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Context: timing attacks

▶ Principle: deduce private information from timing data
(execution time)

▶ Attacker: only knows the execution time (and the model)
→ no information about the actions that happen, etc.

Issues:

▶ May depend on the implementation (or, even worse, be
introduced by the compiler)

▶ A relatively trivial solution: make the program last always its
maximum execution time
Drawback: loss of efficiency

⇝ Non-trivial problem
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A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min ( l en (pwd) , l en ( attempt ) ) = 1 do
4 i f pwd [ i ] =/= attempt [ i ] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h i c k e n

attempt c h e e s e

Execution time:

ϵ+ ϵ+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

3 / 28



A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min ( l en (pwd) , l en ( attempt ) ) = 1 do
4 i f pwd [ i ] =/= attempt [ i ] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h i c k e n

attempt c h e e s e

Execution time:

ϵ+ ϵ+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

3 / 28



A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min ( l en (pwd) , l en ( attempt ) ) = 1 do
4 i f pwd [ i ] =/= attempt [ i ] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h i c k e n

attempt c h e e s e

Execution time: ϵ

+ ϵ+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

3 / 28



A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min ( l en (pwd) , l en ( attempt ) ) = 1 do
4 i f pwd [ i ] =/= attempt [ i ] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h i c k e n

attempt c h e e s e

Execution time: ϵ+ ϵ

+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

3 / 28



A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min ( l en (pwd) , l en ( attempt ) ) = 1 do
4 i f pwd [ i ] =/= attempt [ i ] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h i c k e n

attempt c h e e s e

Execution time: ϵ+ ϵ+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

3 / 28



A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min ( l en (pwd) , l en ( attempt ) ) = 1 do
4 i f pwd [ i ] =/= attempt [ i ] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h i c k e n

attempt c h e e s e

Execution time: ϵ+ ϵ+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

3 / 28



Informal problem

Question: can we exhibit secure execution times?

Timed-opacity computation

Exhibit execution times for which it is not possible to infer
information on the internal behavior
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Outline

Preliminaries: Timed Opacity: Formalism and Preliminary results

Contribution: (Untimed) Control for timed opacity

Perspectives
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Timed automaton (TA)
▶ Finite state automaton (sets of locations)

and actions) augmented with a

set X of clocks [AD94]

▶ Real-valued variables evolving linearly at the same rate

▶ Can be compared to integer constants in invariants

and guards

▶ Features

▶ Location invariant: property to be verified to stay at a location
▶ Transition guard: property to be verified to enable a transition
▶ Clock reset: some of the clocks can be set to 0 along

transitions

idle

adding sugar

delivering coffee

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science
126.2 (Apr. 1994), pp. 183–235. issn: 0304-3975. doi: 10.1016/0304-3975(94)90010-8
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The most critical system: The coffee machine
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y ≤ 8
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x := 0
y := 0

y = 5
cup!

x ≥ 1
press?
x := 0

y = 8
coffee!

idle

adding sugar

delivering coffee

▶ Example of concrete run for the coffee machine

▶ Coffee with 2 doses of sugar

0
0

x =
y =
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Formalization

Hypotheses: [AS19]

▶ A start location ℓ0 and an end location ℓf
▶ A special private location ℓpriv

ℓ0 ℓpriv

ℓf

Definition (timed opacity)

The system is timed-opaque w.r.t. ℓpriv on the way to ℓf for a
duration d if there exist at least two runs to ℓf of duration d

1. one passing by ℓpriv

2. one not passing by ℓpriv

[AS19] Étienne André and Jun Sun. “Parametric Timed Model Checking for Guaranteeing Timed Opacity”.
In: ATVA (Oct. 28–31, 2019). Ed. by Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza. Vol. 11781. Lecture
Notes in Computer Science. Taipei, Taiwan: Springer, 2019, pp. 115–130. doi: 10.1007/978-3-030-31784-3_7
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Example

ℓ0 ℓpriv

ℓf

x ≤ 3 x ≤ 3
b

x ≥ 1

a
x ≥ 2

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b 1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

We say that the system is timed-opaque w.r.t. ℓpriv on the way
to ℓf for

▶ But

There exists a run of duration 1.5 reaching ℓf and visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b 0.5 c

There exists no run of duration 1.5 reaching ℓf and not visiting ℓpriv

We say that the system is not fully timed-opaque w.r.t. ℓpriv on
the way to ℓf
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Problem: timed-opacity computation [TOSEM22]

