

VeriDis seminar

July 7, 2022 Nancy, France

Guaranteeing Timed Opacity using Parametric Timed Model Checking

Étienne André 1 , Didier Lime 2 , $\underline{\text{Dylan Marinho}}^1$ and Sun Jun 3

 1 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France 2 École Centrale de Nantes, LS2N, UMR CNRS 6004, Nantes, France

Paper accepted at ACM Transactions on Software Engineering and Methodology (TOSEM) Supported by the ANR-NRF French-Singaporean research program ProMiS (ANR-19-CE25-0015)

³ School of Information Systems, Singapore Management University, Singapore

Context: timing attacks

 Principle: deduce private information from timing data (execution time)

Issues:

- May depend on the implementation (or, even worse, be introduced by the compiler)
- ► A relatively trivial solution: make the program last always its maximum execution time

 Drawback: loss of efficiency

→ Non-trivial problem

```
# input pwd : Real password
# input attempt: Tentative password
for i = 0 to min(len(pwd), len(attempt)) - 1 do
    if pwd[i] =/= attempt[i] then
        return false
done
return true
```

```
# input pwd : Real password
# input attempt: Tentative password

for i = 0 to min(len(pwd), len(attempt)) - 1 do
    if pwd[i] =/= attempt[i] then
        return false

done
return true
```

```
pwd c h i c k e n attempt c h e e s e
```

Execution time:

```
# input pwd : Real password
# input attempt: Tentative password
for i = 0 to min(len(pwd), len(attempt)) - 1 do
    if pwd[i] =/= attempt[i] then
        return false
done
return true
```

```
pwd c h i c k e n attempt c h e e s e
```

Execution time: ϵ

```
# input pwd : Real password
# input attempt: Tentative password
for i = 0 to min(len(pwd), len(attempt)) - 1 do
    if pwd[i] =/= attempt[i] then
        return false
done
return true
```

```
pwdchickenattemptcheese
```

Execution time: $\epsilon + \epsilon$

```
# input pwd : Real password
# input attempt: Tentative password
for i = 0 to min(len(pwd), len(attempt)) - 1 do
    if pwd[i] =/= attempt[i] then
        return false
done
return true
```

```
pwd c h i c k e n attempt c h e e s e
```

Execution time: $\epsilon + \epsilon + \epsilon$

```
# input pwd : Real password
# input attempt: Tentative password
for i = 0 to min(len(pwd), len(attempt)) - 1 do
    if pwd[i] =/= attempt[i] then
        return false
done
return true
```

```
pwd c h i c k e n attempt c h e e s e
```

Execution time: $\epsilon + \epsilon + \epsilon$

Problem: The execution time is proportional to the number of consecutive correct characters from the beginning of attempt

Informal problems

Question: can we exhibit secure execution times?

Time-opacity computation

Exhibit execution times for which it is not possible to infer information on the internal behavior

Informal problems

Question: can we exhibit secure execution times?

Time-opacity computation

Exhibit execution times for which it is not possible to infer information on the internal behavior

Further question: can we also tune internal timing constants to make the system resisting to timing attacks?

Time-opacity synthesis

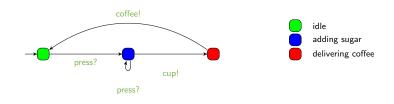
Exhibit execution times and internal timing constants for which it is not possible to infer information on the internal behavior

Outline

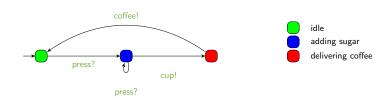
Formalism and Computation results

Toward parameter synthesis

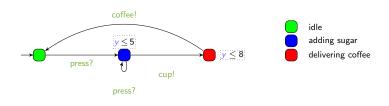
Experiments

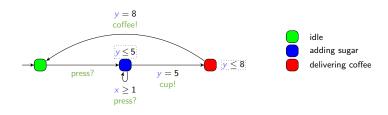

Perspectives

► Finite state automaton (sets of locations)

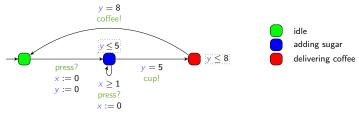


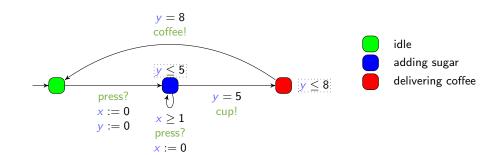
[[]AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975. DOI: 10.1016/0304-3975(94)90010-8

