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1. Summary
The general context
In LIP6, the joint laboratory in computer science between CNRS and Sorbonne Université, the team
PolSys improves existing algorithms to solve polynomial systems exactly and efficiently. They have
begun a recent joint work with another LIP6 team PEQUAN, specialized in high performance
computing and quality of numerical algorithms, to implement efficiently these algorithms using
parallel machines like GPUs.
Numerous scientific fields like biology, coding theory, combinatorics, and robotics have problems
reducing to solving exactly multivariate polynomial systems, over a finite field or rational numbers.
To study and solve exactly multivariate polynomial systems, we determine a Gröbner basis of the
ideal generated by our system. This is a good representation of the set of solutions. When the
number of solutions is finite, we proceed in two steps, we first compute a Gröbner basis for an order
for which it easy to obtain a basis, and we then change the order of the basis to a lexicographic
order, enabling us to get the solutions of the systems. Two traditional algorithms are used in the
general case, either F4 [Fau99] or F5 [Fau02] to determine a basis, and Sparse-FGLM for the change
of ordering. My internship at LIP6 research laboratory in the PEQUAN and PolSys team, that
spanned from 15 March to 31 August concerns precisely the multiplication of matrices in the change
of ordering algorithm Sparse-FGLM which has been designed by J.-C. Faugère and C. Mou [FM17].
Among the recent publications about algorithms for fast change ordering using Block-Wiedemann or
improving Sparse-FGLM algorithms, we should cite [Hyu+19] and [BND22].
GPUs have already been used in several formal computation problems like bivariate only polynomial
systems [MP12], multivariate polynomial determinant, [WC20], and multivariate polynomial
constraints [Par+11]. There is also a work on a very similar project by Alan Steel [Ste15] that
improves the Block-Wiedemann algorithm used in the actual implementation of Sparse-FGLM by
leveraging the parallelism of the GPUs architectures but for a specific problem MinRank. The
change of ordering is the current bottleneck in polynomial system resolution. Faster matrix
multiplication will enable us to tackle larger practical challenges in cryptography and robotics. An
intern in 2020 [Val20], wrote GPU kernels for this operation but with integer types only. We aim to
improve the matrix product over finite fields with floating-point numbers instead. Integer types have
slower arithmetic (while having more bits available for exact computation). We gain several orders of
performance by porting these to GPU and use fast floating-point arithmetic.

My contributions
During this internship, I have compared matrix multiplication timings obtained with efficient linear
algebra libraries on CPU using floating-point arithmetic (Eigen [GJ+10], OpenBLAS [ZQG11]). I
have then benchmarked existing libraries (FFLAS [gro19], NTL [Sho21], FLINT [HJP13]) on CPU to
multiply matrices over finite fields and determined the loss of performance (reals with floating-point
types).
To port the algorithms to GPU, I have adapted techniques to reduce the number of modular
reductions while avoiding overflow for dot product computation to matrix mulplication. I have
transcribed rules to keep the arithmetic exact in function of the prime characteristic of the field.
Finally, I wrote a GPU kernel for modular matrix multiplication that aim to be integrated into the
open-source C library MSOLVE developed partly by researchers of LIP6.

Arguments supporting its validity
The algorithm that I developed achieves a performance of about 150 GFlops on a RTX Quadro 8000
graphics card which has 509 GFlops as maximal theoretic performance. This means we get a
performance close to the one we would get in a perfect setting, i.e. without modular reductions and
with only one large matrix multiplication.
When solving over rationals, the size of the characteristic of the prime fields scales with the size of
polynomial systems. The bound for efficient computation is tight, and once the prime size gets over
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this bound we need to change drastically our approach.

Summary and future work
Determining most efficient modular matrix product for large prime numbers over GPUs can be
easily transposed to other formal computation problems.
The kernel I have proposed for matrix multiplication over finite field, has yet to be integrated into
formal tools and tested inside Sparse-FGLM implementation. If the finite field elements are smaller,
we could leverage tensor cores to speed up even more the computations. We will have to study the
balance on the CPU and GPU loads inside Gröbner basis algorithms. There is one other
implementation to improve in order to scale the resolution to larger problems in the F4 algorithm
that I will consider during my PhD thesis.
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Figure 1: A schematic robotic arm

2. Introduction
Numerous problems arising from various fields such as biology, coding theory, combinatorics,
robotics or aerospace engineering comes down to the resolution of polynomial systems
f1 = · · · = fm = 0 in variables x1, . . . , xn exactly over a finite field or rational numbers.


f1(x1, . . . , xn) = 0,

... =
...

fm(x1, . . . , xn) = 0.

For example, when considering a robotic arm, one may want to find the singular positions, specific
positions, in which movements of the arms are physically restricted. If the arm tries to stretch too
far, it will damage itself. I have depicted in figure 1, a schematic robotic arm fixed at (0, 0). Its
head, with position (z, w) will reach the ground for specific angles. The trigonometric functions of
these angles satisfy the following system:

(c1s2 + s1c2)l2 + s1l1 = 0,

c21 + s21 − 1 = 0,

c22 + s22 − 1 = 0.

where

c1 := cos(θ), s1 := sin(θ),

c2 := cos(ϕ), s2 := sin(ϕ).