Timed-opacity computation problem

Find durations d (“execution times”) of runs from ℓ0 to ℓf such
that the system is timed-opaque w.r.t. ℓpriv on the way to ℓf

Theorem The durations d such that the system is
timed-opaque can be effectively computed and
defined

Corollary Asking if a TA is timed-opaque for all its execution
times is decidable

Proof: based on the region graph and RA-arithmetic [Wei99]

[Wei99] Volker Weispfenning. “Mixed Real-Integer Linear Quantifier Elimination”. In: ISSAC (July 29–31,
1999). Ed. by Keith O. Geddes, Bruno Salvy, and Samuel S. Dooley. Vancouver, BC, Canada: Association for
Computing Machinery, 1999, pp. 129–136. doi: 10.1145/309831.309888

[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. “Guaranteeing Timed Opacity Using
Parametric Timed Model Checking”. In: ACM Trans. Softw. Eng. Methodol. (Nov. 2022). issn: 1049-331X. doi:
10.1145/3502851

14 / 28

https://doi.org/10.1145/309831.309888
https://doi.org/10.1145/3502851


Problem: timed-opacity computation [TOSEM22]

Timed-opacity computation problem

Find durations d (“execution times”) of runs from ℓ0 to ℓf such
that the system is timed-opaque w.r.t. ℓpriv on the way to ℓf

Theorem The durations d such that the system is
timed-opaque can be effectively computed and
defined

Corollary Asking if a TA is timed-opaque for all its execution
times is decidable

Proof: based on the region graph and RA-arithmetic [Wei99]

[Wei99] Volker Weispfenning. “Mixed Real-Integer Linear Quantifier Elimination”. In: ISSAC (July 29–31,
1999). Ed. by Keith O. Geddes, Bruno Salvy, and Samuel S. Dooley. Vancouver, BC, Canada: Association for
Computing Machinery, 1999, pp. 129–136. doi: 10.1145/309831.309888
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Context & Informal problem [And+22]

√
We can decide computation and decision problems for timed
opacity

× What to do if the model is not (fully) timed-opaque?

Full timed opacity control

Is it possible to disable some user actions to make the system fully
timed-opaque?

[And+22] Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan Marinho. “strategFTO: Untimed
control for timed opacity”. In: Formal Techniques for Safety-Critical Systems - FTSCS 2022, Auckland, New
Zeland, December 5-10, 2022, Proceedings. Ed. by Cyrille Artho and Peter Ölveczky. 2022
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Untimed control

Goal

Exhibit a controller guaranteeing the system to be fully
timed-opaque
i. e., a subset of the actions to be kept, while other controllable actions are

disabled

We distinguish two kinds of actions:

▶ uncontrollable: required by the system or dependent on
another agent
→ e. g., action dealing with a correct or incorrect password

▶ controllable: that can be disabled
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A running example

ℓ1

ℓ2

ℓf

ℓ3ℓ4

x ≤ 3

x ≥
1

a

x = 2
b

x := 0

x = 4
c

x ≥ 1
e

a

x > 2
f

u

1 ≤ x ≤ 3

u

x > 4
d

x := 0

x = 5
e

f
x := 0

Uncontrollable u

Controllable a, b, c, d, e, f

Is the system fully timed-opaque?

▶ Passing by ℓ2: [1, 5]

▶ Not passing by ℓ2: [1, 3] ∪ [4, 4] ∪ [5,+ inf)

⇒ Not fully timed-opaque
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Allowed u + b, c

Disabled a, d, e, f

Is the system fully timed-opaque?

▶ Passing by ℓ2: [2, 5]

▶ Not passing by ℓ2: [4, 4]

⇒ Not fully timed-opaque

19 / 28



A running example

ℓ1

ℓ2

ℓf

ℓ3ℓ4

x ≤ 3

x ≥
1

a

x = 2
b

x := 0

x = 4
c

x ≥ 1
e

a

x > 2
f

u

1 ≤ x ≤ 3

u

x > 4
d

x := 0

x = 5
e

f
x := 0

Uncontrollable u

Controllable a, b, c, d, e, f
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Disabled b, c, d, e

Is the system fully timed-opaque?

