ(Ki),
L′i = φ(Li) and R′i = φ(Ri), then we have:

R′i+1 = L′i ⊕ (R′i ⊕K ′i)3

= L2k

i ⊕ α⊕ α2k ⊕
(

(Ri ⊕Ki)
2k
)3

=
(
Li ⊕ (Ri ⊕Ki)

3
)2k
⊕ α⊕ α2k

= φ(Ri+1)

It must be noted that φ cannot be the identity, thus it can actually be used
to distinguish PURE used with a weak key from a random function. The weak

keys are the fixed points of ψ. Now, if k divides m, then x 7→ x2
k

admits all the

6 In the original description of PURE , m was in fact 32, which yields a 64-bit cipher.



subfield F2k as fixed points, which means that when Ki = α+ xi, with xi ∈ F2k ,
then the key is weak. It is possible to check this with only one query: just encrypt
(α, α), and test the ciphertext for self-similarity. Testing all the possible α’s
requires 2m queries. With k = m/2, this yields 2m+rm/2 weak keys out of 2mr.

Bad Key-Schedules. A consequence of the previous observation is that there
many bad key-schedules for PURE . For example, let us consider the following
key schedule based on a Feistel scheme with the same monomial S-Box:

K0 = KL, K1 = KR

Ki+2 = Ki ⊕ (Ki+1 ⊕ Ci)3 (if i < r − 1)

The Ci’s are round constants. Their purpose is to break the regularity and avoid
slide attacks. However, we now know that if the round constants can be written
Ci = α+ xi, with xi in a subfield, then weak keys exist for the full scheme. For
example, Ci = α and Cr−1 = α+ 1 avoids slide properties, but is still a very bad
choice since it exhibit weak keys.

6 Application to XTEA

XTEA is a block cipher designed by Needham and Wheeler. It is a Feistel network
that encrypts 64-bit plaintexts with a a 128-bit key. The round function is pretty
simple, and the security relies more on the high number of times it is iterated:
64 rounds are the recommended setting.

Description of XTEA. The Feistel structure of XTEA can be described as:

Li Ri

Li+1 Ri+1

RKi � 4

� 5⊕�⊕�
L0 = PL

R0 = PR

Li+1 = Ri

Ri+1 = Li � (F (Ri)⊕ RK i)

F (x) = ((x� 4)⊕ (x� 5))� x

The key schedule is rather simple: the master key K is made of four 32-bit words,
and the 32-bit round key RKi is generated from the master key:

RK2i = (i · δ)�K((i·δ)�11) mod 4

RK2i+1 = ((i+ 1) · δ)�K((i+1)·δ) mod 4

where δ = 0x9E3779B9 is a constant derived from the golden ratio.
Currently, the best known attack on XTEA is the one from [20], which can

break up to 36 rounds of XTEA in the related-key model (with four keys) using
265 chosen plaintexts and 2126.44 time (or 264 chosen plaintexts and 2104 time for
a weak-key class of 2111 weak keys).



The Self-Similarity Relation. The idea of our attack on XTEA is inspired by
the complementation property of the DES. In a complementation property, the
difference in the plaintext and the difference in the key cancel each other before
entering the F function. Such attacks are possible if the key schedule allows a
fixed difference in all the subkeys. The key schedule of XTEA is weak enough to
do so, but the key is added after the F function, to prevent the complementation
property. However, if there is a good differential characteristic α→ β in the F
function, we can put a difference α in the plaintext, and a difference β in the key
to cancel it after the F function. This gives an iterative related-key differential
characteristic.

Li ⊕M Ri ⊕M

Li+1 ⊕M Ri+1 ⊕M

Ki ⊕M

⊕ F ⊕

Complementation property

Li ⊕ α Ri ⊕ α

Li+1 ⊕ α Ri+1 ⊕ α

Ki ⊕ β

� F⊕

RK iterative differential on XTEA

More precisely, in the case of XTEA, we use the following weak self-similarity:

ψ(Ki) = Ki � 231 � 226

φ(Li, Ri) = θ(Li, Ri) =
(
Li � 231, Ri � 231

)
Because of the key-schedule, we have that if K ′ = ψ(K), then RK ′i = ψ(RKi).
We also use the fact that:

F (x� 231) =

{
F (x)� 231 � 226 or

F (x)� 231 � 226

Therefore, the differences will cancel out (and the self-similarity will hold for the
round function) as long as the carries in F (x)�

(
231 ± 226

)
are the same as the

carries in Ki � 231 � 226. For a given key K, we can compute the carries in each
round, and deduce the probability of the differential characteristic (which will be
the probability that the self-similarity relation holds). For example if there is no
carry in the key, then there is a probability 1/2 that there will also be no carry
in the F function. If there is a one-bit carry in the key, there is a probability 1/4
that there will be exactly a one-bit carry in the F function.