When solving polynomial systems exactly over the rationals, the intermediate results size explodes
making the computations practically infeasible. To circumvent this problem, we split the system into
multiple ones over finite fields, solve each one of them and reconstruct representations of the initial
solution using the Chinese Remainder Theorem (CRT).1

Modular Computations

Modular Computations

Modular Computations

Modular Computations

Modular Computations

Q Z/NZ

Z/p1Z

Z/p2Z

Z/p3Z

Z/p4Z

Z/p5Z

Z/p1Z

Z/p2Z

Z/p3Z

Z/p4Z

Z/p5Z

Z/NZ Q

1We actually represent solutions by polynomials, since the solutions are in extensions of the field of rationals which is
not algebraically closed
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If the initial problem requires solving over a finite base field, this decomposition with CRT is not
possible. With rationals, we choose randomly the primes p1, . . . , pr and we may fall on some wrong
primes. During computations, a prime may divide the numerator or denominator of a rational
coefficient, making the partial result erroneous. In this case, we have to restart the computations by
switching the wrong prime to another randomly selected prime. The larger the primes are, the lower
the probability for a wrong prime to occur is . All in all, we want to solve polynomial systems over a
finite prime field, whose characteristic is at least of the order of 218.
Solving polynomial systems (PoSSo) is NP-hard even if the base field is finite [FY79].
The end-user may ask several questions on the solution set: is it finite over the algebraic closure of
the base field? In the rational case, are the complex or real solutions clustered? What is the
dimension of the solution set if it is not finite? To solve these questions we introduce general formal
tools.
If m = n the solutions for f1, . . . , fm of respective degrees d1, . . . , dm may generically be described
as the specific triangular system: 

gn(xn) = 0,

xn−1 = gn−1(xn),
... =

...
x1 = g1(xn).

The system is said to be in shape position. It is unique if deg(g1), . . . , deg(gn−1) < deg(gn). We can
use this representation for almost all polynomial systems.
The set of polynomials

{x1 − g1(xn), . . . , xn − gn(xn), gn(xn)}

is a (lexicographical) Gröbner Basis of the ideal generated by the polynomials of our system:

I = 〈f1, . . . , fm〉 = {f ∈ K[x1, . . . , xn] | ∃λ1, . . . , λn ∈ K[x1, . . . , xn], f = λ1f1 + · · · + λnfn}.

We set: D = deg gn the degree of the n-th polynomial, it is the degree of the system. To define
formally a Gröbner basis, we first need to define an admissible monomial order and the leading term
of a multivariate polynomial. A polynomial f = 5x3y + 7xy2 is constituted of terms e.g. 5x3y, with
its coefficient, 5, and its monomial part, x3y.

Definition 1 (Admissible ordering). An order on the monomials ≤ (or equivalently on the ordered
list of its exponents living in Nn), is admissible if

1. ≤ is a total ordering on Nn,

2. ≤ is compatible for the addition, i.e. if a ≤ b implies ∀c ∈ Nn, a+ c ≤ b+ c,

3. a ≥ 0 for all a ∈ Nn (or every nonempty subset has a smallest element).

Definition 2 (Leading Term). A polynomial f is comprised of monomials and coefficients. A
monomial and a coefficient together are called a term. The largest one for an admissible monomial
order ≤ is the leading term of f noted as: LT≤(f).

Definition 3 (Gröbner Basis). Let G be a finite subset of an ideal I. If for every f ∈ I, there exists
a g ∈ G such that LT≤(g) divides LT≤(f), then G is a Gröbner basis.

The computation of Gröbner bases is in general exponential in n, though some Gröbner bases are
easier to compute than others. We usually proceed in two steps to obtain a lexicographic Gröbner
basis.
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〈 f1, . . . , fm 〉 First Gröbner Basis g1, . . . , gn

F4: Row Echelon
Form Reduction
Sparse Matrix

size: 106

SpFGLM:
Characteristic

Polynomial
Computation

Dense Matrix
size: 216 × 216

Figure 2: General Framework of Polynomial System Solving with Gröbner bases

First, we compute a Gröbner basis of the ideal, for a total degree ordering (usually degree reverse
lexicographic ordering, also known as DRL) using Buchberger’s or Faugère’s F4 [Fau99] and F5

[Fau02] algorithms. Secondly, we change the order of the Gröbner basis using the FGLM algorithm
or its faster variant, the Sparse-FGLM [FM11] algorithm.
In figure 2, we have given the sizes of the matrices for the challenges we want to tackle.
In the generic case, this second step yields the elements of the Gröbner Basis g1, . . . , gn in O(D3)
operations, where D can be up to several thousands in the practical challenges we aim to solve.
My principal goal in this internship is to design efficient ways to improve current implementation of
Sparse-FGLM. Indeed, the size of the matrices intervening in the linear algebra operations during
the resolution are too big to do the computations in a feasible amount of time with current
implementations and this even with parallelisation over CPUs.
Graphics Processing Units originally designed for floating-point numbers computation, arising in
graphics computation, are also well-suited to process large blocks of data in parallel and to perform
linear algebra routines.
I will start by a focus on the algorithm itself with two implementation variants and the actual
challenges we want to tackle. Then I will give an overview of the GPU’s architecture. Finally, I will
present how I adapted fast linear algebra routines for the multiplication of matrices over finite fields
and how to minimize modular reductions while avoiding overflows.
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3. Formal Computation Problematics
3.1. Sparse-FGLM algorithm
The FGLM algorithm, designed in 1993 [Fau+93], is the first algorithm to change the ordering of a
Gröbner basis of a zero dimensional ideal. In 2011 [FM11] and in 2017 [FM17], Faugère and Mou
described the Sparse-FGLM which improves special cases like the systems in the shape position.
The algorithm works for any ordering chosen as input or output. To solve polynomial system, we
usually change from a degree reverse lexicographical ordered (DRL in short) Gröbner basis to a
lexicographical ordered (LEX) Gröbner basis.
The original theoretical algorithm to solve polynomial systems proposed by B. Buchberger in 1976,
we compute S-polynomials (a specific linear combination of two polynomials) for certain pairs of a
set initialized with the polynomials of our system.
For a zero-dimensional ideal I of K[x], the algebra A = K[x]/I is finite dimensional. We can look at
the linear application from A to itself that multiplies a polynomial by xn. Since G the DRL Gröbner
basisis a basis of I, we can consider the linear application:

f 7→ NormalForm(f · xn, G,DRL),

where NormalForm(f,G,DRL) is the remainder division of the polynomial f by the set of
polynomials G for the order DRL.