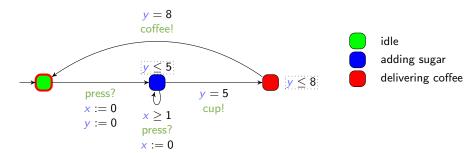

Finite state automaton (sets of locations and actions)


- ► Finite state automaton (sets of locations and actions) augmented with a set X of clocks [AD94]
 - Real-valued variables evolving linearly at the same rate

- ► Finite state automaton (sets of locations and actions) augmented with a set X of clocks [AD94]
 - Real-valued variables evolving linearly at the same rate
 - Can be compared to integer constants in invariants
- Features
 - Location invariant: property to be verified to stay at a location

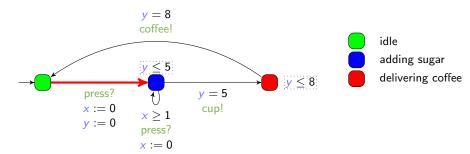

- ► Finite state automaton (sets of locations and actions) augmented with a set X of clocks [AD94]
 - ► Real-valued variables evolving linearly at the same rate
 - Can be compared to integer constants in invariants and guards
- Features
 - Location invariant: property to be verified to stay at a location
 - Transition guard: property to be verified to enable a transition

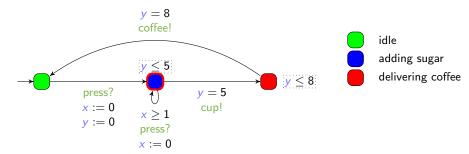


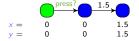

- ► Finite state automaton (sets of locations and actions) augmented with a set X of clocks [AD94]
 - ► Real-valued variables evolving linearly at the same rate
 - Can be compared to integer constants in invariants and guards

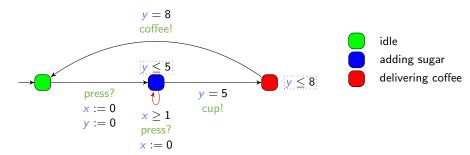
Features

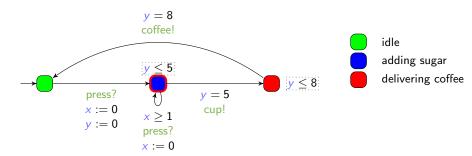
- Location invariant: property to be verified to stay at a location
- Transition guard: property to be verified to enable a transition
- Clock reset: some of the clocks can be set to 0 along transitions

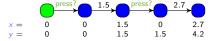


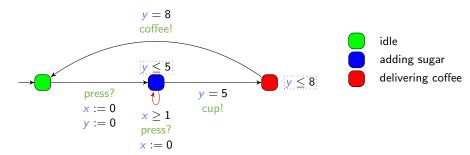

- Example of concrete run for the coffee machine
 - Coffee with 2 doses of sugar

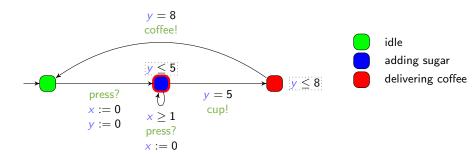


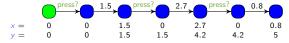

- Example of concrete run for the coffee machine
 - Coffee with 2 doses of sugar

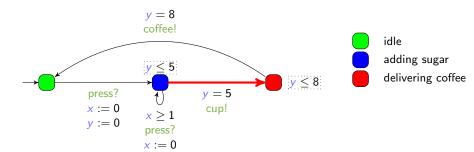

- Example of concrete run for the coffee machine
 - Coffee with 2 doses of sugar

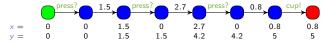


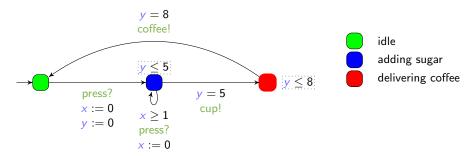

- Example of concrete run for the coffee machine
 - Coffee with 2 doses of sugar

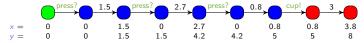

- Example of concrete run for the coffee machine
 - Coffee with 2 doses of sugar



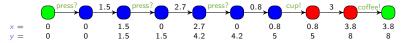

- Example of concrete run for the coffee machine
 - Coffee with 2 doses of sugar



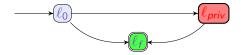

- Example of concrete run for the coffee machine
 - ► Coffee with 2 doses of sugar




