WannaFly:

Dummy Ransomware for Red Team Exercises

Maman Sani Aboubacar Djibo¹, Hamid Boukerrou^{2,3}, Dylan Marinho², Angelo Saadeh⁴ and Benjamin Somers^{5,6}

 ¹ Université de Montpellier, CNRS, LIRMM, Montpellier, France
 ² Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
 ³ Université de Lorraine, CNRS, CRAN, Nancy, France
 ⁴ Telecom Paris, LTCI, Inria, Paris, France
 ⁵ Crédit Mutuel Arkéa
 ⁶ Lab STICC UMR 6285, IMT Atlantique, Brest, France Research topic proposed and supervised by Jean-Romain Garnier, Airbus

25-29 October 2021 Luminy

What is a ransomware?

A story of money

[[]Bra21] David Braue. Global Ransomware Damage Costs Predicted To Exceed 265 Billion USD By 2031. June 2021

An overview of malware detection techniques

A cat and mouse game

[[]Bio+18] Fabrizio Biondi et al. "Tutorial: an Overview of Malware Detection and Evasion Techniques". In: ISoLA 2018 - 8th International Symposium On Leveraging Applications of Formal Methods, Verification and Validation. Oct. 2018, pp. 1-23

A cat and mouse game

[[]Bio+18] Fabrizio Biondi et al. "Tutorial: an Overview of Malware Detection and Evasion Techniques". In: ISoLA 2018 - 8th International Symposium On Leveraging Applications of Formal Methods, Verification and Validation. Oct. 2018, pp. 1-23

A duck and dodge game

	Simple malware	Small variations
No defense	\checkmark	\checkmark
Signature analysis	×	\checkmark

[[]Bio+18] Fabrizio Biondi et al. "Tutorial: an Overview of Malware Detection and Evasion Techniques". In: ISoLA 2018 - 8th International Symposium On Leveraging Applications of Formal Methods, Verification and Validation. Oct. 2018, pp. 1-23

A duck and dodge game

	Simple malware	Small variations
No defense	\checkmark	\checkmark
Signature analysis	×	\checkmark
Dynamic analysis	×	×

[[]Bio+18] Fabrizio Biondi et al. "Tutorial: an Overview of Malware Detection and Evasion Techniques". In: ISoLA 2018 - 8th International Symposium On Leveraging Applications of Formal Methods, Verification and Validation. Oct. 2018, pp. 1-23

A duck and duck game

	Simple malware	Small variations	Anti-sandboxing
No defense	\checkmark	\checkmark	\checkmark
Signature analysis	×	\checkmark	\checkmark
Dynamic analysis	×	×	\checkmark

[[]Bio+18] Fabrizio Biondi et al. "Tutorial: an Overview of Malware Detection and Evasion Techniques". In: ISoLA 2018 - 8th International Symposium On Leveraging Applications of Formal Methods, Verification and Validation. Oct. 2018, pp. 1-23

A duck and duck game

	Simple malware	Small variations	Anti-sandboxing
No defense	\checkmark	\checkmark	\checkmark
Signature analysis	×	\checkmark	\checkmark
Dynamic analysis	×	×	\checkmark
Concolic analysis	×	×	×

[[]Bio+18] Fabrizio Biondi et al. "Tutorial: an Overview of Malware Detection and Evasion Techniques". In: ISoLA 2018 - 8th International Symposium On Leveraging Applications of Formal Methods, Verification and Validation. Oct. 2018, pp. 1-23

Quaaaaack

	Simple malware	Small variations	Anti-sandboxing	Symbolic explosion
No defense	\checkmark	\checkmark	\checkmark	\checkmark
Signature analysis	×	\checkmark	\checkmark	\checkmark
Dynamic analysis	×	×	\checkmark	\checkmark
Concolic analysis	×	×	×	\checkmark

[[]Bio+18] Fabrizio Biondi et al. "Tutorial: an Overview of Malware Detection and Evasion Techniques". In: ISoLA 2018 - 8th International Symposium On Leveraging Applications of Formal Methods, Verification and Validation. Oct. 2018, pp. 1-23

Quaaaaack

[Bio+18]

	Simple malware	Small variations	Anti-sandboxing	Symbolic explosion
No defense	\checkmark	\checkmark	\checkmark	\checkmark
Signature analysis	×	\checkmark	\checkmark	\checkmark
Dynamic analysis	×	×	\checkmark	\checkmark
Concolic analysis	×	×	×	\checkmark

