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Abstract. Most cryptographic hash functions are iterated construc-
tions, in which a mode of operation specifies how a compression function
or a fixed permutation is applied. The Merkle-Damg̊ard mode of opera-
tion is the simplest and more widely deployed mode of operation, yet it
suffers from generic second preimage attacks, even when the compression
function is ideal.

In this paper we focus on provable security against second preimage
attacks. Based on the study of several existing constructions, we describe
simple properties of modes of operation and show that they are sufficient
to allow some form of provable security, first in the random oracle model
and then in the standard model. Our security proofs are extremely sim-
ple. We show for instance that the claims of the designers of Haifa
regarding second preimage resistance are valid.

Lastly, we give arguments that proofs of second preimage resistance
by a black-box reduction incur an unavoidable security loss.

Keywords: Hash function · Second preimage resistance · Security proof ·
Unavoidable security loss · Black-box reductions

1 Introduction

Of all major cryptographic primitives, hash functions have been continuously
avoiding the theoretical nirvana other cryptographic primitives enjoy. While
ciphers, encryption schemes, message authentication codes and signature schemes
have well understood theoretical foundations, acknowledged security definitions,
and some can be idealized using primitives which are considered natural and
fair, hash functions have remained as elusive as they were. There is however a
consensus to consider that a cryptographic hash function H : {0, 1}∗ → {0, 1}n

cannot be “good” if it does not simultaneously resist:

1. Collision adversaries up to about 2n/2 queries
2. Preimage adversaries up to about 2n queries
3. Second-Preimage adversaries up to about 2n queries
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Many modern hash functions are usually built by combining a compression
function, hashing a small number of bits (typically 512) into a smaller num-
ber (typically 256), and of a mode of operation, describing how the compression
function should be used to process arbitrarily big messages. The most popular
and well-known mode of operation is the Merkle-Damg̊ard construction, intro-
duced in 1989 and named after its two independent inventors [6,14]. Besides its
simplicity and elegance, the most distinctive feature of this mode of operation is
that it promotes the collision-resistance of the compression function to that of
the full hash function. Indeed, its inventors proved that there exist an efficient
algorithm which, given two messages M �= M ′ such that Hf (M) = Hf (M ′),
extracts two compression-function inputs x �= x′ such that f(x) = f(x′), where
Hf denotes the Merkle-Damg̊ard iteration of the compression function f .

The Merkle-Damg̊ard mode of operation therefore enjoys a form of provable
security, since the whole hash function is not less secure than the compression
function with respect to collision adversaries. This allows hash function designers
to focus on designing collision-resistant compression functions, arguably an easier
task than designing a full-blown hash function. A comparable result holds for
preimage resistance, since a preimage on the full hash function would lead to a
pseudo-preimage on the compression function.

The situation is however not as good for the remaining classical security
notion, namely second preimage resistance. In fact, it turned out that the Merkle-
Damg̊ard iteration of a secure compression function is not as secure as the com-
pression function itself: in 2005, Kelsey and Schneier described an attack [12]
that finds a second preimage of an �-block message with 2n/� evaluations of the
compression function, even if it is ideal (i.e., a public random function).

The existence of several generic attacks [10–12] demonstrated that there was
definitely a problem with the Merkle-Damg̊ard construction, and motivated fur-
ther research, and new modes of operations have emerged. It also motivated hash
function designers to provide proofs that their mode of operation is sounds, and
that it does not suffer from generic attacks.

An elegant solution, both theoretically and practically appealing, is the wide-
pipe hash proposed by Lucks in 2005 [13]. The underlying idea is simple: make the
internal state twice as big as the output. This makes the construction provably
resistant to second preimage attacks in the standard model, because a second
preimage on the iteration yields either an n-bit second preimage or a 2n-bit
collision on the compression function. This construction is also very practical,
and it is implemented by 4 out of the 5 SHA-3 finalists. However, the memory
footprint of a wide-pipe construction is as least twice as big compared to Merkle-
Damg̊ard, so in some cases where memory is restricted, it would be beneficial to
have a “narrow-pipe” mode of operation.

In this paper, we focus on narrow-pipe1 modes of operation, where several
questions remain unanswered. For instance, the exact resistance to generic sec-
ond preimage attack of the Merkle-Damg̊ard construction is in fact unknown.
1 We call “narrow-pipe” a construction where the internal state has the same length

as the digest.
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Existing attacks give an upper-bound above the birthday paradox, and the fact
that a second preimage is also a collision give a birthday lower-bound. The
generic second preimage security of Merkle-Damg̊ard is thus known to lie some-
where between 2n/2 and 2n/� queries, for messages of size �.

Our Goal and Our Results. The objective of this paper is to describe very
simple conditions that, when satisfied by a narrow-pipe mode of operations, are
sufficient to provide some form of provable resistance against second preimage
attacks beyond the birthday bound.

Provable security against second preimage attack comes in several flavors.
One possible setting to discuss the security of a mode of operation is the ran-
dom oracle model, i.e., assuming that the compression function is a public ran-
dom function. Proofs that there cannot exist second preimage attacks under
the assumption that the compression function is a random oracle show that
the mode of operation is immune to generic attacks, i.e., attacks that target the
mode of operation itself and thus work for any compression function. The second
preimage attacks of Kelsey-Schneier and that of Andreeva et al. [2] are generic
attacks.