- Example of concrete run for the coffee machine
 - Coffee with 2 doses of sugar



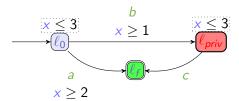
- Example of concrete run for the coffee machine
 - Coffee with 2 doses of sugar

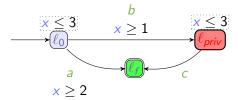

- Example of concrete run for the coffee machine
 - ► Coffee with 2 doses of sugar

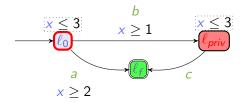
Formalization

Hypotheses: [AS19]

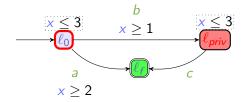
- ▶ A start location ℓ_0 and an end location ℓ_f
- ightharpoonup A special private location ℓ_{priv}

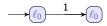


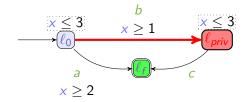

Definition (timed opacity)

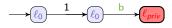

The system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f for a duration d if there exist two runs to ℓ_f of duration d

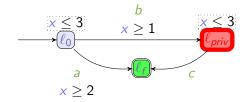
- 1. one passing by ℓ_{priv}
- 2. one *not* passing by ℓ_{priv}

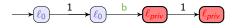

[[]AS19] Étienne André and Jun Sun. "Parametric Timed Model Checking for Guaranteeing Timed Opacity". In: ATVA (Oct. 28–31, 2019). Ed. by Yu-Fang Chen, Chih-Hong Cheng, and Javier Espapara. Vol. 11781. Lecture Notes in Computer Science. Taipei. Taiwan: Soringer, 2019, pp. 116–130, Doi: 10.1007/978-3-030-31784-3 7

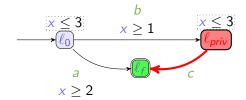


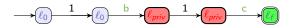


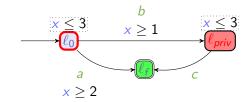


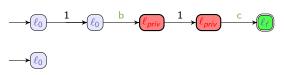


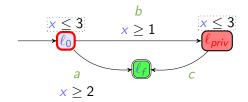


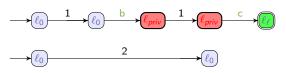


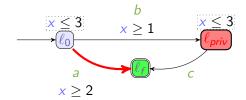


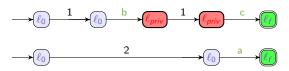


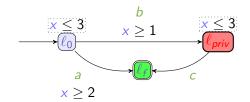


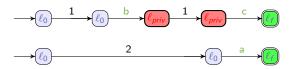




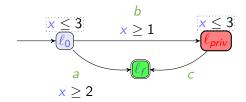

▶ There exist two runs of duration d = 2:

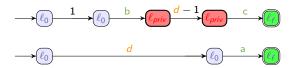


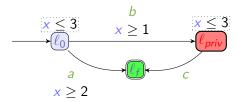

▶ There exist two runs of duration d = 2:



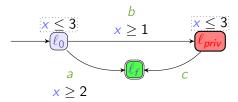
▶ There exist two runs of duration d = 2:




▶ There exist two runs of duration d = 2:

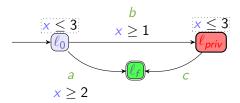

We say that the system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f for a duration d=2

▶ There exist two runs of duration d for all durations $d \in [2,3]$:



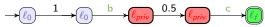
We say that the system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f for all durations in [2,3]

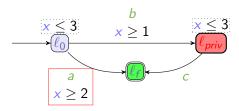
▶ There exist two runs of duration d for all durations $d \in [2,3]$:


We say that the system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f for all durations in [2,3]