The probability of the differential path is therefore quite dependent on the
key. However, we know exactly the subsets of the key space that correspond to a
given set of carries. Therefore, we can count the number of keys giving a specific
probability for the self-similarity relation (Figure 4 shows the number of keys
yielding a specific number of carries). We discuss two possible attack scenarios:
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Fig. 4. Distribution of the number of carries in rounds 20–50 of XTEA. log2 of
the number of keys with a given number of carries. 48% of the keys have less
than 60 carries, and 52% have less than 61 carries.

attacking all the keys, and attacking a class of weak keys. Note that due to the
irregular key schedule, we may obtain better attacks by selecting a subset of the
rounds that do not start at round 0.

Attacking All the Keys. If we consider rounds 20 to 50, the self-similarity
relation holds with probability greater than 2−60 for about half of the keys. If we
consider 262 message pairs, there is a good probability to have a right pair. If
so, we can use it to recover the key, with 5 extra rounds by guessing K2 and K3

(which are the two keys words affecting the subkeys of these rounds).

Now assume that the self-similarity holds with probability greater than 2−60

for a given key, then we expect at least 4 right pairs. A wrong subkey guess
is expected to lead to about 2−2 = 1/4 pairs which allegedly satisfy the self-
similarity property. Hence, if we consider only key proposals for K2 and K3 which
suggest two or more pairs, we expect to deal with 264 · 2−5.23 < 259 remaining
wrong subkeys (while the probability of discarding the wrong value is only 9.2%).
Hence, exhaustive search over the remaining possibilities would take less time
than required for the partial decryption. Moreover, it is possible to discard wrong
guesses for K2 and K3, as all the pairs must offer the same number of carries in
round 20 and round 50. If this is not the case, then the subkey guess is necessarily
wrong.

Finally, we note that if the above attack fails, the adversary learns with very
good probability that the key is in the subset with more than 60 carries, which
reduces the search space by 1/2. This gives an attack on 36 rounds (20 to 55),
with data complexity 263, and time complexity 2125 on average.



This attack can be extended to more rounds if we allow for a smaller set of
weak keys.

Attacking a Class of Weak Keys. If we consider rounds 10 to 55, we have a
weak key class with only 60 carries, which contains 2107.5 keys out of 2128. We
can attack a key in this weak key class using 262 message pairs. Once a good pair
exist, we can use it to recover the key, with 4 extra rounds by guessing K2 and
K3. This gives an attack on 50 rounds (10 to 59), with data complexity of 263

chosen plaintexts, and time complexity 2123 on average, for a weak key class of
size 2107.5.

A similar attack can be applied to XXTEA by changing ψ(Ki) = Ki � 226 �
228. However, as the difference may cause more complex carry chains whose
probabilities are lower, this attack can be applied only to a significantly reduced
version.

7 Application to Lucifer

Lucifer is one of the first Feistel block ciphers,7 and is usually considered as the
predecessor of DES. There are many different versions of Lucifer in the literature,
and we study the one from [27].

Description of Lucifer. Lucifer encrypts a 128-bit plaintext with a 128-bit
key through 16 rounds.

Li Ri

Li+1 Ri+1

JiIi

⊕ F ⊕

Each round is defined as:

Li+1 = Ri

Ri+1 = Li ⊕ FIi(Ri ⊕ Ji)

The F function is a permutation of a 64-bit block
parameterized by 8 interchange control bits (ICB)
Ii. The F function is byte-oriented, and applies
the following operations:

– For each byte, the two nibbles are swapped if the ICB I
[k]
i is zero.

– Each nibble enters a 4-bit to 4-bit S-Box: S0 for the low order nibble, and S1

for the high order nibble.
– The outputs are concatenated and bit-permuted according to the following

permutation:

π( 0...15): 10, 21, 52, 56, 27, 1, 47, 38, 18, 29, 60, 0, 35, 9, 55, 46
π(16...31): 26, 37, 4, 8, 43, 17, 63, 54, 34, 45, 12, 16, 51, 25, 7, 62
π(31...48): 42, 53, 20, 24, 59, 33, 15, 6, 50, 61, 28, 32, 3, 41, 23, 14
π(49...63): 58, 5, 36, 40, 11, 49, 31, 22, 2, 13, 44, 48, 19, 57, 39, 30

7 Actually the name “Feistel cipher” comes from Horst Feistel, one of the designers of
Lucifer



The key schedule just selects key bytes as following:

Ii = K [7i mod 16]

Ji = K [7i mod 16],K [7i+1 mod 16], . . . ,K [7i+7 mod 16]

Because of the regularity of the key schedule, a related-key attack was shown
by Biham in [4]. The best attack in the standard model is a differential attack
by Ben Aroya and Biham [3] which can recover a class of weak keys that covers
more than half of the key space with complexity 236.