We show that a simple tweak to the Merkle-Damg̊ard mode is sufficient
to prevent all generic second preimage attacks. This modification, namely the
inclusion of a round counter, is one of the distinctive features of Haifa. Biham
and Dunkelman proposed Haifa in 2006 [8], as a collection of tweaks to the
original Merkle-Damg̊ard mode of operation; they claimed a security level of 2n

against second preimage adversaries, without providing proofs. We thus show
that their claim is valid.

The assumption that hash functions, or just components thereof, are random,
is strong and unrealistic enough to make some uncomfortable, so that we would
like to get rid of it. Constructions of keyed hash functions provably achieving
a form of second preimage resistance without relying on the existence of public
random functions, but instead based on the hardness of a general assumption
have been known for quite a while [9,15], under the name of Universal One-Way
Hash Functions (UOWHFs). Later on, modes of operation of keyed hash func-
tions that promote a form of second preimage resistance from the compression
function to the whole construction have been designed [4,17].

The security of the latter modes of operation is established by a black-box
reduction, namely an algorithm that turns a successful attacker against the hash
function into a (somewhat less) successful attacker against the compression func-
tion. Thus, the iteration remains secure, up to some level, as long as the com-
pression functions are themselves secure.

Inspired by these constructions we again isolate a specific property of modes
of operation which is sufficient to provide this kind of “reductionist” security,
without heavy assumptions on the compression function. This feature is, again,
simple: given a bit string x, it must be possible to forge a message M such
that f(x) is evaluated while computing Hf (M). We then describe a “generic”
reduction that solely requires this specific property to show that a mode of
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operation promotes the second preimage resistance of the compression function.
This proof is, to some extent, an abstraction of the security proofs of several
existing schemes.

Lastly, we observe that in all these proofs of second preimage security by
reduction there is always a security loss proportional to the size of hashed mes-
sages (i.e., security is guaranteed up to a level of 2n/� where � denotes the
size of hashed messages). We give arguments hinting that this security loss is
unavoidable, and is caused by the proof technique itself.

Organisation of the Paper. In Sect. 2 we recall the security notions we are
concerned with. Then in Sect. 3 we introduce a generic narrow-pipe mode of
operation, and we show that all the particular constructions that we consider
are instances of this generic framework. In Sect. 4 we discuss the generic attacks
that apply to the known provably second-preimage resistant constructions we
consider, and we show how to make them immune to these attacks. Lastly, in
Sect. 5 we show our main result, namely that the security loss in the security
proofs is unavoidable.

2 Definitions

We recall the definition of the usual second preimage notions. The Spr notion
is folklore and applies to unkeyed hash functions, while Sec and eSec security
notions have been defined in [16] and applies to families of hash functions indexed
by a key.

Spr The adversary receives a (random) challenge M and has to find a second
message M ′ such that H(M) = H(M ′) with M �= M ′. The advantage of
the adversary is its success probability (taken over the random coins used
by the adversary and the random choice of the challenge).

Sec The adversary receives a random challenge message and a random key, and
she has to produce a colliding message for the given key. The advantage
is the success probability of the adversary (over the random coins used by
the adversary and the random choice of the challenge).

eSec The adversary chooses the challenge message. Then, she receives a random
key and has to find a colliding message under this key. The advantage is
the maximum taken over the choice of M by the adversary of her success
probability (taken over the random coins used and the random choice of
the key).

Historically, eSec-secure hash function families have been called Universal
One-Way Hash Functions (UOWHFs). It must be noted that a Sec-adversary
can be used to win the eSec security game (just generate the challenge message
randomly-first). Therefore, if H(·) is eSec-secure, then it is also Sec-secure.

Note that the size of the challenges plays an important role in the discussion
of second preimage resistance. The known generic attacks are faster when the
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challenges become longer. For this reason, the second preimage security notions
are often parametrized by the size of the challenges. When the challenge consists
of an �-block long message, the notions are denoted by Spr[�],Sec[�] and eSec[�].

We say that an adversary against a security notion (t, ε)-breaks the security
notion if it terminates in time t and wins the game with probability ε. Let us
note a fact that will have some importance later on. In all these notions, the
success probability is taken over the random coins of the adversary and over the
choice of the challenge. This means that an adversary implementing an attack
against “weak messages” or “weak keys” may succeed on a small fraction of the
challenge space and fail systematically on non-weak messages, while still having
a non-zero advantage. A consequence is that it is not possible to increase the
success probability of adversaries against a single challenge by repeating them
until they succeed.

How to compare the efficiency of adversaries that have different running time
and success probability? If an adversary (t, ε)-breaks a security notion, then the
expected number of repetitions of the experiment defining the notion before
the adversary wins is 1/ε. This represents a total of t/ε time units, and this
is a meaningful scale. Intuitively, it represents “how much time do we have to
wait before the adversary shows me what she is capable of”. We call the global
complexity of an adversary the ratio between its time complexity and its suc-
cess probability. As an example, notice that the global complexity of exhaustive
search is 2n (for all second preimage notions).

Following the notations in use in the existing literature, we will denote by
AH an adversary against an iterated hash function, and by Af the adversary
against the corresponding compression function. Hopefully, things will be clear
by the context.

3 Abstract Narrow-Pipe Modes of Operations

Because we would like to state results that are as generic as possible, we introduce
a framework of abstract modes of operation, which encompasses all the narrow-
pipe modes of operation known to the authors. This framework will enable us
to show that our results hold for any mode of operation satisfying a minimum
set of conditions.

