Multiword Matrix Multiplication over Large Prime Fields on GPUs

Jérémy Berthomieu, Dimitri Lesnoff, Stef Graillat, Théo Mary

LIP6 — Sorbonne Université – CNRS

PEQUAN meeting, 24 June 2023, Paris

Context and Objectives

Computer Algebra

Problems over \mathbb{Z} or \mathbb{Q} : GCD, Linear System Solving, ... **Matrix product**: basic block of linear algebra Exact computation: Huge intermediate rational coefficients! Solution: Computations over several **prime fields** $\mathbb{Z}/p\mathbb{Z} = \{0, \dots, p-1\} \simeq \mathbb{F}_p$

Context and Objectives

Computer Algebra

Problems over \mathbb{Z} or \mathbb{Q} : GCD, Linear System Solving, ... **Matrix product**: basic block of linear algebra Exact computation: Huge intermediate rational coefficients! Solution: Computations over several **prime fields** $\mathbb{Z}/p\mathbb{Z} = \{0, \dots, p-1\} \simeq \mathbb{F}_p$

Going Faster

Leverage multi-core CPU or GPU

Matrix product efficiently done with \rightarrow **BLAS**: **floating-point** arithmetic only

Context and Objectives

Computer Algebra

Problems over \mathbb{Z} or \mathbb{Q} : GCD, Linear System Solving, ... **Matrix product**: basic block of linear algebra Exact computation: Huge intermediate rational coefficients! Solution: Computations over several **prime fields** $\mathbb{Z}/p\mathbb{Z} = \{0, \dots, p-1\} \simeq \mathbb{F}_p$

Going Faster

Leverage multi-core CPU or GPU

Matrix product efficiently done with \rightarrow **BLAS**: **floating-point** arithmetic only

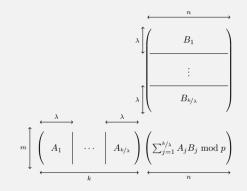
Going Further

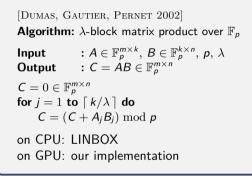
double:
$$2^{53} \rightarrow p < 2^{26}$$

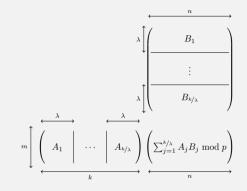
Goal: Lift the prime limit of 26 bits while preserving efficiency

 \rightarrow **Multiword** matrix product over \mathbb{F}_p

[DUMAS, GAUTIER, PERNET 2002] **Algorithm:** λ -block matrix product over \mathbb{F}_p **Input** : $A \in \mathbb{F}_p^{m \times k}$, $B \in \mathbb{F}_p^{k \times n}$, p, λ **Output** : $C = AB \in \mathbb{F}_p^{m \times n}$ $C = 0 \in \mathbb{F}_p^{m \times n}$ **for** j = 1 **to** $\lceil k/\lambda \rceil$ **do** $C = (C + A_j B_j) \mod p$

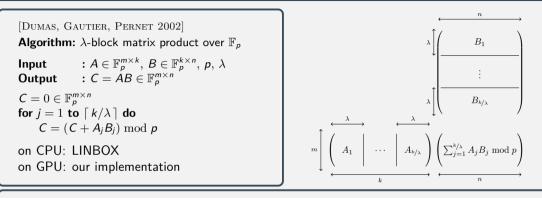




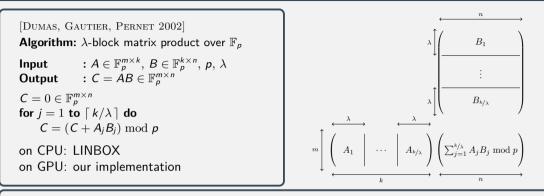




1. Separates matrix product from modular reductions: dgemm routine from **BLAS** for $C + A_j B_j$



1. Separates matrix product from modular reductions: dgemm routine from **BLAS** for $C + A_j B_j$ 2. Minimize the number of reductions $\lceil \frac{k}{\lambda} \rceil mn$ reductions, λ large \rightarrow same perf as dgemm.



1. Separates matrix product from modular reductions: dgemm routine from **BLAS** for $C + A_j B_j$

- 2. Minimize the number of reductions $\lceil \frac{k}{\lambda} \rceil mn$ reductions, λ large \rightarrow same perf as dgemm.
- 3. Keeps result exact when λ is small enough $\rightarrow \lambda_{MAX} = \left\lfloor \frac{2^t p + 1}{(p-1)^2} \right\rfloor$ (*t*: mantissa's bitsize)

(*u*, *v*)-Multiword matrix decomposition

$$A = \sum_{i=0}^{u-1} \alpha^{i} A_{i} \quad \alpha := \left\lceil p^{1/u} \right\rceil$$
$$B = \sum_{j=0}^{v-1} \beta^{j} B_{j} \quad \beta := \left\lceil p^{1/v} \right\rceil$$

Smaller Coefficients of:

- A_i bounded by $\alpha + 1$,
- **b** B_j bounded by $\beta + 1$.

Going Further: Multiword Computation

(*u*, *v*)-Multiword matrix decomposition

$$A = \sum_{i=0}^{u-1} \alpha^{i} A_{i} \quad \alpha := \left\lceil p^{1/u} \right\rceil$$
$$B = \sum_{j=0}^{v-1} \beta^{j} B_{j} \quad \beta := \left\lceil p^{1/v} \right\rceil$$

Smaller Coefficients of:

- A_i bounded by $\alpha + 1$,
- **b** B_j bounded by $\beta + 1$.