Most of the widespread anti-malwares only uses signature analysis

[[]Bio+18] Fabrizio Biondi et al. "Tutorial: an Overview of Malware Detection and Evasion Techniques". In: ISoLA 2018 - 8th International Symposium On Leveraging Applications of Formal Methods, Verification and Validation. Oct. 2018, pp. 1-23

Quaaaaack

[Bio+18]

	Simple malware	Small variations	Anti-sandboxing	Symbolic explosion
No defense	\checkmark	\checkmark	\checkmark	\checkmark
Signature analysis	×	\checkmark	\checkmark	\checkmark
Dynamic analysis	×	×	\checkmark	\checkmark
Concolic analysis	×	×	×	\checkmark

Most of the widespread anti-malwares only uses signature analysis

But, you can imagine more advanced statistical analysis

e.g. checking the imported libraries

[[]Bio+18] Fabrizio Biondi et al. "Tutorial: an Overview of Malware Detection and Evasion Techniques". In: ISoLA 2018 - 8th International Symposium On Leveraging Applications of Formal Methods, Verification and Validation. Oct. 2018, pp. 1-23

How to organize a reaction?

[Hel21]

Red team

- Serve as the attacker in a simulation
- Use the same techniques and tools of hackers to evade detection and test the defense
- Check the readiness of the internal security team

Blue team

- Detect adversaries
- Prevent them from breaking into the organization's infrastructure

How to organize a reaction?

[Hel21]

Red team

- Serve as the attacker in a simulation
- Use the same techniques and tools of hackers to evade detection and test the defense
- Check the readiness of the internal security team

Blue team

- Detect adversaries
- Prevent them from breaking into the organization's infrastructure

Why teaming?

- Uncover vectors that attackers could exploit
- Demonstrate <u>how</u> attackers could move throughout a system
- Provide insight on organization's ability to prevent, detect, and respond to advanced threats

Outline

Project subject

Our proposal: WannaFly

The context The goals of the Red Team Preliminary steps Ransomware structure Encrypting files Which files to encrypt? Encryption method Impact analysis End of life

Evaluation

Conclusion

Outline

Project subject

Our proposal: WannaFly

Evaluation

Conclusion

The project

Subject

Dummy Ransomware for Red Team Exercises

The project

Subject

Dummy Ransomware for Red Team Exercises

The project

Subject

Dummy Ransomware for Red Team Exercises

The project

Subject

Dummy Ransomware for Red Team Exercises

Limits

- Not be detected before execution
- Do not make too many assumptions about the target system

Learn from the system

Infectior

Encrypt (some) files

Reveal its presence Ask for a ransom

The project

Subject

Dummy Ransomware for Red Team Exercises

Limits

- Not be detected before execution
- Do not make too many assumptions about the target system
- Do not have significant operational impacts
- Do not perform actions that have a permanent impact

Encrypt (some) files

The project

Subject

Dummy Ransomware for Red Team Exercises

Limits

- Not be detected before execution
- Do not make too many assumptions about the target system
- Do not have significant operational impacts
- Do not perform actions that have a permanent impact

Keep a track

- Leave evidence of compromise
- Keep logs of all actions

Infection

Encrypt (some) files

State-of-the-art: Open-source ransomwares

Name	File selection	Key per file	Encrypt. file key	Required attacker communication
Ransom0	extension	×	imessent to server	encryption and decryption
RAASNet	extension	×	imessent to server	encryption and decryption
CryptSKY	extension	×	imessent to server	encryption and decryption
CryptoTrooper	directories	×	yes (White-box)	decryption
GonnaCry	extension	\checkmark	$(\sqrt{)}$ RSA – 1 time	decryption

State-of-the-art: Open-source ransomwares

Name	File selection	Key per file	Encrypt. file key	Required attacker communication
Ransom0	extension	×	imessent to server	encryption and decryption
RAASNet	extension	×	imessent to server	encryption and decryption
CryptSKY	extension	×	imessent to server	encryption and decryption
CryptoTrooper	directories	×	yes (White-box)	decryption
GonnaCry	extension	\checkmark	$(\sqrt{)}$ RSA – 1 time	decryption

WannaFly	extension, duplicated,	\checkmark	\sqrt{RSA} – immediately	decryption
	recently used,			

Outline

Project subject

Our proposal: WannaFly

The context Preliminary steps Ransomware structure Encrypting files Impact analysis End of life

Evaluation

Conclusion

The context

The context

Blue Team 00 00 00

Preliminary steps

Ransomware structure

Outline

Project subject

Our proposal: WannaFly

The context The goals of the Red Team Preliminary steps Ransomware structure

Encrypting files Which files to encrypt? Encryption method

Impact analys End of life

Evaluation

Conclusion

Which files to encrypt?