We will consider that a narrow-pipe mode of operation H(·) is a circuit that
takes as its input M (the full message), K (the key, if present), hi (the current
chaining value) and i (the block counter). This circuit is responsible for preparing
the input to the compression function. The next chaining value hi+1 is the output
of the compression function on the input prepared by the circuit. The output
of the whole hash function is the output of the compression function on its last
invocation. The circuit activate a special wire “last call” to indicate that the
hash process is terminated. We denote by e : N → N the function that returns
the number of calls to the compression function given the size of M . We thus
implicitly assume that the number of calls to the compression function does not
depend on the input of the hash function (i.e., on M and K), but only on the
size of M . We are inclined to believe that this restriction is natural.
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The incoming chaining value is set to a predefined value (say, zero) on the first
invocation. This particular class of modes of operation imposes that the output
of the full hash function comes out of the compression function without post-
treatment, in particular without truncation. This, coupled with the fact that
the circuit has no internal memory makes it a narrow-pipe mode of operation.
Apart from that, H(·) may include a “final transformation”, or process each
message block multiple times. Formally, the hash process works according to the
pseudo-code shown in Algorithm 1.

Algorithm 1. Formal definition of the hash process with an abstract mode of
operation

function Abstract-Mode-Of-Operation(M, K)
h−1 ← 0
i ← 0
while not finished do

xi ← H(·) (M, K, i, hi−1)
hi ← f (xi)
i ← i + 1

end while
return hi−1

end function

There are constructions that are apparently not narrow-pipe, but that still
fit in this framework, such as the GOST hash function (the checksum can be
computed in the last invocation, and does not need to be transmitted between
each invocation of the compression function). Note that this requires the full
message M to be given to the mode of operation at each invocation.

Note that by choosing H(·) to be a circuit, we implicitly admit the exis-
tence of an upper-bound on the size of the messages (if only because the block
counter comes on a finite number of wires). In the sequel, by “mode of opera-
tion”, we implicitly mean “a narrow-pipe mode of operation that fits the above
framework”. This does not seem to be a restriction, as we are not aware of any
narrow-pipe construction using a single compression function that does not fit
the above definition.

3.1 Collision-Resistance Preserving Modes of Operation

While we tried to make the definition of a mode of operation as generic as it gets,
we are not interested in really bad modes of operation. We are not interested in
non-collision resistant constructions, for instance. In this section, we characterize
a few properties modes of operation should have not to be totally worthless.

We say that a mode of operation is strengthened if the binary encoding
of the size of the processed message is contained in the input to the last invo-
cation of the compression function. It is well-known that the Merkle-Damg̊ard
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mode of operation is strengthened, which is the key in establishing its impor-
tant collision-resistance preservation. However, in general, being strengthened
is not completely sufficient to be collision-resistance preserving. Some further
technicalities are required.

We say that a mode of operation is message-injective if for all functions
f and all keys K, the function that maps the message M to the sequence of
compression-function inputs (xi) is injective. This implies that hashing two dif-
ferent messages M and M ′ cannot generate the same sequence of inputs (xi).
This property is necessary for collision-resistance preservation: if H(·) is not
message-injective, there exists a function f and a key K such that there exist
two colliding messages M and M ′ generating the same hash, without causing a
collision in the compression function.

We also say that a mode of operation is chaining-value-injective if for all
f and all K, there exists a (deterministic) function that maps xi to hi−1. The
combination of these three properties is sufficient to ensure collision-resistance
preservation.

Lemma 1. A mode of operation H(·) simultaneously message-injective, chaining-
value-injective and strengthened is collision-resistance preserving.

This lemma is just a restatement of the well-known result of Merkle and
Damg̊ard, but we include its proof, because it is a good warm-up, and because
it will be useful later on.

Proof. Suppose we have two messages M �=M ′ such that Hf (K,M)=Hf (K,M ′),
for some compression function f . Then:

– Either
∣
∣M

∣
∣ �= ∣

∣M ′∣∣. In this case, because H(·) is strengthened, the inputs of
the last invocation of the compression are not the same when hashing M and
M ′, and because M and M ′ collide, we have found a collision on f (on its
last invocation).

– Or
∣
∣M

∣
∣ =

∣
∣M ′∣∣. Suppose that the compression function is invoked r = e(|M |)

times in both cases. In this case, there are again two possibilities. Either
xr �= x′

r, and we have a collision since hr = h′
r, or xr = x′

r. By chaining-
value-injectivity, we have hr−1 = h′

r−1. The argument repeats. Either we find
a collision along the way, or we reach the conclusion that xi = x′

i, for all i,
which is impossible by message-injectivity. ��
Because of this lemma, we call a mode H(·) “collision-resistance preserving”

if it satisfies these three conditions.