Definition 4 (Multiplication Matrix). The matrix multiplication is given by the matrix of these
normal forms for all monomials for the Gröbner basis.

Example 1. The companion matrix of an univariate polynomial P in K[x]/〈P 〉 is a multiplication
matrix by x.

The algorithm start by considering shape position ideals:

Definition 5. An ideal I ⊆ K[x1, . . . , xn] is in shape position if its Gröbner basis for LEX order is
of the following form:

[f1(x1), x2 − f2(x1), . . . , xn − fn(x1)]

Let I ⊆ K[x1, . . . , xn] of degree D (the degree of the ideal is the dimension of K[x1, . . . , xn]/I as
extension of K). If the ideal is in shape position, they apply successively two procedures, the first
one being probabilistic while the second one is deterministic. They stop as soon as one of the
algorithm succeeds. If none of the algorithm succeed, it must be that the ideal is not in shape
position. The first algorithm (see 1) needs O(D(N1 + n log(D)2)) field operations, where N1 is the
number of non-zero elements in the first multiplication matrix.
In the general case (non shape position ideal), they use the BMS (Berlekamp-Massey-Sakata)
algorithm.

3.1.1. General Principle

The algorithm for Sparse-FGLM is linked to the notion of Krylov subspace.

Definition 6 (Krylov subspace). The l-order Krylov subspace generated by the multiplication matrix
T and a vector r is the linear subspace spanned by the set of the powers of T multiplied by r, that is:

Span(r, T r, T 2r, . . . , T l−1r)

For r generic, the vectors {r, T · r, T 2 · r, . . . , T l−1 · r} are linearly independent for all l < deg(µ(T ))
where µ(T ) is the minimal polynomial of T . In the two algorithms, we will exploit the relation
between the powers of T and the minimal polynomial of T by constructing the linearly recurring
sequence

{
r · T i · e, i = 0, . . . , 2D − 1

}
where r is a randomly chosen vector, since otherwise if r is in a generalised proper space, the
algorithm fails, e is the first element of the canonical basis: e = (1, 0, . . .)t. Hence, we keep only the
first coordinate.
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Algorithm 1: Shape Position (Probabilistic) Algorithm
Input: G1, Gröbner basis of a 0-dimensional ideal I ⊂ K[x1, . . . , xn] w.r.t. <1.
Output: G2, Gröbner basis of I w.r.t LEX if the polynomial returned by BerlekampMassey ()

is of degree D; Fail, otherwise.
1 Compute the canonical basis of K[x1, . . . , xn]/ 〈G1〉 and multiplication matrices T1, . . . , Tn

2 e := (1, 0, . . . , 0)t ∈ K(D×1)

3 Choose r := r ∈ K(D×1) randomly
4 for i = 1, . . . , 2D − 1 do
5 ri = (T t

1)ri−1

6 Generate the sequence s := [〈ri, e〉 : i = 0, . . . , 2D − 1]
7 f1 := BerlekampMassey(s)
8 if deg(f1) = D then
9 H := HD(s)

10 for i = 2, . . . , n do
11 b := (〈rjTie〉 : j = 0, . . . , D − 1)t

12 Compute c = (c1, . . . , cD)
t := H−1b

13 fi :=
∑D−1

k=0 ck+1x
k
1

14 return [f1, x2 − f2, . . . , xn − fn]

15 else
16 return Fail
In 1, the BerlekampMassey finds the minimal polynomial of a linear recurrence sequence. We
already have very efficient implementation of this algorithm.
We want to improve the existing implementation of the multiple products matrix-vector appearing in
the first for loop (see algorithm 4 below).
The difficulty resides in the large size of the matrices. These are mathematically speaking sparse
(≥ 20%), but as we compute their powers, the density of the matrix increases with the exponent.
We have made the choice to consider only the dense columns of our matrices and treat the matrices
as dense matrices only.
This is justified by the maximum amount of five percent of non-zero coefficients among all
coefficients of the matrix allowed in sparse matrices libraries like CuBLAS, which is lower than the
percentage of non-zero coefficients observed in practice.
There is at least 20% non-zero coefficients (see [FM17] section 7 for exact percentages).
Algorithm 2: Specific portion of the Sparse-FGLM we want to implement efficiently

1 s := [r0]
2 for i = 1, . . . , 2D − 1 do
3 ri = (T t

1)ri−1

4 s = s+ [〈ri, e〉]
We want to focus first into efficient matrix-matrix products.

3.1.2. Keller-Gehrig method

The Keller-Gehrig [Kel85] [DPW05] method has been developed for efficient computation of the
Krylov sequences appearing in the computation of the characteristic polynomial of a matrix. He
reduced in his article this computation essentially to the time of a matrix multiplication. Let A be
an n× n matrix with indeterminate coefficients and e 6= 0 a vector from Kn. Then
U = (e, Ae, A2e, A3e, . . . , An−1e) is a regular n× n matrix. We precompute powers of two among
the powers of A by repetitive squaring, that is:

A,A2, A22 , A23 , . . . , A2k .

