







**AFADL 2022** 

June 9, 2022 Vannes

#### **Guaranteeing Timed Opacity using Parametric Timed Model Checking**

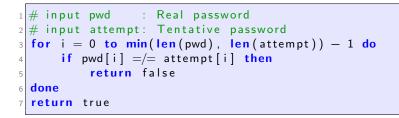
Étienne André<sup>1</sup>, Didier Lime<sup>2</sup>, Dylan Marinho<sup>1</sup> and Sun Jun<sup>3</sup>

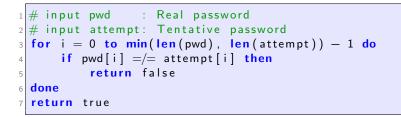
 $^1$  Université de Lorraine, CNRS, Inria, LORIA, Nancy, France  $^2$  École Centrale de Nantes, LS2N, UMR CNRS 6004, Nantes, France

<sup>3</sup> School of Information Systems, Singapore Management University, Singapore

Paper accepted at ACM Transactions on Software Engineering and Methodology (TOSEM) Supported by the ANR-NRF French-Singaporean research program ProMiS (ANR-19-CE25-0015)

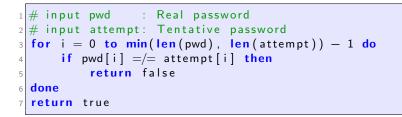


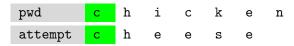

#### Context: timing attacks


 Principle: deduce private information from timing data (execution time)

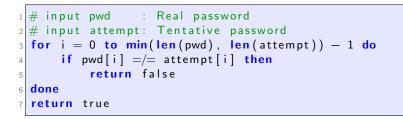
Issues:

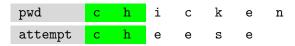
- May depend on the implementation (or, even worse, be introduced by the compiler)
- A relatively trivial solution: make the program last always its maximum execution time Drawback: loss of efficiency


 $\rightsquigarrow$  Non-trivial problem

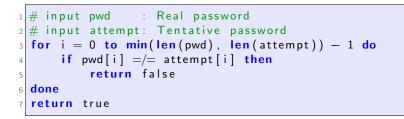


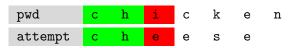




| pwd     | с | h | i | с | k | е | n |
|---------|---|---|---|---|---|---|---|
| attempt | с | h | е | е | s | е |   |

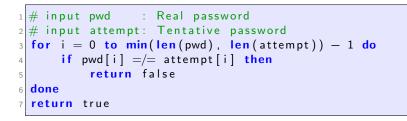

Execution time:







Execution time:  $\epsilon$ 







Execution time:  $\epsilon + \epsilon$ 





Execution time:  $\epsilon + \epsilon + \epsilon$ 





Execution time:  $\epsilon + \epsilon + \epsilon$ 

Problem: The execution time is proportional to the number of consecutive correct characters from the beginning of attempt

## Informal problems

Question: can we exhibit secure execution times?

#### Time-opacity computation

Exhibit execution times for which it is not possible to infer information on the internal behavior

# Informal problems

Question: can we exhibit secure execution times?

#### Time-opacity computation

Exhibit execution times for which it is not possible to infer information on the internal behavior

Further question: can we also tune internal timing constants to make the system resisting to timing attacks?

#### Time-opacity synthesis

Exhibit execution times and internal timing constants for which it is not possible to infer information on the internal behavior

#### Outline

Formalism and Computation results

Toward parameter synthesis

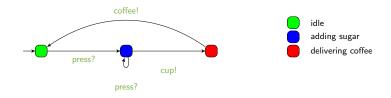
Experiments


Perspectives

Finite state automaton (sets of locations)



<sup>[</sup>AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975. DOI: 10.1016/0304-3975(94)90010-8


Finite state automaton (sets of locations and actions)

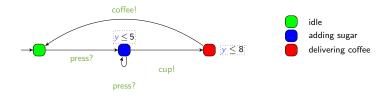


[AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975. DOI: 10.1016/0304-3975(94)90010-8

Finite state automaton (sets of locations and actions) augmented with a set X of clocks [AD94]

