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Context and Objectives
Computer Algebra

Problems over Z or Q: GCD, Linear System Solving, …
Matrix product: basic block of linear algebra

Exact computation: Huge intermediate rational coefficients!
Solution: Computations over several prime fields Z/pZ = { 0, . . . , p − 1 } ' Fp

Going Faster

Leverage multi-core CPU or GPU

Matrix product efficiently done with
−→ BLAS: floating-point arithmetic only

Going Further

double: 253 −→ p < 226

Goal: Lift the prime limit of 26 bits
while preserving efficiency

−→ Multiword matrix product over Fp
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Going Faster: Matrix Multiplication over Prime Fields

[Dumas, Gautier, Pernet 2002]
Algorithm: λ-block matrix product over Fp

Input : A ∈ Fm×k
p , B ∈ Fk×n

p , p, λ
Output : C = AB ∈ Fm×n

p

C = 0 ∈ Fm×n
p

for j = 1 to d k/λ e do
C = (C + AjBj) mod p

on CPU: LINBOX
on GPU: our implementation

B1

...

Bk/λ

A1 · · · Ak/λ

∑k/λ
j=1 AjBj mod p

n

λ

λ

λ λ

m

k n




  

1. Separates matrix product from modular reductions: dgemm routine from BLAS for C + AjBj

2. Minimize the number of reductions d k
λemn reductions, λ large −→ same perf as dgemm.

3. Keeps result exact when λ is small enough −→ λMAX =
⌊

2t−p+1
(p−1)2

⌋
(t: mantissa’s bitsize)

https://linbox-team.github.io/fflas-ffpack/
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Going Further: Multiword Computation

(u, v)-Multiword matrix
decomposition

A =

u−1∑
i=0

αiAi α :=
⌈

p1/u
⌉

B =
v−1∑
j=0

βjBj β :=
⌈

p1/v
⌉

Smaller Coefficients of:
I Ai bounded by α+ 1,
I Bj bounded by β + 1.

(u, v)-Multiword matrix multiplication

uv block-products of size m × k × n

for i = 0 to u − 1 do
for j = 0 to v − 1 do

C = (C + αiβj(AiBj mod p)) mod p

Product with concatenation

u block-products of size m × k × vn

for i = 0 to u − 1 do
[T0, . . . , Tv ] = Ai [B0, . . . , Bv ] mod p
for j = 0 to v − 1 do

C = (C + αiβjTj) mod p
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Multiword product: Prime limit

Theorem: Prime limit
The (u, v)-multiword product is correct for primes with at most t uv

u+v bits (t: mantissa bitsize).

(u, v) (1, 1) (1, 2) (1, 3) (1, 4) (2, 2) (2, 3)

uv : # blockproducts 1 2 3 4 4 6
Limit on log2 p t/2 2t/3 3t/4 4t/5 t 6t/5
Limit, t = 53 26 35 39 42 53 63

(2, 2): works with any prime representable on a floating-point type
(2, 3): Greater blocksize than (2, 2) for the largest prime.
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Take home messages

Modular Block-product algorithm implemented using CUBLAS (NVIDIA GPUs)
Multiword algorithms with floating-point arithmetic for primes up to 50-bit

Future work

Lower/Mixed-precision variants:
GPU Tensor Cores FP16 accumulated into FP32, INT8 into INT32

Thanks for your attention!