Encrypting all the files is a bad idea

Might encrypt system files

Which files to encrypt?

Encrypting all the files is a bad idea

Might encrypt system files

How to know if a file is interesting?

Extensions: Problem: Rename text.txt to text.py

Which files to encrypt?

Encrypting al	l the f	files is	a ba	d idea
---------------	---------	----------	------	--------

Might encrypt system files

How to know if a fi	How to know if a file is interesting?				
\longrightarrow	Extensions!/	Problem: Rename text.txt to text.py			
\longrightarrow	MIME:	MIME(text.py) = 'text/plain'			

Search for a file to encrypt

Several search options

Encrypt files that are already encrypted

Encrypt files that are already encrypted

How to know if a file is encrypted?	
→ / Ĕ httopy//,	Entropy('test.txt') = 3 Entropy('test.txt.gpg') = 6 Entropy('test.odt') = 7.85 Entropy('test.odt.gpg') = 7.98
──→ "file" Command:	fly@PC: file test1.pdf PDF document, version 1.3 fly@PC: file test2.pdf GPG symmetrically encrypted data

Encrypt privileged files

File permissions							
	File permissions:	rwx Owner	- m	rwx ember	- s	rwx Others	

Encrypt privileged files

File permissions							
	File permissions:	rwx 	- m	rwx iember	- 's	rwx Others	

Examples						
	File 1:	rwx	-	rwx	-	 +
	File 2:	rwx	-		-	 ++
	File 3:		-		-	 +++

Encrypt copied files

Objective

Find files that exist in multiple copies

Encrypt copied files

Objective

Find files that exist in multiple copies

Encrypt copied files

Objective

Find files that exist in multiple copies

TLSH generates a hash value which can be used for similarity comparisons

Impact analysis

Constraint

Audit what happened and when, to confirm or deny the claims of the blue team

End of life

It is an exercise!

Must be able to restore the system to its original state

Abilities

- No file is deleted during the deployment
- Files can be decryted (if attacker private key is known)
- Red team has a constant access
 - Advancement
 - Destruction

End of life

It is an exercise!

Must be able to restore the system to its original state

Abilities

- No file is deleted during the deployment
- Files can be decryted (if attacker private key is known)
- Red team has a constant access
 - Advancement
 - Destruction

One study, one ransomware, one deployment, one cleanup

Outline

Project subject

Our proposal: WannaFly

Evaluation

Conclusion

VirusTotal check

[Vir21]

VirusTotal

- Aggregate many anti-malware products
- Analyze suspicious files to detect types of malware

VirusTotal check

[Vir21]

VirusTotal

- Aggregate many anti-malware products
- Analyze suspicious files to detect types of malware

\bigcirc	No security vendors flagged this file as malicious								
2 Community V	b1b0f4abd5ac2feffefc4f3b05ed44b7eea69a538724bd7d904ef6fe3a314ec7 wennafy.bin 44bits eff shared-lib	12.27 Size	MB 2021-10-27 17:06:53 UTC 4 hours ago						
DETECTION	DETAILS COMMUNITY								
Acronis (Static ML)	⊘ Undetected	Ad-Aware	 Undetected 						
AhnLab-V3	⊘ Undetected	ALYac	 Undetected 						
Antiy-AVL	⊘ Undetected	Arcabit	 Undetected 						
Avast	⊘ Undetected	Avast-Mobile	⊘ Undetected						
Avira (no cloud)	⊘ Undetected	Baidu	 Undetected 						
BitDefender	⊘ Undetected	BitDefenderTheta	 Undetected 						
Bkav Pro	O Undetected	CAT-QuickHeal	 Undetected 						

[Vir21] VirusTotal. 2021

Outline

Project subject

Our proposal: WannaFly

Evaluation

Conclusion

Conclusion

What we have done

- Bypass signature-based detection
- Respect red team exercise constraints
- Encrypt only files that are deemed critical
- Remain efficient even if the encrypting process is detected and interrupted by the victim
- Use one encryption key per file
- Guarantee that one decrypted key cannot help other victims

Conclusion

What we have not done

- Injection and spread are not considered
- More advanced static methods and dynamic analysis must permit detection

Future work

- Develop strategies to dissimulate ransomware
- Limit process resource usage
- Avoid reading special file types
- Avoid scanning network storage
- Generate a key pair for client-server communications
- Use configuration files