3.2 Some Particular Modes of Operations

We briefly describe the Merkle-Damg̊ard mode of operation and Haifa, as well as
the three provably second-preimage resistant modes of operations mentioned in
the introduction. Figure 1 shows a possible implementation of the corresponding
modes of operation in our generic framework.
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1: function MD(M, K, i, hi−1)
2: let (m0, . . . , m�) ← Pad(M)
3: return (hi−1, mi)
4: end function

1: function Haifa(M, K, i, hi−1)
2: let (m0, . . . , m�) ← Pad(M)
3: return (hi−1, mi, i)
4: end function

1: function Shoup(M, K, i, hi−1)
2: let (k, μ0, . . . , μκ) ← K
3: let (m0, . . . , m�) ← Pad(M)
4: return k, hi−1 ⊕ μν2(i), mi

)

5: end function

1: function Split-padding(M, K, i, hi−1)
2: let (m0, . . . , m�) ← Special-Pad(M)
3: return (hi−1, mi)
4: end function

1: function BCM(M, K, i, hi−1)
2: let (K1, K2) ← K
3: let (m0, . . . , m�) ← Pad(M)
4: if i = 0 then return (K0 ⊕ m1, m0)
5: if 0 < i < � − 1 then return (hi−1 ⊕ mi+1, mi)
6: if i = � − 1 then return (h�−2 ⊕ m� ⊕ K2, m� ⊕ K1)
7: if i = � then return (h�−1 ⊕ K1, m� ⊕ K2)
8: end function

Fig. 1. Pseudo-code of possible implementations of the modes of operations considered
in Sect. 3.2 in the generic framework for narrow-pipe constructions.

Merkle-Damg̊ard. The Merkle-Damg̊ard mode of iteration was independently
suggested in 1989 by Merkle [14] and Damg̊ard [6]. It is an unkeyed mode of
operation, so the circuit H(·) just ignores the key input. In this mode, the input
to the compression function is usually considered to be formed of two parts
playing different roles: the chaining value input, on n bits, and the message
block input, on m bit, the output of the function being n-bit wide.

The padding is done usually by appending a single ‘1’ bit followed by as
many ‘0’ bits as needed to complete an m-bit block including the length of M
in bits (the well-known Merkle-Damg̊ard strengthening). However, for the sake
of simplicity, we will consider in the sequel a simplified padding scheme: the last
block is padded with zeroes, and the message length in bits is included in an
extra block.

HAIFA. The HAsh Iterative FrAmework (Haifa), introduced in 2006 by Biham
and Dunkelman [8], is a Merkle-Damg̊ard-like construction where a counter and
salt are added to the input of the compression function. In this paper, we consider
a simplified version of Haifa (amongst other things, we disregard the salt).
For our purposes, the definition we use is of course equivalent. In Haifa, the
compression function f : {0, 1}n×{0, 1}m×{0, 1}64 → {0, 1}n takes three inputs:
the chaining value, the message block, and the round counter (we arbitrarily limit
the number of rounds to 264). The designers of Haifa claimed that the round
counter was sufficient to prevent all generic second preimage attacks.
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Shoup’s UOWHF. Shoup’s Universal One-Way Hash Function works just like
Merkle-Damg̊ard by iterating an eSec-secure compression function family f :
{0, 1}k×{0, 1}n×{0, 1}m → {0, 1}n to obtain a (keyed) eSec-secure hash function
(i.e., a UOWHF).

The scheme uses a set of masks μ0, . . . , μκ−1 (where 2κ−1 is the length of the
longest possible message), each one of which is a random n-bit string. The key of
the whole iterated function consists of the key k of the compression function and
of these masks. The size of the key is therefore logarithmic in the maximal size
of the messages that can be hashed. The order in which the masks are applied
is defined by a specified sequence: in the i-th invocation of the compression
function, the ν2(i)-th mask is used, where ν2(i) denotes the largest integer ν
such that 2ν divides i. As advertised before, this construction enjoys a form of
provable second-preimage security in the standard model: it promotes the eSec
security of the compression function to that of the whole hash function.

Theorem 1 [17]. Let H(·) denote Shoup’s mode of operation. If an adversary
is able to break the eSec[�] notion of Hf with probability ε in time T , then one
can construct an adversary that breaks the eSec notion of f in time T + O (�),
with probability ε/�.

The Backwards Chaining Mode. Andreeva and Preneel described in [3] the
Backwards Chaining Mode (BCM) which promotes the second-preimage resis-
tance of an unkeyed compression function to the Sec notion of the (keyed) full
hash function. We will assume for the sake of simplicity that the message block
and the chaining values have the same size. The iteration is keyed, and the key
is formed by a triplet (K0,K1,K2) of n-bit strings (note that the size of the key
is independent of the size of the messages).

This construction also enjoys a form of provable second-preimage security in
the standard model. It promotes the Spr security of the compression function to
the Sec-security of the whole hash function.

Theorem 2 [3]. Let H(·) denote the BCM mode of operation. If an adversary
is able to break the Sec[�] notion of Hf with probability ε in time T , then one
can construct an adversary that breaks the Spr notion of f in time T + O (�),
with probability ε/�.

The Split Padding. Yasuda introduced the Split Padding in 2008 [18], as
a minor but clever tweak to the Merkle-Damg̊ard strengthening. For the sake
of simplicity, we will assume that the message block is twice bigger than the
chaining values (i.e., it is 2n-bit wide). The tweak ensures that any message
block going into the compression function contains at least n bits from the
original message (this is not necessarily the case in the last block of the usual
Merkle-Damg̊ard padding scheme).

It promotes a kind of eSec-security of the compression function to the Spr-
security of the (unkeyed) iteration. More precisely, the security notion required of
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the compression function is the following: the adversary chooses a chaining value
h and the first n bits of the message block m1, and is then challenged with the last
n bits of the message block m2. She has to find a new pair (h′,m′) �= (h,m1 ||m2)
such that f(h,m1 ||m2) = f(h′,m′). To some extent, this is the eSec security
notion, but here the “key” of the compression function is the last n bits of the
message block.

Theorem 3 [18]. Let H(·) denote the Split Padding mode of operation. If an
adversary is able to break the Spr[�] notion of Hf with probability ε in time T ,
then one can construct an adversary that breaks the eSec-like notion of f in
time T + O (λ), with probability ε/�.