(u, v)-Multiword matrix multiplication

 uv block-products of size $\mathit{m} \times \mathit{k} \times \mathit{n}$

for
$$i = 0$$
 to $u - 1$ do
for $j = 0$ to $v - 1$ do
 $C = (C + \alpha^i \beta^j (A_i B_j \mod p)) \mod p$

Going Further: Multiword Computation

(*u*, *v*)-Multiword matrix decomposition

$$A = \sum_{i=0}^{u-1} \alpha^{i} A_{i} \quad \alpha := \left\lceil p^{1/u} \right\rceil$$
$$B = \sum_{j=0}^{v-1} \beta^{j} B_{j} \quad \beta := \left\lceil p^{1/v} \right\rceil$$

Smaller Coefficients of:

- A_i bounded by $\alpha + 1$,
- ▶ B_j bounded by $\beta + 1$.

(u, v)-Multiword matrix multiplication

 uv block-products of size $\mathit{m} \times \mathit{k} \times \mathit{n}$

for
$$i = 0$$
 to $u - 1$ do
for $j = 0$ to $v - 1$ do
 $C = (C + \alpha^i \beta^j (A_i B_j \mod p)) \mod p$

Product with concatenation

u block-products of size $m \times k \times vn$

for
$$i = 0$$
 to $u - 1$ do
 $[T_0, \ldots, T_v] = A_i[B_0, \ldots, B_v] \mod p$
for $j = 0$ to $v - 1$ do
 $C = (C + \alpha^i \beta^j T_j) \mod p$

Multiword product: Prime limit

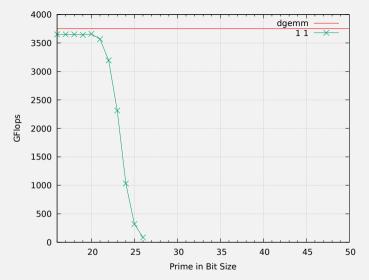
Theorem: Prime limit

The (u, v)-multiword product is correct for primes with at most $t \frac{uv}{u+v}$ bits (t: mantissa bitsize).

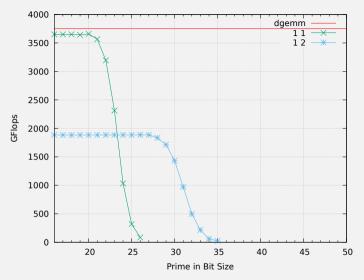
(u, v)	(1, 1)	(1, 2)	(1,3)	(1, 4)	(2, 2)	(2,3)
<i>uv</i> : # blockproducts	1	2	3	4	4	6
Limit on $\log_2 p$	t/2	2t/3	3t/4	4t/5	t	6t/5
Limit, $t = 5\overline{3}$	26	35	39	42	53	63

 $(2,\,2){:}$ works with any prime representable on a floating-point type

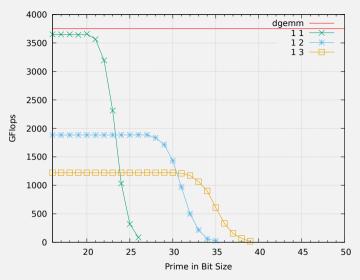
 $(2,\,3){:}$ Greater blocksize than $(2,\,2)$ for the largest prime.



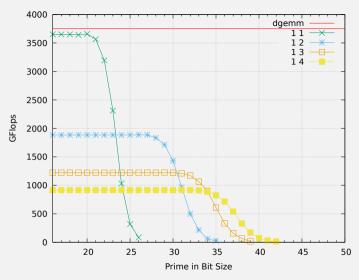
Performance of single and multi-word matrix product on NVIDIA A100 GPU (m=11000, k=33000, n=32) A100 Theoretical peak performance: **9746** GFlops.



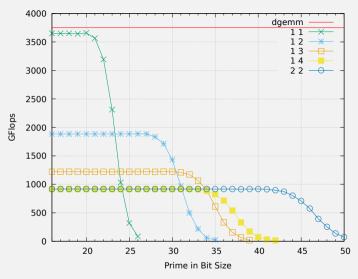
Performance of single and multi-word matrix product on NVIDIA A100 GPU (m=11000, k=33000, n=32) A100 Theoretical peak performance: **9746** GFlops.



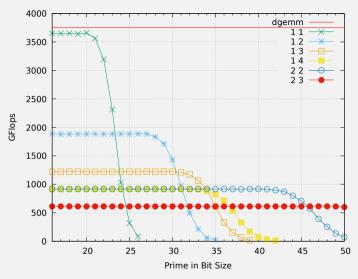
Performance of single and multi-word matrix product on NVIDIA A100 GPU (m=11000, k=33000, n=32) A100 Theoretical peak performance: **9746** GFlops.



Performance of single and multi-word matrix product on NVIDIA A100 GPU (m=11000, k=33000, n=32) A100 Theoretical peak performance: **9746** GFlops.



Performance of single and multi-word matrix product on NVIDIA A100 GPU (m=11000, k=33000, n=32) A100 Theoretical peak performance: **9746** GFlops.



Performance of single and multi-word matrix product on NVIDIA A100 GPU (m=11000, k=33000, n=32) A100 Theoretical peak performance: **9746** GFlops.

Take home messages

Modular Block-product algorithm implemented using CUBLAS (NVIDIA GPUs) Multiword algorithms with floating-point arithmetic for primes up to 50-bit

Future work

Lower/Mixed-precision variants: GPU Tensor Cores FP16 accumulated into FP32, INT8 into INT32

Thanks for your attention!