With these matrices, we can compute at each step twice more elements than elements of the vector
that we already know, starting with e.
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Algorithm 3: Keller-Gehrig fast computation of characteristic polynomial
1 U := [e, A · e]
2 Powers←− ∅
3 R←− A

4 for i = 1, . . . , 2k = n/2 do
5 R←− R×R
6 Powers[i] = R

7 for i = 1, . . . , log(n) do
8 U [2i, ..., 2 ∗ 2i − 1] = Powers[i] · U
9 return U
We discarded temporarily Keller-Gehrig method since it requires a subcubic matrix multiplication to
compute efficiently the Krylov sequence, and it is not obvious if Strassen matrix multiplication is
efficient on GPUs. The complexity of the algorithm is in O(nω log(n)), where w is the matrix
product exponent. The overhead of log(n) is usually compensated by the subcubic matrix
multiplication. Keller-Gehrig presented another algorithm in his article, that is in O(nω). The
constant behind the Big-O notation in this algorithm is much more important. Over GPU, Strassen
matrix multiplication and the Winograd variant have been implemented and analyzed in [LRS11].
They have long not been considered due to their poor numerical stability. These fast matrix
multiplication algorithms are not used up to my knowledge in CuBLAS, and could be used in our
context, at least with a limited amount of recursion levels.
In contrast to the Wiedemann algorithm, we can not consider only dense columns of our matrix, so
Keller-Gehrig will need to compute exponents of larger matrices and keep as much as possible the
sparsity of lower exponents of the multiplication matrix.
In this section, I have described the key algorithms for the change of ordering of Gröbner basis. The
speed of current implementation of these algorithms is limited by the multiplication of modular
matrices. I will present my implementation in the next section.
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4. HPC and GPU Approaches
4.1. Modular Field Arithmetic
We would like to reduce the cost of modular reduction in large prime fields Z/pZ. Determining the
best size for prime characteristic is complex and vary greatly in function of the coefficients of the
polynomial systems. The characteristic of those large fields can be represented with 20 to 30 bits
width integers (219 ≤ p ≤ 229).

4.1.1. Representation of Finite Fields

Improving modular reduction has been extensively studied, especially for cryptographic applications
[Mon85] [Bar87].
For small prime fields, we generally store in a table all the multiplication results, reducing the cost of
the multiplication to the cost of a table lookup. When the prime is big, the table’s size is too
important for the table to be stored into cache, making the lookup more costly than the operation
itself. Thus we can not rely on Zech’s logarithm or other tabulation methods.
For larger prime fields, when using integer arithmetic, we generally use the Barrett’s reduction
[Bar87] or the Montgomery’s modular reduction [Mon85].

4.1.2. Floating-Point Representation

To leverage fast arithmetic over GPU’s, we would like to use floating-point types.
Even though we have less bits at our disposal, the theoretical speeds of arithmetic operations are
faster with these types, especially on GPU. We also dispose of specific instructions for floating-point
that enables us to do several operations in the same instruction (FMA computes both a
multiplication and an addition).
On CPUs, the Advanced Vector Extensions (AVX) to the x86-64 instruction set enable to do
multiple instructions in parallel with instructions operating on multiple registers at once (SIMD
parallel processing). We could use them when doing operations heterogeneously between GPU and
CPU. Finally, specific linear algebra libraries (BLAS), that optimizes cache memory accesses (at
least on CPU), are designed only for these types. There is also no support for 64-bit integer type on
GPU, limiting drastically the prime numbers we can represent.
To represent finite field elements with floating-point native types (float and double), we use the
bits of the mantissa. The number of bits of the mantissa for half, single and double precision has
been defined by the norm IEEE 754.

4.1.3. Reduction in Modular Fields

To compute the modular reduction with floating-point in prime fields, we can compute the quotient
by dividing just like with reals and then check for rounding errors. To keep arithmetic exact, I have
considered the algorithms described in [HLQ14], section 3. They described how to improve the
modular multiplication, but we can use the same technique only for modular reduction (by
multiplying by 1).
With numeric types (float or double in C/C++ programming languages), we can also represent
integers and thus prime field elements using the 23/52 (single or double precision respectively) bits
of trailing significant field. The mantissa of floating points is made of the trailing significant field
and the sign bit (24/53 bits in total). In the following paragraphs, we only use the trailing significant
field and the exponent field to represent the integers. The advantage gained by using a shifted
representation is twofold: the sign can be stored in a specific bit, and the size of the result of the
operations reduces a lot.
Classical representation of finite fields: integers modulo a prime number, the characteristic of the
field. There is two choice, either we use the mathematical usual range between 0 and p− 1, either we
use a shifted or centered representation between −(p− 1)/2 and (p− 1)/2. It could be possible to
use also the sign bit with a centered representation of the modular field (integers in the range
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−(p− 1)/2 ≤ n ≤ (p− 1)/2). Introducing negative numbers makes implementation more tedious,
since an extra care must be done in the operations used and the conversions between float and
integers made for the arithmetic to be exact.
To reduce x modulo p with a floating-point type, we first precompute the floating point
approximation of 1.0/p. If c is an integer approximation of x/p, then d = x− c ∗ p is an
approximation of x mod p at distance O(p). The authors of the aforementioned article propose the
following algorithm to compute the modular reduction:

Algorithm 4: Modular reduction
Input : Integer x. The prime number p, characteristic of the field and the floating point

approximation of its inverse u = fl(1.0/p).
Output: a mod p

1 ModularReduction(x, p, u)
2 b = x ∗ u
3 c = b b c
4 d = a− c ∗ p
5 if d ≥ p then
6 return d - p
7 if d ≤ p then
8 return d + p
9 return d