4 How to Make Your Mode of Operation Resistant
Against Second Preimage Attacks?

In this section, we describe two simple properties of modes of operation, and we
show that these properties allows some kind of security results against second
preimage adversaries.

4.1 Resistance Against Generic Attacks

Generic attacks are attacks against the modes of operation, i.e., attacks that
do not exploit any property of the compression function, and that could there-
fore work regardless of its choice. Generic attacks can therefore break the hash
function even if the compression function does not have any weakness, and they
could work even if the compression function were a random oracle (a public,
perfectly random function).

Symmetrically, an attack against a hash function where the compression is
perfectly random is necessarily an attack against the mode of operation (since
it is impossible to break a perfectly random function).

We will therefore follow the existing literature [1,2,7,10–12] by assuming that
the compression function is random. In the random oracle model, the relevant
measure of efficiency of an adversary is the number of query sent to the ran-
dom oracle, rather than time. Indeed, the adversaries cannot obtain any kind
of advantage by computation alone without querying the random function. In
this particular setting, we say that an adversary (q, ε)-breaks a security notion
if she sends at most q queries to the random oracle and wins with probability at
least ε.

We now show that a very simple criterion, directly inspired from Haifa,
is sufficient to obtain an optimal level of provable resistance to generic second
preimage attacks.

Definition 1. A mode of operation H(·) has domain separation if there exist a
deterministic algorithm idxEx which, given an input to the compression function
xi produced when evaluating Hf (K,M), recovers i, regardless of the choice of
M , K and f .
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Amongst all the modes of operation considered above, only Haifa has domain
separation: the round counter is part of the input to the compression function.
The following theorem show that Haifa is optimally resistant to generic second
preimage attacks, as was claimed by its designers.

Theorem 4. Let H(·) be a mode of operation satisfying the conditions of
Lemma 1 and also having domain separation, and let f be a public random func-
tion. Let A be a second-preimage adversary that (q, ε)-break the Spr[�] notion for
Hf . Then:

ε ≤ q/2n−1.

Proof. Suppose that the adversary, challenged with an �-block message M , suc-
ceeds and finds M ′ �= M such that Hf (M) = Hf (M ′). Then:

1. Either
∣
∣M

∣
∣ �= ∣

∣M
∣
∣, and because H(·) is strengthened, then the adversary has

found a (second) preimage of Hf (M) for the compression function f . Since
f is a random oracle, each query has a probability 2−n to give this preimage.

2. Or M and M ′ have the same size. Because H(·) is strengthened, injective and
extractable, we know (by looking at the proof of Lemma 1) that there exists
a collision on f of the form:

f(xi) = f(x′
i) = hi

It is important to notice that the same value of i occurs in the three mem-
bers of this equation. The “index extractor” idxEx of the domain separation
mechanism can be used to partition the possible inputs to f into disjoint
classes (corresponding to the preimages of integers). In the collision above,
xi and x′

i belong to the same, “i-th” class. When submitting a query x to f ,
the adversary implicitly chooses the index i = idxEx(x) of the class to which
x belong. The collision above can only be found if f(x) = hidxEx(x), mean-
ing that for each query, there is only one target value that ensures victory.
Therefore, because f is a random oracle, each query hits the single target
with probability 2−n.

Now, each query sent by the adversary has probability 2−n + 2−n of fulfilling a
sufficient success condition, which proves the result. ��

4.2 Resistance Against All Attacks

The assumption that the compression function is random is the crux of the proof
of the previous result. While it is completely unrealistic, results proved under
this assumption still say something meaningful: they show that the mode of
operation itself does not exhibit obvious weaknesses, and that the adversaries
have to look into the compression function to break the iteration.

Nevertheless, it would be more satisfying to drop this requirement. In that
case, the adversary “knows” the source code of the compression function, so
that she does not need an external oracle interface to evaluate it. The relevant
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measure of her complexity is thus her running time. We say that an adversary
(t, ε)-break a hash function (or a compression function) if she runs in time at
most t and succeeds with probability at least ε.

For this, we show that another simple criterion is enough to offer a non-trivial
level of security. This criterion is directly inspired by the three constructions with
provable security in the standard model discussed above.

Definition 2. Given a mode of operation H(·) and a compression function f ,
let P (i, y) denote the set of pairs (M,K) such that when evaluating Hf (M,K),
then the i-th input to f is y (i.e., xi = y in Algorithm 2).

We say that a mode of operation H(·) allows for embedding if P (i, y) �= ∅ for
any y and if it is computationally easy to sample random elements in P (i, y).

Shoup’s UOWHF allows for embedding, yet proving it is not so easy. We refer
the reader to [17] for the full details, but here is an intuitive version. Controlling
the message block in the i-th iteration is easy, but controlling the chaining value
is not so obvious. Clearly, the mask used in the i-th iteration must be chosen
carefully, but the problem is that choosing it will also randomize the output
of the previous iterations. The key idea is that between two arbitrary points
of the iteration, there is always a mask that is used only once (the one with
the greatest index). By choosing this particular mask after all the others, it
is possible to control the chaining value at this particular point, regardless of
the other masks. This yields a recursive procedure to control the chaining value
between the first and the i-th iterations: observe that the chaining value can be
set to (say) zero in the iteration where the mask with the greatest index occur
before the i-th iteration, independently of what happens afterward. Suppose
that this mask happens in iteration j. Then, we are left with the problem of
controlling the chaining value between the j-th and the i-th iteration, a strictly
smaller problem, to which the same technique can be applied recursively.