Real-valued variables evolving linearly at the same rate




<sup>[</sup>AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975. DOI: 10.1016/0304-3975(94)90010-8

 Finite state automaton (sets of locations and actions) augmented with a set X of clocks
[AD94]

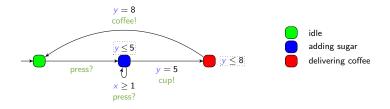
- Real-valued variables evolving linearly at the same rate
- Can be compared to integer constants in invariants

#### Features

Location invariant: property to be verified to stay at a location



<sup>[</sup>AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975. DOI: 10.1016/0304-3975(94)90010-8


 Finite state automaton (sets of locations and actions) augmented with a set X of clocks
[AD94]

- Real-valued variables evolving linearly at the same rate
- Can be compared to integer constants in invariants and guards

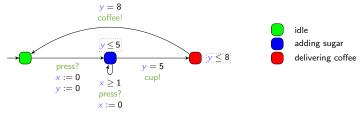
#### Features

Location invariant: property to be verified to stay at a location

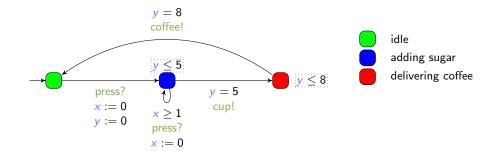
Transition guard: property to be verified to enable a transition

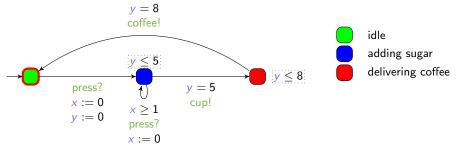


[AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975. DOI: 10.1016/0304-3975(94)90010-8


Finite state automaton (sets of locations and actions) augmented with a set X of clocks [AD94]

- Real-valued variables evolving linearly at the same rate
- Can be compared to integer constants in invariants and guards

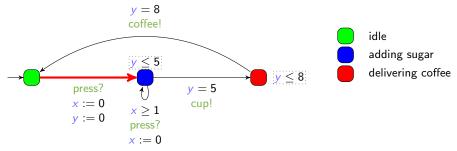

#### Features


- Location invariant: property to be verified to stay at a location
- Transition guard: property to be verified to enable a transition

Clock reset: some of the clocks can be set to 0 along transitions



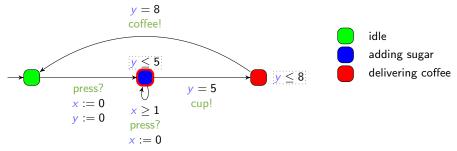
[AD94] Rajeev Alur and David L. Dill. "A theory of timed automata". In: Theoretical Computer Science 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975. DOI: 10.1016/0304-3975(94)90010-8






Example of concrete run for the coffee machine

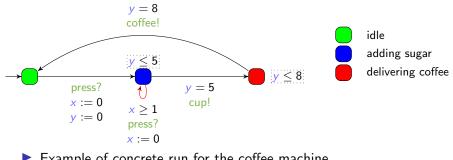
Coffee with 2 doses of sugar


 $\begin{array}{c} x = & 0 \\ y = & 0 \end{array}$ 



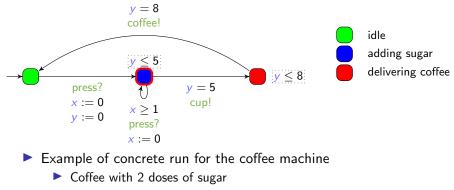
Example of concrete run for the coffee machine