Let us call f the number of bits in the binary representation of p. The above algorithm works for all
rounding modes, if and only if f ≤ t/2 where t is the maximum number of bits to represent the
integer. If the rounding mode is set towards infinity, we can discard the first if. If furthermore
f ≤ (t− 1)/2, we can drop also the second if.
Removing conditionals as much as possible is important when programming for GPU. The SIMT
model of parallelism forces threads to share the same instruction pointer inside warps (group of 32
threads for NVIDIA GPUs, 16 threads for AMD GPUs). This means that the same instruction is
executed at the same time by 32 threads. When a branch occurs, the 32 threads have to do the
computation independently and sequentially. It is not clear if the threads may be grouped by similar
instruction’s address after the branch.
Yet during our tests we could not observe a sensible difference when removing those ifs. This absence
of difference may be due to a compiler optimisation of these two small conditionals with some
branchless programming technique, like the boolean formula given in the next algorithm description.
This limitation on the number of bits of p is actually too restrictive for certain of our applications.
We can not use float (which are more efficient than double) since b 23/2 c = 11 is strictly lower than
the 20 bits required.
In the same article, the authors leverage the Fused-Multiply-and-Add FMA instruction that was at
this time too recent to be present in all CPU architectures, but is widely supported as today. It is
supported both on our CPU and GPU. This instruction computes a multiplication and an addition
at the same time. This operation is also called AXPY in linear algebra libraries 2 More precisely,
fma(x, y, z) computes the floating-point number xy + z. The floating-point rounding-error does
not affect multiplication. We can thus gain an important increase in precision with the second
algorithm:
With the FMA instruction, the multiplication stays exact for almost twice the number’s bits
(t ≤ f − 2).

4.2. NVIDIA GPU Architecture
To offer the best performance, we searched how to leverage the parallelism of better computers
architectures. We could program for FPGAs (Field Programmable Gate Arrays) or ASICs

2The name comes from the usual symbols to denote the operation: z ←− αx+ y

12



Algorithm 5: Modular reduction with FMA algorithm
Input : Integer x. The prime number p, characteristic of the field and the floating point

approximation of its inverse u = fl(1.0/p).
Output: a mod p

1 ModularReduction(x, p, u)
2 b = x ∗ u
3 c = b b c
4 d = fma(−c, p, x)
5 return d ∗ (d ≥ 0) ∗ (d < p) + (d− p) ∗ (d ≥ p) + (d+ p) ∗ (d < 0)

NVIDIA Quadro RTX 8000 NVIDIA RTX 3070
FP16 (TFlops) 32.62 20.31
FP32 (TFlops) 16.31 20.31
FP64 (GFlops) 509.8 317.4

SM count 72 46
Base Clock (Mhz) 1395 1500
Memory Size (GB) 48 8

Table 1: Theoretical maximal throughput for different floating-point types on GPU

(Application Specific Integrated Circuits) or even design our algorithms on multi-core computers.
We have chosen GPUs for their theoretical (and practical) high performance floating-point
arithmetic. The other kind of parallel computers are designed with power efficiency in mind. We are
not limited by power consumption. I had access during my internship to a NVIDIA Quadro RTX
8000 (Turing architecture) card whose characteristics is displayed in table 1 with a consumer’s
graphics card from the latest generation as a comparison.
The theoretical maximal performance increases as the number of bits of the type decreases. We
notice a big difference of performance between a 32 bit and a 64 bit floating-point type on GPU.
Cards like the Quadro designed for computational servers have a lower base clock, but a higher SM
(Streaming Multiprocessor) count and larger memory. The memory size is much more limited on
GPUs than on CPUs. On consumer’s card, it is not possible to store large matrices (> 15000
coefficients) and their product.
Even though the algorithms described in this report does not depend on the GPU constructor, I
have written my implementation and tests in CUDA, the C++ wrapper interface for NVIDIA cards.
I will describe NVIDIA GPUs specific architecture (see figure 3 extracted from the Cuda
Programming Guide []), but the core ideas are very similar to AMD’s GPU architecture even if the
vocabulary employed is different.
Very similar to the SIMD (single instruction multiple data) parallelism model, GPUs rely on a SIMT
(single instruction multiple threads architectures). Threads are regrouped by warps (32 threads at
most for NVIDIA, 64 for AMD) and share the same instruction pointer. It means that at every clock

Figure 3: GPUs architectural differences with CPUs
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cycle, they execute the exact same instruction. Contrarily to CPUs, threads are much more
lightweight.
There can be at most (1024 threads/32 threads) per Streaming Multiprocessor at the same time.
This limit one of the parameter to call when lauching a function on GPU, which are called kernel.
To simplify architecture considerations and have a consistent API across all their GPUs, NVIDIA
designed their API CUDA. We wrote programs in C++ with a few additions and a special compiler
nvcc. The CPU is designed as host and one GPU is called a device. The functions are designed by
three keywords __global__, __device__ and __host__ which are respectively for device functions
called from host, GPU-specific functions and CPU-specific functions (the main function is a
__host__ function).
When launching a __global__ function (also called kernel), we can specify two parameters between
three angle brackets. The second parameter is the number of threads per block. It is a parameter
between 32 and 1024. It is recommended to be a multiple of 32 to maximize occupancy. By testing
on simple example for array addition or Hadamard product (element-wise multiplication), I noticed
that my programs were faster with 512 or 256 threads, and slower with 1024 threads or less. The
first parameter is the number of blocks. This parameter can go from 1 to 65536, and can be specified
either as a regular unsigned integer, or as a vector with two or three dimensions. Using more
dimensions, enable us to specify more blocks than the limit of 65536 for the one-dimensional case. In
practice, this is not relevant as blocks are dispatched only when SMs does not have active threads
running. The limit for simultaneous executing threads and blocks depend on the GPU and is equal
to the number of SMs times the maximal number of threads per SM. For the Quadro RTX 8000, it is
equal to 72*1024=73728.
The number of blocks should match the size of our problem’s data divided by the number of threads
per block.