▶ There exist two runs of duration d for all durations $d \in [2,3]$:

We say that the system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f for all durations in [2,3]

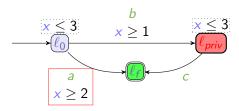

But



▶ There exist two runs of duration d for all durations $d \in [2,3]$:

We say that the system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f for all durations in [2,3]

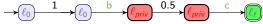
► But There exists a run of duration 1.5 passing by ℓ_{priv}


▶ There exist two runs of duration d for all durations $d \in [2,3]$:

We say that the system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f for all durations in [2,3]

► But There exists a run of duration 1.5 passing by ℓ_{priv}

It is not possible to reach ℓ_f with a path of duration 1.5 not passing by ℓ_{priv}



▶ There exist two runs of duration d for all durations $d \in [2,3]$:

We say that the system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f for all durations in [2,3]

But
There exists a run of duration 1.5 passin

There exists a run of duration 1.5 passing by ℓ_{priv}

It is not possible to reach ℓ_f with a path of duration 1.5 not passing by ℓ_{priv}

We say that the system is *not* fully opaque w.r.t. ℓ_{priv} on the way to ℓ_f

Problem 1: timed-opacity computation

Timed-opacity computation problem

Find durations d ("execution times") of runs from ℓ_0 to ℓ_f such that the system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f

Theorem The durations d such that the system is opaque can be effectively computed and defined

[[]TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: TOSEM (2022). To appear

Problem 1: timed-opacity computation

Timed-opacity computation problem

Find durations d ("execution times") of runs from ℓ_0 to ℓ_f such that the system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f

Theorem The durations d such that the system is opaque can be effectively computed and defined

Corollary Asking if a TA is opaque for all its execution times is decidable

[[]TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: TOSEM (2022). To appear

Problem 1: timed-opacity computation

Timed-opacity computation problem

Find durations d ("execution times") of runs from ℓ_0 to ℓ_f such that the system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f

Theorem The durations d such that the system is opaque can be effectively computed and defined

Corollary Asking if a TA is opaque for all its execution times is decidable

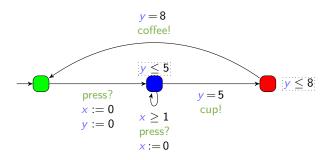
Proof: based on the region graph and RA-arithmetic (see [TOSEM22])

 ${\sf Exact\ complexity:\ unproved\ (EXPSPACE\ upper\ bound\ proved,\ but\ exponential\ hardness\ seems\ likely)}$

[[]TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: TOSEM (2022). To appear

Outline

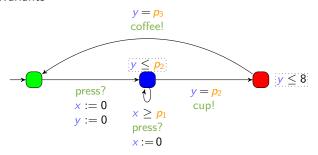
Formalism and Computation results


Toward parameter synthesis

Experiments

Perspectives

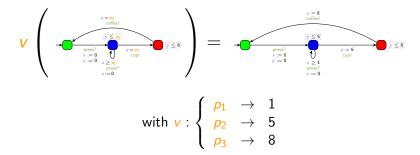
Parametric Timed Automaton (PTA)


► Timed automaton (sets of locations, actions and clocks)

[[]AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. "Parametric real-time reasoning". In: STOC. ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California, United States: ACM, 1993, pp. 592–601. ISBN: 0-89791-591-7. DOI: 10.1145/167088.167242

Parametric Timed Automaton (PTA)

- ► Timed automaton (sets of locations, actions and clocks) augmented with a set *P* of parameters
 - Unknown constants compared to a clock in guards and invariants


[[]AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. "Parametric real-time reasoning". In: STOC. ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California, United States: ACM, 1993, pp. 592–601. ISBN: 0-89791-591-7. DOI: 10.1145/167088.167242

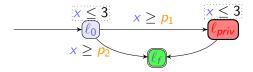
Valuation of a PTA = TA

▶ Given a PTA \mathcal{A} and a parameter valuation \mathbf{v} , $\mathbf{v}(\mathcal{A})$ is the TA where each parameter \mathbf{p} is valuated by $\mathbf{v}(\mathbf{p})$