The backwards chaining mode easily allows for embedding. To embed in the
first block, just set K0 appropriately. To embed at any other index smaller than
� − 1, just choose mi and mi+1 with care. Finally, to embed at index � − 1 or
�, pick the message at random and choose K1 and K2 accordingly (the keys
are necessary to embed in the last blocks because of the padding scheme). The
split-padding does not allows for this definition of embedding, but it allows to
embed n bits of message block into any compression function input.

Theorem 5. Let H(·) be a mode of operation satisfying the hypotheses of
Lemma 1 and that additionally allows for embedding.

If an adversary is able to break the Sec[�] notion of Hf with probability ε in
time T , then one can construct an adversary that breaks the Spr notion of f in
time T + O (e(�)), with probability ε/e(�).

Proof. The proof works by exhibiting a reduction R that turns an adversary
AH against the iteration into an adversary against the compression function.
The reduction R is described by the pseudo-code of Algorithm 2.
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The reduction starts by forging a random message M that “embeds” the
challenge x at a random position i, and then it sends this to the adversary AH .
If the adversary succeeds in producing a second preimage M ′, then M and M ′

collide. If the collision happen just at position i, then a second preimage of the
challenge x is readily found.

The sequence of compression function inputs (the xi in Algorithm 2) gener-
ated during the iteration of Hf (M,K) is denoted by blocks(f,M,K).

Algorithm 2. Formal definition of the generic reduction.
1: function Reduction[�](x)

2: i
$←− {0, 1, . . . , e(�)}

3: (M, K)
$←− P (i, x)

4: M ′ ← AH(f, M, K)
5: if M ′ = ⊥ then return ⊥
6: x0, . . . , xe(�)−1 ← blocks(f, M, K)
7: x′

0, . . . , x
′
e(�′)−1 ← blocks(f, M ′, K)

8: j ← 1
9: while xe(�)−j = x′

e(�′)−j do
10: j ← j + 1
11: if e(�) − j = i then return x′

e(�′)−j else ⊥
12: end function

The running time of the reduction is clearly that of AH plus the time needed
to hash both M and M ′. Clearly, M ′ cannot be larger that the running time of
AH , so that the running time of R is essentially that of the adversary.

It remains to determine the success probability of the reduction. First of all,
the adversary succeeds with probability ε on line 3. Note that the challenge fed
to AH is uniformly random: the challenge x given to R is supposed to be chosen
uniformly at random, and (M,K) is uniformly random amongst the possibilities
that place the random block x at a random position i.

Next, we show that when the adversary AH succeeds, the reduction itself
succeeds with probability 1/e(�). First, we claim that at the beginning of line 11,
we have xe(�)−j �= x′

e(�′)−j and f
(

xe(�)−j

)

= f
(

x′
e(�′)−j

)

. The reasoning behind
this is exactly the same as that in the proof of Lemma 1. This establishes the
correctness of the reduction in passing.

Finally, we see that the reduction succeeds if and only if e(�)−j = i. Because
i has been chosen uniformly at random, this happens with probability 1/e(�),
regardless of the value of j (which is under the control of the adversary). ��

Discussion. All the proof of resistance considered above (Theorems 1, 2, 3
and 5) only provide a security level of 2n/�. In some cases, this makes perfect
sense, because a generic attack of this complexity is applicable. However, such
generic attacks could be made impossible by including a counter in the mode of
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operation, and yet it seems impossible to provide better security proofs in the
standard model.

It is then natural to ask whether these security proofs could be improved to
reflect the effect of the patch on the security of the schemes. In other terms, we
ask whether it is it possible to prove the patched schemes resistant to second
preimage attacks in the standard model up to a level of roughly 2n?

The last contribution of this paper is to show that this is in fact impossible
with the “usual” proof technique.

5 Unavoidable Security Loss in Black-Box Reduction

Resistance against second preimage attacks in the standard model of a mode of
operation H(·) is often announced by theorem formulated similar to the following
“typical” result.

Theorem 6 (informal and typical). There is a black-box reduction R(·, ·)
such that R(f,AH) is a second-preimage adversary against the compression func-
tion f that (t + t′, α · ε + β)-breaks f , for all compression functions f and all
second preimage adversaries AH that (t, ε)-break Hf .

The reduction is given black-box access to both the adversary and the com-
pression function f , and this is a way of formalizing that the reduction must
work for any adversary and any compression function. For the sake of simplicity,
in this paper we allow the reduction to issue only one query to the adversary. To
some extent, this narrows our study a little, but all the reductions we are aware
of (in [3,17,18]) fit into this category. Note also that the adversary AH may fail
deterministically on a given challenge, so that it is pointless to re-run it again
and again to increase its success probability.