The Similarity Relation. Because the ICB’s Ii interact in a very different
way than the subkeys Ki, we could not find a similarity relation for an arbitrary
key. Instead, we restrict ourselves to the case where the master keys K and ψ(K)
give the same ICB Ii. Actually, all the key bytes are used as ICB, so we are
looking for relations where K = ψ(K), i.e., we are looking at weak keys.

Because of the structure of the F function with layers of identical S-Boxes,
we can use a self-similarity relation based on rotations. If we swap the halves of
the state, then the rotation will commute with the conditional swapping of the
nibbles and with the layer of S-boxes if and only if the two nibbles of the ICB
are equal. Now, the diffusion layer π has the following interesting property:

π16..31(x) = π0..15(x≫ 16)

π32..47(x) = π0..15(x≫ 32)

π48..63(x) = π0..15(x≫ 48)

This means that if we rotate the state by a multiple of 16 bits, then the
rotation commutes with the round function F . So, we will set θ and φ to swap
the two halves of the 32-bit state.

Thus, we require the subkeys Ji to be left invariant by such rotations, and
by swapping the nibbles in each byte. Because the subkeys are always formed
of 8 consecutive bytes of the master key (with indices taken modulo 16), the
subkeys will be left invariant by rotation if and only if the master key itself is left
invariant by the same rotation and nibble swapping. This is the case when the
master key is of the form AAAA, where A is a 32-bit constant which is fixed if
you swap the nibbles. This means that our class of weak key is of size 216. Given
such a key, and a pair of related plaintexts, the ciphertexts will be swapped just
as the plaintexts.

8 self-similarities in SHAvite-3

A Short Description of SHAvite-3 . SHAvite-3 is a proposal for the SHA3
competition by Biham and Dunkelman [6]. The hash function is a Davies-Meyer
transformation of a (generalized) Feistel block cipher based on the AES. In the
256-bit variant, the block cipher is a 12-round Feistel block cipher, where the round
function is composed of three-round AES (with an additional AddRoundKey



operation before the first round, and the last AddRoundKey operation omitted).
The 512-bit variant is a 4-thread Feistel where the round function is applied
twice (i.e., to two words) in parallel in all the fourteen rounds.

SHAvite-3 received a very little cryptanalytic attention, and the only known
results [23,25] involve a specific set of weak message, salt, and counter values,
which cause all the subkeys of the block cipher to be equal to 0 (which leads
to the introduction of slide properties, as well as fixed points). Following these
findings the message expansion of SHAvite-3 was tweaked. The following results
concern only the original untweaked version of SHAvite-3 .

Self-Similarity in SHAvite-3 . As in Lesamnta, one can swap the two halves
of each of the chaining value words, and as the all zero constant is fixed under
the similarity relation, we obtain that all the inputs to the round functions are
swapped. Recalling the results on Lesamnta and of [19], it is easy to see that the
compression functions of SHAvite-3 contain the same self-similarity issues when
the special message (all zeroes), salt (all salt bytes are 52x) and counter values
(zero) are used.

Another self-similarity property for SHAvite-3 is the rotation of each chaining
value word by either 32 bits or 96 bits. Following [19] and the fact that the
subkey zero is also a fixed point of this relation, results in the same phenomenon.
Formally, let the 128-bit chaining value words be (w0, w1) (for SHAvite-3 256) and
(w0, w1, w2, w3) (for SHAvite-3 512), and let the corresponding output chaining
values be (o0, o1) and (o0, o1, o2, o3), respectively, then:

(w0, w1)→ (o0, o1)⇒ (R(w0), R(w1))→ (R(o0), R(o1))

and

(w0, w1, w2, w3)→ (o0, o1, o2, o3)⇒ (R(w0), R(w1), R(w2), R(w3))→ (R(o0), R(o1), R(o2), R(o3))

where R(·) is a rotation by 32, 64, or 96 bits.
We note that unlike the case of Lesamnta, this attack cannot be used on the

actual SHAvite-3 , as the counter value is not used with any message block which
the adversary can control. Moreover, the tweak of SHAvite-3 suggested in [7]
thwarts this attack (due to the change of the message expansion).

9 Conclusion

This work shows one more time that symmetry in the building blocks of a
cryptographic primitive can be dangerous. We have shown new ways to build
symmetry relations based on rotations or algebraic expressions. We have also
described new attacks based on these relations when there exists key and/or
plaintexts which are fixed under the similarity relations. The common way to
avoid such symmetries is to include round constants (either in the key schedule or
in the actual rounds). However, our results on the hash function Lesamnta show
that if the constants suggest some self-similarity property, it may interact with



other components to suggest a self-similarity property of the entire primitive.
Hence, we conclude that some round constants can be weaker than others, and
that highly structured round constants should be avoided.
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