Valuation of a PTA = TA

▶ Given a PTA \mathcal{A} and a parameter valuation \mathbf{v} , $\mathbf{v}(\mathcal{A})$ is the TA where each parameter \mathbf{p} is valuated by $\mathbf{v}(\mathbf{p})$

Timed-opacity synthesis problem


Timed-opacity synthesis problem

Find parameter valuations v and durations d ("execution times") of runs of v(A) from ℓ_0 to ℓ_f such that the system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f

Timed-opacity synthesis problem

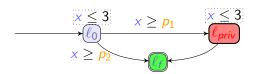
Find parameter valuations v and durations d ("execution times") of runs of $v(\mathcal{A})$ from ℓ_0 to ℓ_f such that the system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f

Example:

Timed-opacity synthesis problem

Find parameter valuations v and durations d ("execution times") of runs of v(A) from ℓ_0 to ℓ_f such that the system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f

Example:


Expected result:

$$p_1 \le 3 \land p_2 \le 3 \land d \in [p_2, 3]$$

Timed-opacity synthesis problem

Find parameter valuations v and durations d ("execution times") of runs of v(A) from ℓ_0 to ℓ_f such that the system is opaque w.r.t. ℓ_{priv} on the way to ℓ_f

Example:

Expected result:
$$p_1 \le 3 \land p_2 \le 3 \land d \in [p_2, 3]$$

If $v(p_1) = 1$ and $v(p_2) = 2$: $\top \land \top \land d \in [2, 3]$

Overview of our theoretical results

 General case: The mere existence of a parameter valuation for which there exists a duration for which timed-opacity is achieved is undecidable

[TOSEM22]

[[]TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: TOSEM (2022). To appear

Overview of our theoretical results

- General case: The mere existence of a parameter valuation for which there exists a duration for which timed-opacity is achieved is undecidable
- Study of a subclass known for being "at the frontier" of decidability (L/U-PTA)
 - The existence of valuations for timed opacity w.r.t. some execution times is decidable
 - The existence of valuations for full timed opacity is undecidable
 - ► The synthesis is uncomptable in pratice

[TOSEM22]

Overview of our theoretical results

- General case: The mere existence of a parameter valuation for which there exists a duration for which timed-opacity is achieved is undecidable
- Study of a subclass known for being "at the frontier" of decidability (L/U-PTA)
 - The existence of valuations for timed opacity w.r.t. some execution times is decidable
 - The existence of valuations for full timed opacity is undecidable
 - ► The synthesis is uncomptable in pratice

[TOSEM22]

We adopt a "best-effort" approach for the general case of PTAs

► Approach not guaranteed to terminate in theory

Outline

Formalism and Computation results

Toward parameter synthesis

Experiments

Perspectives

Experimental environment

Algorithms

- 1. Timed-opacity: "for a non-parametric TA, is the TA opaque for all execution times?"
- 2. Timed-opacity synthesis: "for a PTA, synthesize parameter valuations and execution times ensuring timed opacity"

Benchmarks

Common PTA benchmarks

[TAP21]

Library of Java programs

https://github.com/Apogee-Research/STAC/

- Manually translated to PTAs
- User-input variables translated to (non-timing) parameters (supported by IMITATOR)

See experiments at doi.org/10.5281/zenodo.3251141

and imitator.fr/static/ATVA19/

Experiments: (non-parametric) timed opacity

into. (mon paranit				pacity			
Model			Transf.		PTA	Result	
Name	$ \mathcal{A} $	X	$ \mathcal{A} $	X	<i>P</i>	Time (s)	Opaque?
Fig. 5, [VNN18]	1	1	2	3	3	0.02	(×)
Fig. 1b, [GMR07]	1	1	2	3	1	0.04	(×)
Fig. 2a, [GMR07]	1	1	2	3	1	0.05	(×)
Fig. 2b, [GMR07]	1	1	2	3	1	0.02	(×)
Web privacy problem [Ben+15]	1	2	2	4	1	0.07	(×)
Coffee	1	2	2	5	1	0.05	
Fischer-HSRV02	3	2	6	5	1	5.83	(×)
STAC:1:n			2	3	6	0.12	(×)
STAC:1:v			2	3	6	0.11	×
STAC:3:n			2	3	8	0.72	
STAC:3:v			2	3	8	0.74	(×)
STAC:4:n			2	3	8	6.40	×
STAC:4:v			2	3	8	265.52	×
STAC:5:n			2	3	6	0.24	
STAC:11A:v			2	3	8	47.77	(×)
STAC:11B:v			2	3	8	59.35	(×)
STAC:12c:v			2	3	8	18.44	×
STAC:12e:n			2	3	8	0.58	×
STAC:12e:v			2	3	8	1.10	(×)
STAC:14:n			2	3	8	22.34	(×)