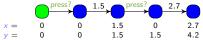
Coffee with 2 doses of sugar

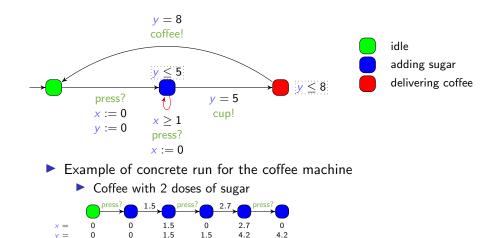


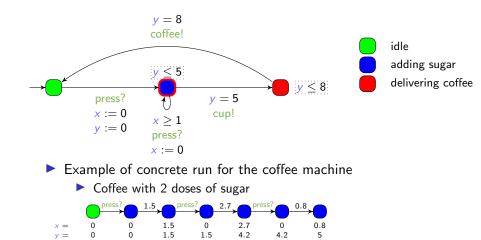



Example of concrete run for the coffee machine

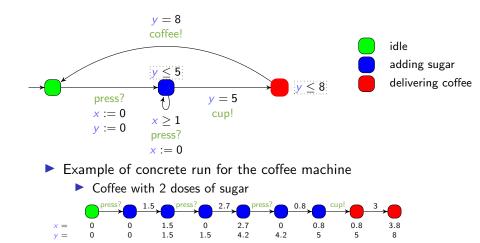

Coffee with 2 doses of sugar

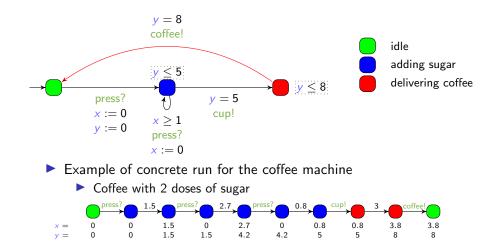




- Example of concrete run for the coffee machine
  - Coffee with 2 doses of sugar



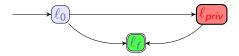








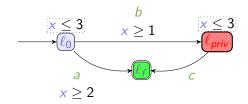



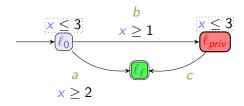


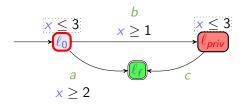

#### Formalization

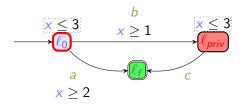
Hypotheses:

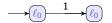
- A start location  $\ell_0$  and an end location  $\ell_f$
- ► A special private location  $\ell_{priv}$

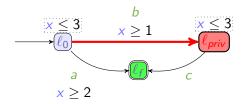




#### Definition (timed opacity)


The system is opaque w.r.t.  $\ell_{priv}$  on the way to  $\ell_f$  for a duration d if there exist two runs to  $\ell_f$  of duration d

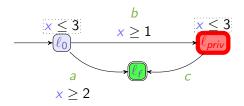

- 1. one passing by  $\ell_{\textit{priv}}$
- 2. one *not* passing by  $\ell_{priv}$


<sup>[</sup>AS19] Étienne André and Jun Sun, "Parametric Timed Model Checking for Guaranteeing Timed Opacity". In: ATVA (Oct. 28–31, 2019). Ed. by Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza. Vol. 11781. Lecture Notes in Computer Science. Taipei, Taiwan: Springer, 2019, pp. 115–130. DOI: 10.1007/978-3-030-31784-3\_7

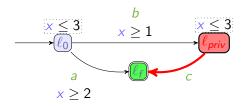


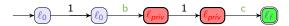


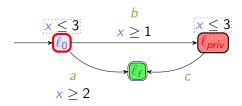




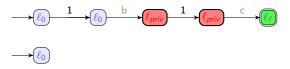


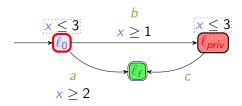



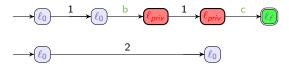



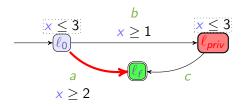


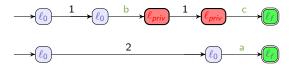



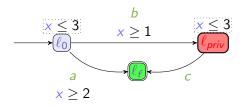


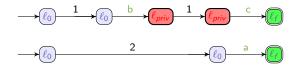


• There exist two runs of duration d = 2:



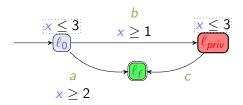




• There exist two runs of duration d = 2:

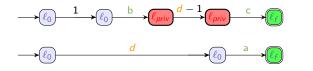




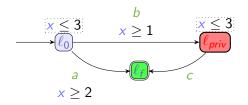

• There exist two runs of duration d = 2:





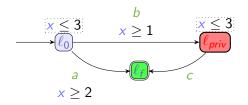


• There exist two runs of duration d = 2:




We say that the system is opaque w.r.t.  $\ell_{priv}$  on the way to  $\ell_f$  for a duration d = 2



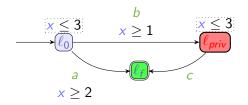
There exist two runs of duration d for all durations  $d \in [2,3]$ :




We say that the system is opaque w.r.t.  $\ell_{priv}$  on the way to  $\ell_f$  for all durations in [2,3]



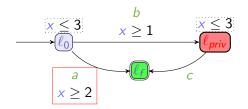
• There exist two runs of duration d for all durations  $d \in [2,3]$ :


We say that the system is opaque w.r.t.  $\ell_{priv}$  on the way to  $\ell_f$  for all durations in [2,3]



• There exist two runs of duration d for all durations  $d \in [2,3]$ :

We say that the system is opaque w.r.t.  $\ell_{priv}$  on the way to  $\ell_f$  for all durations in [2,3]

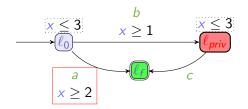





• There exist two runs of duration d for all durations  $d \in [2,3]$ :

We say that the system is opaque w.r.t.  $\ell_{priv}$  on the way to  $\ell_f$  for all durations in [2,3]

► But There exists a run of duration 1.5 passing by  $\ell_{priv}$  $\rightarrow \ell_0$   $\stackrel{1}{\longrightarrow} \ell_0$   $\stackrel{b}{\longrightarrow} \ell_{priv}$   $\stackrel{0.5}{\longrightarrow} \ell_{priv}$   $\stackrel{c}{\longrightarrow} \ell_{priv}$ 




• There exist two runs of duration d for all durations  $d \in [2,3]$ :

We say that the system is opaque w.r.t.  $\ell_{priv}$  on the way to  $\ell_f$  for all durations in [2,3]

► But There exists a run of duration 1.5 passing by  $\ell_{priv}$  $\rightarrow \ell_0$   $\xrightarrow{1} \ell_0$   $\xrightarrow{b} \ell_{priv}$   $\xrightarrow{c} \ell_{riv}$ 

It is not possible to reach  $\ell_f$  with a path of duration 1.5 not passing by  $\ell_{priv}$ 



• There exist two runs of duration d for all durations  $d \in [2,3]$ :

We say that the system is opaque w.r.t.  $\ell_{priv}$  on the way to  $\ell_f$  for all durations in [2,3]

► But There exists a run of duration 1.5 passing by  $\ell_{priv}$   $\rightarrow \ell_0$  1  $\rightarrow \ell_0$  b  $\rightarrow \ell_{priv}$  0.5  $\ell_{priv}$  c  $\rightarrow \ell_f$ It is not possible to reach  $\ell_f$  with a path of duration 1.5 not passing by  $\ell_{priv}$ 

We say that the system is *not* fully opaque w.r.t.  $\ell_{priv}$  on the way to  $\ell_f$ 

## Problem 1: timed-opacity computation

Timed-opacity computation problem

Find durations *d* ("execution times") of runs from  $\ell_0$  to  $\ell_f$  such that the system is opaque w.r.t.  $\ell_{priv}$  on the way to  $\ell_f$ 

Theorem The durations *d* such that the system is opaque can be effectively computed and defined

<sup>[</sup>TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: TOSEM (2022). To appear

## Problem 1: timed-opacity computation

Timed-opacity computation problem

Find durations d ("execution times") of runs from  $\ell_0$  to  $\ell_f$  such that the system is opaque w.r.t.  $\ell_{priv}$  on the way to  $\ell_f$ 

Theorem The durations *d* such that the system is opaque can be effectively computed and defined

Corollary Asking if a TA is opaque for all its execution times is decidable

<sup>[</sup>TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: TOSEM (2022). To appear

## Problem 1: timed-opacity computation

Timed-opacity computation problem

Find durations d ("execution times") of runs from  $\ell_0$  to  $\ell_f$  such that the system is opaque w.r.t.  $\ell_{priv}$  on the way to  $\ell_f$ 

Theorem The durations *d* such that the system is opaque can be effectively computed and defined