In setting of our security theorem above, there are three parties: the chal-
lenger, the reduction and the adversary. To make the discussion simpler we will
focus on the Sec security notion, but our reasoning extends to other notions. In
the Sec game, the challenger sends the reduction a challenge made of an input
x to f , and a “key” k for f . The reduction has to find a distinct input x′ such
that fk(x) = fk(x′). For this purpose, the reduction may use the AH adversary:
the reduction sends the adversary a challenge made of a message M of at most
� message blocks, and a key K. The adversary may either returns a message M ′

such that Hf (K,M) = Hf (K,M ′) or fail. The precise sequence of interactions
is the following:

Challenger
x,k−−→ Reduction

Reduction
M,K−−−→ Adversary

Reduction M ′
←−− Adversary M �= M ′ HK(M) = HK(M ′)

Challenger x′
←− Reduction x �= x′ fk(x) = fk(x′)

If the compression function f is secure, then the “time/success probability”
ratio of any adversary against f is greater than 2n. The interest of the reductions
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function f-Simulator(x, k)

if Log[x, k] = ⊥ then Log[x, k]
$←− {0, 1}n

return Log[x, k]
end function

Fig. 2. A dummy random function simulator

is that given an adversary AH against Hf , one must have: (t+t′)/(α·ε+β) ≥ 2n,
and therefore the “time/advantage” ratio of AH is lower-bounded by:

t

ε
≥ 2nα +

2nβ − t′

ε
. (1)

The right-hand side of Eq. (1) is the provable security level that the reduction
offers. Note that it bizarrely depends on the success probability of the adversary,
but this seems unavoidable.

Reductions are generally assumed to have to simulate the legitimate input
challenge distribution the adversary is normally expecting. In our case, this
means that the distribution of the challenges M,K must be indistinguishable
from random. Note that if M,K were biased, then the adversary could detect
that it is “being used”, and fail deterministically. In any case, when we men-
tion the success probability ε of the adversary AH , we assume that its input
distribution is uniformly random.

When considering a single run of the reduction, its success probability should
depend very much on whether the adversary succeeds or not. Therefore, it makes
sense to write:

P [R succeeds] =ε·P[R succeeds
∣
∣ AH succeeds

]

+(1−ε)·P[R succeeds
∣
∣ AH fails

]

This justifies why we assumed the success probability of the reduction to be of
the form α · ε + β, and in fact we have:

α = P
[R succeeds

∣
∣ AH succeeds

] − P
[R succeeds

∣
∣ AH fails

]

β = P
[R succeeds

∣
∣ AH fails

]

Now, while our objective is to understand what happens when AH succeeds,
it is easier to get a glimpse of what happens when AH fails. In this setting,
the reduction is just a randomized Turing machine trying to break the sec-
ond preimage resistance of an arbitrary black-box function, which cannot be
done faster than exhaustive search. For instance, f could be a Pseudo-Random
Function with a randomly-chosen secret key. We could even use the algorithm
shown in Fig. 2 to simulate a “truly” random function. In any case, it follows
that β ≤ t′/2n. The provable security level offered by a reduction is thus upper-
bounded by α · 2n. We will thus say that a reduction is useable if α > t′/2n, as
this implies that the reduction offers a provable security level better than that
of exhaustive search (or equivalently, that the reduction actually makes use of
the adversary).
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5.1 How Do Reductions Use the Adversary?

In the sequel, we will make the natural assumption that the AH adversary the
reduction has access to has a non-zero success probability. We will also restrict
our attention to useable reductions. By doing so we rule out modes of operation
for which no useable reduction is known (such as the Merkle-Damg̊ard construc-
tion), but at the same time we rule out bogus modes that would have been a
problem.

Let us consider a provably secure mode of operation H also satisfying the
hypotheses of Lemma 1. (i.e., injective, extractable and strengthened). We need
to define yet another property to make our argument work. We say that a mode
of operation is suffix-clonable if given an �-block message M , a key K and an
integer 0 < i ≤ �, and the sequence h0, . . . , h�+1 of compression function outputs
generated during the evaluation of Hf (M,K), it is always possible to find a
different �-block message M ′ such that:

(i) H(·)(K,M, i − 1, hi−2) �= H(·)(K,M ′, i − 1, hi−2)
(ii) For all j such that i ≤ j ≤ �, H(·)(K,M, j, hj−1) = H(·)(K,M ′, j, hj−1)

This is a bit technical, but is required by a part of the proof. Intuitively, it means
that it is possible to find a message that would generate the same compression
function inputs after the i-th iteration if a collision occurred, while generating a
different input for the i-th iteration.

The Merkle-Damg̊ard construction (and therefore Haifa ) and the split-
padding are easily seen to be suffix clonable: it is sufficient to change the i-
th message block while leaving all the subsequent messages blocks untouched.
Shoup’s construction is also easily seen to be suffix-clonable: it suffices to leave
K untouched and to modify the beginning of M . Lastly, the BCM mode of
operation is also suffix-clonable (and it again suffices to keep the right suffix
of M).

We will thus assume that our mode of operation H(·) is suffix-clonable. Since
it is provably secure, there exists a reduction R with a reasonably high success
probability. Our objective, and the main technical contribution of this section,
is to show the following theorem:

Theorem 7. We always have α ≤ 1/�+ t′/2n. It follows that the provable secu-
rity level offered by R cannot be higher than 2n/� + t′.

The remaining of this section is devoted to the proof of this result. The
general idea of the proof is to build an environment around the reduction R that
simulates a legitimate “world” for R, but in which it is easy to see that R has a
low success probability. Then because the security level offered by R has to hold
in all legitimates environment, it follows that in general R cannot offer more in
general than in the simulated world.