4.3. Exact Computation of Matrix Product
The product of matrices can be seen, in the classical algorithm in O(n3) operations, as the dot
products of the row vectors of the left matrix with the column vectors of the right matrix.

4.3.1. Exact Finite Field Dot Product

We want to compute efficiently and exactly a dot product a · b =
∑N

i=0 ai ∗ bi over large prime finite
fields.
Usually to multiply two floating point numbers, we store only integers with characteristic p whose
size is at most 26 bits wide. Thus, we can multiply them and represent them in a float, since the
product has at most 52 bits. We can even perform additionnaly an addition, since the double
precision float mantissa has 53 bits before a modular reduction becomes mandatory.

Proposition 1. The product of k integers with at most n bits requires n ∗ k bits to be represented,
whereas k sums requires only n+ log2(k + 1) bits.

We want to reduce the number of modular reductions computed during the dot-product algorithm.
We present first the classical way to compute a dot-product in finite field.

Algorithm 6: Dot product over finite field
Input : Two vectors a and b of size N . The prime number p.

1 DotProduct(a, b, N, p)
2 res = 0
3 for i in 0, . . . , N do
4 res←− res+ (a[i] · b[i]) mod p // RED1
5 res←− res mod p // RED2
6 return res mod p // RED3
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We can choose whether we do the first, second or third reduction. If we do fewer modular reductions,
res will need in return more bits for the result to be exact. The RED3 modular reduction step is only
necessary if we do not do the last RED2 modular reduction. As such, we obtain four algorithms:

Only RED3: one reduction

RED2: N modular reductions

RED1 (& RED3): N + 1 modular reductions

RED1 & RED2: 2N reductions

We want to compute modular reductions only when necessary. This principle, the delayed modular
reduction (DMR) can be implemented in several ways. First, we have the λ-algorithm which
computes the dot-product by reducing the temporary res (RED2) only after exactly λ additions. Let
k = q ∗ λ+ r the euclidean division of k by λ. We can then write the dot product as:

a · b =
N∑
i=1

ai ∗ bi

=

q∑
j=1

λ∑
i=j∗λ+1

ai ∗ bi +
r∑

i=q∗λ+1

ai ∗ bi

We can thus write the dot product sum with modular reductions as:

(a · b) mod p = (

q∑
j=1

Sj mod p+ Sq+1 mod p) mod p (1)

For this computation to be exact, we must ensure that each sum Sj is representable on a float
mantissa. In other words, lambda must be such that Sj(λ) ≤ 2m < Sj(λ+ 1) for all a, b, where m is
the size of the mantissa (53 bits). The maximal sum is reached for maxa∈Fp(a) = maxb∈Fp(b) = p− 1.
We have thus:

λ · (p− 1)2 ≤ 2m < (λ+ 1) · (p− 1)2 (2)

⇔λ =

⌊
2m

(p− 1)2

⌋
(3)

Algorithm 7: λ-algorithm
Input : Two vectors a and b of size N . The prime number p.

A parameter λ such that 0 ≤ λ ≤ N
1 DotProduct(a, b, N, p, λ)
2 res = 0
3 for j in 1, . . . , bN/λ c do
4 for i in 0, . . . , λ do
5 res←− res+ (a[λ ∗ j + i] · b[λ ∗ j + i]) mod p // RED1
6 res←− res mod p

7 for i in λ bN/λ c , . . . , N do
8 res←− res+ (a[i] · b[i]) mod p
9 res←− res mod p

10 return res mod p // RED3

Like in the previous algorithm, we have the option to reduce after the multiplication (RED1). If we
do not reduce, it is equivalent to compute a rational dot-product between the sub-vectors of size λ.
We can thus leverage efficient linear algebra libraries that fine-tune the cache usage for us, and
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Algo Only RED3 DMR without RED1 Only RED2
Numbers of modular reductions 1

⌈
N
λ

⌉
N

Maximum bit size 2f + b log2(N − 1) c+ 1 2f + b log2(λ− 1) c+ 1 2f + 1

Algo Only RED1 DMR with RED1 RED1 & RED2
Numbers of modular reductions N + 1 N +

⌈
N
λ

⌉
2N

Maximum bit size f + b log2(N − 1) c+ 1 f + b log2(λ− 1) c+ 1 f + 1

Table 2: Comparison in bits requirements and number of modular reductions for different dot product
algorithms

compute the dot-product efficiently. This version of dot product is more suited for parallelisation,
since we can execute each for loop asynchronously.
To sum up, I listed in 10 all the variants of the modular dot product algorithm with the number of
modular reductions required as well as the maximum bit size taken by the temporary.
Notice that we actually use twice the number of bits for the multiplication if we do RED1 too. So
the actual bit requirements for RED1 algorithms are: max(2f, f + b log2(min(N,λ)− 1) c+ 1).
For the reasons stated above, and similar to existing libraries, we have chosen the lambda algorithm.
I have based my dot product routine on the λ-algorithm.

4.3.2. Other approaches

In [Dum04] J.-G. Dumas, proposed another DMR technique to let the overflow happen and correct
the result. The error of overflow is always 2m mod p with m being the number of bits of the trailing
significant field and can be precalculated. The overflow is easily detected in this case, see 8.

Algorithm 8: Overflow-detection trick
Input : Two vectors a and b of size N . The prime number p.