## Corollary Asking if a TA is opaque for all its execution times is decidable

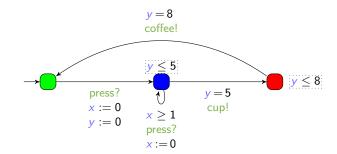
Proof: based on the region graph and RA-arithmetic (see [TOSEM22])

Exact complexity: unproved (EXPSPACE upper bound proved, but exponential hardness seems likely)

<sup>[</sup>TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: *TOSEM* (2022). To appear

#### Outline

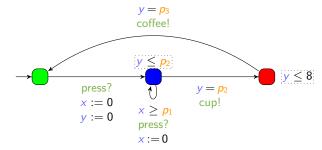
Formalism and Computation results


Toward parameter synthesis

Experiments

Perspectives

#### Parametric Timed Automaton (PTA)


Timed automaton (sets of locations, actions and clocks)

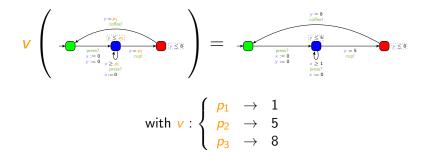


<sup>[</sup>AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. "Parametric real-time reasoning". In: STOC. ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California, United States: ACM, 1993, pp. 592–601. ISBN: 0-89791-591-7. DOI: 10.1145/167088.167242

## Parametric Timed Automaton (PTA)

- Timed automaton (sets of locations, actions and clocks) augmented with a set P of parameters [AHV93]
  - Unknown constants compared to a clock in guards and invariants




<sup>[</sup>AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. "Parametric real-time reasoning". In: STOC. ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California, United States: ACM, 1993, pp. 592–601. ISBN: 0-89791-591-7. DOI: 10.1145/167088.167242

#### Valuation of a PTA = TA

Given a PTA A and a parameter valuation v,
v(A) is the TA where each parameter p is valuated by v(p)

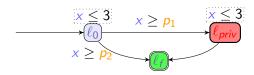
Valuation of a PTA = TA

Given a PTA A and a parameter valuation v,
v(A) is the TA where each parameter p is valuated by v(p)



#### Timed-opacity synthesis problem

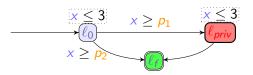
Find durations *d* ("execution times") of runs of  $\mathcal{A}$  from  $\ell_0$  to  $\ell_f$  such that the system is opaque w.r.t.  $\ell_{priv}$  on the way to  $\ell_f$ 


#### Timed-opacity synthesis problem

Find parameter valuations v and durations d ("execution times") of runs of v(A) from  $\ell_0$  to  $\ell_f$  such that the system is opaque w.r.t.  $\ell_{priv}$  on the way to  $\ell_f$ 

#### Timed-opacity synthesis problem

Find parameter valuations v and durations d ("execution times") of runs of v(A) from  $\ell_0$  to  $\ell_f$  such that the system is opaque w.r.t.  $\ell_{priv}$  on the way to  $\ell_f$ 


Example:

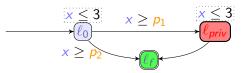


#### Timed-opacity synthesis problem

Find parameter valuations v and durations d ("execution times") of runs of v(A) from  $\ell_0$  to  $\ell_f$  such that the system is opaque w.r.t.  $\ell_{priv}$  on the way to  $\ell_f$ 

Example:




Expected result:

 $p_1 \leq 3 \land p_2 \leq 3 \land d \in [p_2, 3]$ 

#### Timed-opacity synthesis problem

Find parameter valuations v and durations d ("execution times") of runs of v(A) from  $\ell_0$  to  $\ell_f$  such that the system is opaque w.r.t.  $\ell_{priv}$  on the way to  $\ell_f$ 

Example:



Expected result:  $p_1 \leq 3 \land p_2 \leq 3 \land d \in [p_2, 3]$ If  $v(p_1) = 1$  and  $v(p_2) = 2$ :  $\top \land \top \land d \in [2, 3]$ 

#### Overview of our theoretical results

 General case: The mere existence of a parameter valuation for which there exists a duration for which timed-opacity is achieved is undecidable

[TOSEM22]