▶ Passing by ℓ2: [1, 3]

▶ Not passing by ℓ2: [1, 3]
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A running example
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x ≥ 1
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a

x > 2
f

u

1 ≤ x ≤ 3
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x > 4
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x := 0

x = 5
e

f
x := 0

It can be shown that the set of sets of actions to allow is
{u, a} {u, a, e} {u, a, f }
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1 ≤ x ≤ 3
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x > 4
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x := 0

x = 5
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x := 0

It can be shown that the set of fully timed-opaque strategies is
{u, a}︸ ︷︷ ︸
minimal

{u, a, e} {u, a, f }︸ ︷︷ ︸
maximal
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strategFTO

▶ an automated open-source tool written in Java
https://github.com/DylanMarinho/Controlling-TA

▶ iteratively constructs strategies
▶ computes the private and public execution times (using

IMITATOR[And21])
▶ checks full timed opacity by checking their equality (using

PolyOp1)
▶ Method: by considering execution times as a timing

parameter, and performing parameter synthesis

[And21] Étienne André. “IMITATOR 3: Synthesis of timing parameters beyond decidability”. In: CAV
(July 18–23, 2021). Ed. by Rustan Leino and Alexandra Silva. Vol. 12759. Lecture Notes in Computer Science.
virtual: Springer, 2021, pp. 1–14. doi: 10.1007/978-3-030-81685-8_26

1
https://github.com/etienneandre/PolyOp
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A Proof of concept benchmark: an ATM

I W

x ≤ 3

WP x ≤ 10

WC x ≤ 10

WA
x ≤ 10

PNW x ≤ 15PQW x ≤ 15DB x ≤ 10

MAN x ≤ 20MAQ x ≤ 20

OO x ≤ 10

T y ≤ 100

C y ≤ 100

E

start

x , y := 0

x = 3
askPwd

x := 0

nbFP < 3
incorrectPwd
nbFP++

correctPwd
x := 0

x
=

10

quickWithdraw
x := 0

normalWithdraw
x := 0

reqBalance
x := 0

nbFA < 3
incorrectAmount

nbFA++
correctAmount

x := 0

x
=

12x = 15
x := 0

x = 15
x := 0

x
=
20

ta
ke
C
as
h

x
:=

0

x = 20

ta
k
eC

a
sh

x
=
10x

:=
0

pressOK x = 10

p
ressF

in
ish

re
st
a
rt

y = 100
finishy = 100

finish

C : cancelling
DB : displaying balance
E : end
I : initial
MAN : money available normal
MAQ : money available quick
OO : other operations
PNW : preparing normal withdrawal
PQW : preparing quick withdrawal
T : terminating
W : waiting
WA : waiting for amount
WC : waiting for choice
WP : waiting for password

Uncontrollable actions correctAmount, correctPwd, incorrectAmount, incorrectPwd,
pressFinish

Controllable system actions askPwd, finish, start

Controllable user actions reqBalance, normalWithdraw, pressOK, quickWithdraw, restart

Secret takeCash
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Proof of concept [And+22]

Actions to disable synthMinControl witnessMinControl synthMaxControl witnessMaxControl synthControl
Option -find min -find min -witness -find max -find max -witness -find all

restart, pressOK
√ √ √

restart, reqBalance
√ √

restart, pressOK,
quickWithdraw

√

restart, pressOK,
reqBalance

√

restart,
quickWithdraw,
reqBalance

√

restart, pressOK,
quickWithdraw,
reqBalance

√ √ √

[And+22] Étienne André, Shapagat Bolat, Engel Lefaucheux, and Dylan Marinho. “strategFTO: Untimed
control for timed opacity”. In: Formal Techniques for Safety-Critical Systems - FTSCS 2022, Auckland, New
Zeland, December 5-10, 2022, Proceedings. Ed. by Cyrille Artho and Peter Ölveczky. 2022
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Scalability

Methodology: add to the ATM model an increasing number of
self-loop transitions

0 10 20 30 40
0

500

1,000

1,500

Number of (added) controllable actions

T
im

e
(s
.)

-find min

-find min -witness

-find max

-find max -witness

-find all
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Perspectives

Theory

▶ Use symbolic reasoning
→ Instead of a simple enumeration

▶ Extend the method to timed control

Algorithmic and implementation

▶ Automatic translation of programs to timed automata

▶ Repairing a non timed-opaque system

28 / 28



Perspectives

Theory

▶ Use symbolic reasoning
→ Instead of a simple enumeration

▶ Extend the method to timed control

Algorithmic and implementation

▶ Automatic translation of programs to timed automata

▶ Repairing a non timed-opaque system

28 / 28



References I

[AD94] Rajeev Alur and David L. Dill. “A theory of timed
automata”. In: Theoretical Computer Science 126.2
(Apr. 1994), pp. 183–235. issn: 0304-3975. doi:
10.1016/0304-3975(94)90010-8.
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