 $\sqrt{\ }=$ not vulnerable; (\times) = vulnerable, can be repaired; \times = vulnerable, cannot be repaired

Experiments: (parametric) timed-opacity synthesis

Model					nsf.	PTA	Result	
Name	$ \mathcal{A} $	X	P	$ \mathcal{A} $	X	P	Time (s)	Constraint
Fig. 5, [VNN18]	1	1	0	2	3	4	0.02	K
Fig. 1b, [GMR07]	1	1	0	2	3	3	0.03	K
Fig. 2, [GMR07]	1	1	0	2	3	3	0.05	K
Web privacy problem [Ben+15]	1	2	2	2	4	3	0.07	K
Coffee	1	2	3	2	5	4	0.10	Т
Fischer-HSRV02	3	2	2	6	5	3	7.53	K
STAC:3:v			2	2	3	9	0.93	K

K = some valuations make the system non-vulnerable;

T = all valuations make the system non-vulnerable

Outline

Formalism and Computation results

Toward parameter synthesis

Experiments

Perspectives

Perspectives

On the theoretical side

- Some restricted problems remain open e.g., PTA with one clock
- Study more restritive sub-classes, with the hope to exhibit a decidable one

Perspectives

On the theoretical side

- Some restricted problems remain open e.g., PTA with one clock
- Study more restritive sub-classes, with the hope to exhibit a decidable one

On the pratical side

- Have an automatic translation of programs to PTAs
 - \rightarrow Some experiments were done, but on Java programs manually translated to PTAs
- Repairing a non-opaque system
 - \rightarrow Preliminary ideas in [TOSEM22]^a, but not fixed

^a[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: *TOSEM* (2022). To appear

References I

[AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975. DOI: 10.1016/0304-3975(94)90010-8.
[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. "Parametric real-time reasoning". In: STOC. Ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California, United States: ACM, 1993, pp. 592–601.

ISBN: 0-89791-591-7. DOI: 10.1145/167088.167242.

References II

[AS19] Étienne André and Jun Sun. "Parametric Timed Model Checking for Guaranteeing Timed Opacity". In: ATVA (Oct. 28–31, 2019). Ed. by Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza. Vol. 11781. Lecture Notes in Computer Science. Taipei, Taiwan: Springer, 2019, pp. 115–130. DOI: 10.1007/978-3-030-31784-3_7.

[Ben+15] Gilles Benattar, Franck Cassez, Didier Lime, and Olivier H. Roux. "Control and synthesis of non-interferent timed systems". In: *International Journal of Control* 88.2 (2015), pp. 217–236. DOI: 10.1080/00207179.2014.944356.

References III

[GMR07] Guillaume Gardey, John Mullins, and Olivier H. Roux. "Non-Interference Control Synthesis for Security Timed Automata". In: Electronic Notes in Theoretical Computer Science 180.1 (2007), pp. 35–53. DOI: 10.1016/j.entcs.2005.05.046.

[TAP21] Étienne André, Dylan Marinho, and Jaco van de Pol. "A Benchmarks Library for Extended Parametric Timed Automata". In: *TAP 2021*. Ed. by Frédéric Loulergue and Franz Wotawa. Vol. 12740. Lecture Notes in Computer Science. Springer, 2021, pp. 39–50. DOI: 10.1007/978-3-030-79379-1_3.

[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: *TOSEM* (2022). To appear.

References IV

[VNN18] Panagiotis Vasilikos, Flemming Nielson, and Hanne Riis Nielson. "Secure Information Release in Timed Automata". In: POST (Apr. 14–20, 2018). Ed. by Lujo Bauer and Ralf Küsters. Vol. 10804. Lecture Notes in Computer Science. Thessaloniki, Greece: Springer, 2018, pp. 28–52. DOI: 10.1007/978-3-319-89722-6_2.