1 CORR←− 2m mod p // m is the number of bits of the T.S.F.
2 DotProduct(a, b, N, p)
3 res = 0
4 for i in 0, . . . , N do
5 product←− a[i] · b[i]
6 res←− res+ product
7 if res < product then
8 res←− res+ CORR

9 return res

Since we want to optimize dot products intervening in matrix computation, we will have to reduce
synchronously the dot products to maximize performance and parallelism, thus I have not considered
further the overflow detection trick, which relies on a conditional statement at every iteration. A
further work will consist in investigating hybrid approaches possibilities, that is to combine the
overflow detection with a block approach.
In [JG10], the authors use a special instruction denoted FMA (fused multiply-add) to evaluate
exactly the round-off term of the floating-point product. This operation performs:
FMA(a, b, c) = a× b+ c They describe mainly two algorithms TwoProduct.
This algorithm could be used to compute the dot product separately on the lower and higher part
like a multiprecision floating-point number.

4.3.3. BLAS Libraries in Dot Product

The λ-algorithm computes several small dot-products that we can compute in parallel. We store the
partial results in a cache, before summing the intermediate dot-products to get the result.
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Algorithm 9: TwoProduct
1 Require a, b ∈ F, a, b ≥ 0
2 Ensure x ∈ F and y ∈ F such that ab = x+ y
3 x←− fl(ab)
4 y ←− FMA(a, b,−x)
5 return (x, y)

In CUDA, we first used a __shared__ table or array, so that threads access in parallel this same
table. We then need to sum the elements in this table efficiently with a reduction. To do this, we can
sum elements of the array two by two, and store the results in the first half of the array. We repeat
the process with the half-sized array.
I have first proceed by implementing in C, the λ-algorithm with BLAS. I have replaced the second
for loop by a call to the ddot routine of the cBLAS library with the openBLAS implementation.

4.3.4. Matrix Product

In the Block-Wiedemann Algorithm, we want to multiply a matrix m× k where k = D ' 104 and
m ' k/3, with a matrix which has either n = 32 or n = 64 columns and K columns. We also call
this second matrix a fat vector due to his reduced number of columns.
The λ-algorithm is easily adapted for the matrix product. We can compute the matrix product by
block of matrices with λ columns, reduce coefficients modulo p and add each products together.

C = A ∗B =
(
A1 · · · Aq Aq+1

)
·


B1
...
Bq

Bq+1

 =

q∑
i=1

Ai ∗Bi +Aq+1 ∗Bq+1 (4)

If n = λq + r, we denote the Ai’s m× k block matrices Bi’s k × n and Aq+1 and Bq+1 the m× r and
r × n last matrices respectively. The matrix multiplications Ai ∗Bi are computed in R. There is no
difference, apart the entries from the λ-algorithm described in 7
For the matrix multiplication we have used the CUBLAS library. It is designed to be cache-efficient,
and to optimize data locality for the GPU architecture. For the modular reduction of the matrix, I
have written a kernel which reduces modulo p each coefficient of the matrix using 5.
I have fixed the number of threads at 256. I have not looked so far at the evolution of the
performance of the modular reduction kernel in function of this parameter.
The usual CUBLAS routine to multiply matrices with double numbers is the dgemm routine. It
stands for double general matrix multiplication.
For reference, I have included the listing of the matrix kernel in the appendix, see listing B on
page 25. For the benchmarks, I have fixed k = 3M , n = 32 and increased the number of rows by
steps of 200.
As a comparison, I have included the CPU timings in figure 5. We observe that the performance is
the order of a few GFlops as opposed to about two hundred GFlops. The FFLAS library obtain
better performance than the other modular field libraries (NTL and FLINT), due to the use of BLAS
routine for cache optimisation and to a better asymptotic algorithm (they use a few rounds of the
Winograd variant of the Strassen algorithm). We have not used something similar yet for our kernel.

4.3.5. Multi-Word Algorithm

To target larger primes p, I have written a multi-word version of our matrix algorithm. Let us
decompose our A and B matrices into two matrices with smaller coefficients.
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Figure 4: Timings and performance rate in Gflops of my algorithm for modular matrix multiplication
with reduction on the Quadro RTX 8000
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Figure 5: Timings and performance rate in Gflops of my algorithm for modular matrix multiplication
with reduction on CPU
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A = 2
t/2 ·Ah +Al (5)

B = 2
t/2 ·Bh +Bl (6)

We get these two expressions for the matrix product C = A ·B:

• Naive
C = 2t ·AhBh + 2

t/2(Ah ·Bl +Al ·Bh) +Al ·Bl (7)

• Karatsuba

C = 2t ·AhBh + 2
t/2[(Ah −Al) · (Bl −Bh) +AhBh +AlBl] +AlBl (8)

The Karatsuba expression requires only 3 multiplications but introduces additionnal operations and
temporaries to the usual expression of the matrix product. More precisely, I described below the
number of operations for each expressions:

• 3 ⊗ with O(nθ) where θ is a feasible exponent.

• 2 	, 3 ⊕ and two � with modular reduction, all are O(n2) operations.

Karatsuba extra cost is compensated by the difference in exponent.