Connection Point. Before going any further, let us observe what happens
when the adversary finds a second preimage. Let us denote by xi and hi (resp.
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x′
i and h′

i) the sequence of inputs and outputs of f while evaluating Hf (M) (resp.
Hf (M ′)). Since M and M ′ collide, and because H satisfies the hypotheses of
Lemma 1, then a second preimage of one of the xi input values can be readily
obtained from M ′. If we look closely at the proof of Lemma 1, we will see that
if

∣
∣M

∣
∣ �= ∣

∣M ′∣∣, then we obtain a second preimage of f on the last invocation.
Otherwise, there exists an index i such that f(xi) = f(x′

i) and xi �= x′
i. In the

sequel, we call this particular index i the “connection point”, and we note that
at this particular index a second preimage of xi for f is revealed, which we call
“the second preimage at connection point”.

Embedding. The strategy used by all the reductions we are aware of is to embed
the small challenge (x, k) into the big challenge (M,K). Following our definition,
we say that (x, k) is embedded into (M,K) at location i if and only if fk(x) is
evaluated during the i-th iteration of the main loop of Algorithm 2 during the
evaluation of Hk(K,M). We will show that the second preimage returned by the
adversary can only be used by the reduction if the second preimage at connection
points directly gives a solution to the small challenge. Let us denote by ♣ the
condition “the second preimage at connection point is a second preimage of the
small challenge sent by the Challenger to R”. Formally, this means that:

P [♣] = P

[
(∃i. xi = (x, k) in Algorithm 2

) ∧ (xi �= x′
i) ∧ (hi = h′

i)
]

We can then write:

P
[R succeeds

∣
∣ A succeeds

]
= P

[R succeeds
∣
∣ A succeeds ∧ ♣] · P [♣]

+ P
[R succeeds

∣
∣ A succeeds ∧ ¬ ♣] · P [¬ ♣] (2)

We first argue that the challenge cannot be embedded more than once. If the
challenge were embedded twice or more, the input distribution of the adversary
would not be random, because we would have xi = xj for i �= j in Algorithm 2,
something that is highly unlikely when M and K are drawn at random. This is
not allowed in the first place, and the adversaries could straightforwardly detect
it and abort.

Next, we claim that in order to be usable, a reduction must embed the chal-
lenge (x, k) into (M,K). This justifies a posteriori our observation that the three
schemes of interest all allow some form of embedding. To establish this result, we
first show that a legitimate world with various interesting properties can be built
around the reduction. When we argued that β was small, we used the (some-
what informal) argument that f could be implemented by a Random Function
simulator, and that inverting such a function faster than exhaustive search is
impossible. We now make this argument more formal, with the additional fea-
ture that we will be able to choose whether the adversary succeeds or fails, and
where it connects.
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Simulation. The easy case is when we want AH to fail, as it is sufficient to let
f simulate an arbitrary random function, and let AH return a random string, or
fail explicitly. The more interesting case is when we want AH to succeed. The
difficulty comes from the fact that the view of the reduction must be consistent:
after having received M ′ from the AH , the reduction must be able to check
that Hf

K(M) = Hf
K(M ′) by querying f . This is in fact quite easy to achieve, by

programming the function f . We thus simulate a complete environment around
the execution with the following procedure:

1. Before R sends its query (M,K) to AH , we simulate f by generating ran-
dom answers and storing them (for consistency), “implementing” f with the
random function simulator of Fig. 2.

2. When R sends its query (M,K) to AH , we choose an integer i ∈ {0, . . . , �}
(this will be the connection point), and we use the suffix-clonability property
of the mode of operation to generate a different message M ′ �= M satisfying
the conditions of the definition of suffix-clonability.

3. We evaluate Hf (M ′) in a special way. On the first i− 1 iterations we use the
random function simulator in place of f . On the i-th iteration we program f
so that f(x′

i) = hi, thus “connecting” M ′ to M in iteration i.
4. We return M ′ as the answer of AH to the reduction, and keep simulating f .

The reduction will be able to check that Hf
K(M) = Hf

K(M ′) by sending the
appropriate queries to f .

When running inside this environment, the view of the reduction is consistent
and legitimate. In this environment, we are able to choose the connection point
at will. For instance, we can make sure that the ♣ event never happens. In
this case, the reduction, even though it knows a collision on f , cannot find a
second preimage on f faster than exhaustive search (because each new query to
f returns an independent random answer, and thus each query yields a second
preimage with probability 2−n).

It follows if a reduction does not embed its challenge, then it cannot be
usable. We conclude that a usable reduction must embed its challenge exactly
once with non-zero probability. As a matter of fact, the reductions of the three
schemes considered in the introduction published in the literature embed their
challenge with probability one. Equation (2) then gives:

P
[R succeeds

∣
∣ A succeeds

] ≤ P
[R succeeds

∣
∣ A succeeds∧♣] ·P [♣] +

t′

2n
(3)

Now, to prove Theorem 7, we upper-bound the probability that the ♣ condi-
tion occurs. The reduction cannot control “where” the adversary will “connect”
to the big challenge M . Conversely, if the adversary could guess where the chal-
lenge is embedded, then she could systematically refuse to connect precisely
there. In fact, we need not even worry about this complication, since the adver-
sary can foil all the reduction’s plan by connecting randomly. In our simulation
procedure, if we choose the connection point uniformly at random between 0
and �, then the ♣ event only happens with probability 1/�. Combining this with
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Eq. (3) yields:

P
[R succeeds

∣
∣ AH succeeds

] ≤ 1
�

+
t′

2n

And this is exactly what we needed to complete the proof of Theorem 7. We con-
clude by pondering on this intriguing situation, where some narrow-pipe modes
of operations are provably resistant to generic second preimage attacks, yet this
cannot be shown in the standard model.
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