Pseudo-codes We present the algorithms in pseudo-code below:
Algorithm 10: Multi-Word decomposition
Input : A matrix of double, b64 format, t decomposition parameter
Output: (Ah, Al) s.t. A = 2t/2 ·Ah +Al double matrices in b64 format

1 def MWDecomp(A):
2 Ah ←− dfloor(DSCAL(A, 2−t/2)) /* Ah ←− A div 2u */
3 Al ←− A− DSCAL(Ah, 2

t/2)

4 return (Ah, Al)

Algorithm 11: First Multi-Word algorithm: Karatsuba
Input : A, B matrices of double, b64 format
Output: C = AB, double b64 format

1 def MWFFMatMul:
2 M1 ←− (AhBh) mod p M2 ←− (AlBl) mod p
3 D1 ←− (Al −Ah) mod p
4 D2 ←− (Bh −Bl) mod p
5 M3 ←− D1D2 +M1 +M2

6 M3 ←−M3 mod p

7 M3 ←− (2t/2 ·M3) mod p
8 M1 ←− (2t ·M1) mod p
9 C ←−M1 +M3 +M2

10 C ←− C mod p
11 return C
On the figure 4, I have depicted the timings in seconds and performance in floating point operation
per seconds (GFlops) of the algorithm for modular matrix multiplication with the aforementioned
parameters, run on a Quadro RTX 8000. The performance is equal to:

perf = 2 ∗mkn

109 · τ
,
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where τ is the time in seconds. The performance is drawn on a log scale, so it scales exponentially
and should converge to the maximal theoretical performance as the size of the matrices increase.
We see three drops in the timings for size of about 4000, 7000 and 12000. We think it is due to a
change of algorithm between the sizes. These changes keep the timings under 200 seconds, boosting
the performance as the sizes increase.
There are five plots, for which I have used different characteristics, varying in bit size from 18 to 22
bits. I have taken each time the biggest prime for each bit size k, that is the lowest r for which 2k − r
is prime. Each time, I have also changed the lambda parameter accordingly, that is I have fixed λ to
225−k (it is the maximum size λ can take for the result to be exact). λ goes from 27 = 128 to 23 = 8.
I was expecting the performance to drop as the bit size increase, since there are more reductions
with a smaller λ. It went the opposite direction, the performance is better as the bit size of the
characteristic increase.

5. Conclusion
The exact setting of the problem was unclear at the beginning of the internship. By discussing the
parameters of the problem, we understood we could not leverage sparse matrix arithmetic for matrix
multiplication for efficient implementation in Sparse-FGLM. I have compared existing libraries
(FFLAS, NTL, FLINT) over CPU to multiply matrices over finite fields. I have written a GPU
kernel for modular matrix multiplication using efficient floating-point arithmetic similar to those
CPU libraries. I have benchmarked this kernel and obtained performance about one hundred more
performant than on CPU. There is still room for improvement. To avoid wrong primes for CRT
decomposition, we must adapt efficient techniques for larger characteristics. One solution would be
to do multiprecision arithmetic with floating-point integers. Furthermore, we could improve our
kernel by launching asynchronously our calls to CuBLAS, leveraging more the parallelism of the
GPU. Sparse-FGLM is not the only algorithm for the polynomial system solving that could
beneficiate from efficient GPU implementation, and we seek to improve F4 in the future.
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A. Glossary and References
RNS: Residue Number System

CRT: Chinese Remainder Theorem

DMR: Delayed Modular Reduction

BLAS: Basic Linear Algebra Subprograms: set of standardized functions with optimized
implementations of linear algebra functions separated in three levels (scalar, vector and matrix
operations).

MSB/LSB: Most (/Less) Significant Bit. Bit with the highest weight of a number. Leftmost bit
with value 1 in a big endian representation, rightmost in a little endian representation.

GPU: General Processing Unit. Processor inside a graphics card.

CPU: Main processor of a computing unit.

HPC: High Performance Computing.

Gröbner Basis: Formal computation tool used in solving a polynomial system, it is a ‘good’ basis of
an ideal of polynomials.

F4: Algorithm designed by Jean-Charles Faugère to find a Gröbner Basis of the polynomial ideal
generated by a polynomial system.

FGLM: Algorithm to find a Gröbner basis for another monomial ordering.

SIMD: Single Instruction Multiple Data.

LEX: Lexicographic monomial ordering.

DRL: Degree Reverse Lexicographic monomial ordering.
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B. Code Listings
__host__
void ffmatMulWtcublas(cublasHandle_t handle, const double a[], const double b[],

const int m, const int k, const int n, const double u,
const double p, const uint32_t lambda, double c[]) {

/* Compute the multiplication of matrices a and b of size m*k and k*n,
in prime field of characteristic p with partial calls to CuBLAS dgemm.
and returns result in matrix c, array of size m*n.
u is the floating-point number 1.0/p given as an argument for precomputation.
lambda is the maximum amount of summations we can do before remaindering.
The larger it is, the more optimisations cublas can do.

*/
unsigned long long int bound = k/lambda;

// The alpha and beta parameters for dgemm: C <- \alpha*A*B + \beta*C
double one = 1.0; double *alpha = &one;
double zero = 0.0; double *beta = &zero;

cublasStatus_t stat;

double *partial_matrix;
// HANDLE_ERROR is a macro exiting in case of a failed allocation
HANDLE_ERROR(cudaMalloc(&partial_matrix, m*n*sizeof(double)));
int nb_threads = 256;
int numBlocks = n * m / nb_threads;
for (uint32_t j=0; j < bound; ++j) {

stat = cublasDgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N,
m, n, lambda,
alpha, a+j*m*lambda, m,
b+j*lambda, k,
beta, partial_matrix, m);

// Threaded version of modular reduction of each coefficients of the matrix
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gpu_matrix_fma_reduction«<numBlocks, nb_threads»>(partial_matrix, m, n, u, p);

// Add the current block product result into the buffer
stat = cublasDgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n,

alpha, partial_matrix, m,
alpha, c, m,
c, m);

}
gpu_matrix_fma_reduction«<numBlocks, nb_threads»>(c, m, n, u, p);
cudaFree(partial_matrix);

}
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