<sup>[</sup>TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: TOSEM (2022). To appear

#### Overview of our theoretical results

- General case: The mere existence of a parameter valuation for which there exists a duration for which timed-opacity is achieved is undecidable
- Study of a subclass known for being "at the frontier" of decidability (L/U-PTA)
  - The existence of valuations for timed opacity w.r.t. some execution times is decidable
  - The existence of valuations for full timed opacity is undecidable
  - The synthesis is uncomptable in pratice

[TOSEM22]

<sup>[</sup>TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: TOSEM (2022). To appear

#### Overview of our theoretical results

- General case: The mere existence of a parameter valuation for which there exists a duration for which timed-opacity is achieved is undecidable
- Study of a subclass known for being "at the frontier" of decidability (L/U-PTA)
  - The existence of valuations for timed opacity w.r.t. some execution times is decidable
  - The existence of valuations for full timed opacity is undecidable
  - The synthesis is uncomptable in pratice

[TOSEM22]

# We adopt a "best-effort" approach for the general case of PTAsApproach not guaranteed to terminate in theory

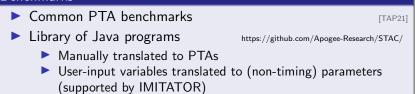
<sup>[</sup>TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: TOSEM (2022). To appear

#### Outline

Formalism and Computation results

Toward parameter synthesis

#### Experiments


Perspectives

## Experimental environment

#### Algorithms

- 1. Timed-opacity: "for a non-parametric TA, is the TA opaque for all execution times?"
- 2. Timed-opacity synthesis: "for a PTA, synthesize parameter valuations and execution times ensuring timed opacity"

#### Benchmarks



See experiments at doi.org/10.5281/zenodo.3251141

and imitator.fr/static/ATVA19/

| Experiments: | (non-parametric) | timed o | pacity |
|--------------|------------------|---------|--------|
|              |                  |         |        |

| Model                        | ,               |   | Transf. PTA     |   | PTA      | Result   |              |
|------------------------------|-----------------|---|-----------------|---|----------|----------|--------------|
| Name                         | $ \mathcal{A} $ | X | $ \mathcal{A} $ | X | <b>P</b> | Time (s) | Opaque?      |
| Fig. 5, [VNN18]              | 1               | 1 | 2               | 3 | 3        | 0.02     | (×)          |
| Fig. 1b, [GMR07]             | 1               | 1 | 2               | 3 | 1        | 0.04     | (×)          |
| Fig. 2a, [GMR07]             | 1               | 1 | 2               | 3 | 1        | 0.05     | (×)          |
| Fig. 2b, [GMR07]             | 1               | 1 | 2               | 3 | 1        | 0.02     | $(\times)$   |
| Web privacy problem [Ben+15] | 1               | 2 | 2               | 4 | 1        | 0.07     | (×)          |
| Coffee                       | 1               | 2 | 2               | 5 | 1        | 0.05     | $\checkmark$ |
| Fischer-HSRV02               | 3               | 2 | 6               | 5 | 1        | 5.83     | (×)          |
| STAC:1:n                     |                 |   | 2               | 3 | 6        | 0.12     | (×)          |
| STAC:1:v                     |                 |   | 2               | 3 | 6        | 0.11     | ×            |
| STAC:3:n                     |                 |   | 2               | 3 | 8        | 0.72     | $\checkmark$ |
| STAC:3:v                     |                 |   | 2               | 3 | 8        | 0.74     | (×)          |
| STAC:4:n                     |                 |   | 2               | 3 | 8        | 6.40     | ×            |
| STAC:4:v                     |                 |   | 2               | 3 | 8        | 265.52   | ×            |
| STAC:5:n                     |                 |   | 2               | 3 | 6        | 0.24     |              |
| STAC:11A:v                   |                 |   | 2               | 3 | 8        | 47.77    | (×)          |
| STAC:11B:v                   |                 |   | 2               | 3 | 8        | 59.35    | (×)          |
| STAC:12c:v                   |                 |   | 2               | 3 | 8        | 18.44    | ×            |
| STAC:12e:n                   |                 |   | 2               | 3 | 8        | 0.58     | ×            |
| STAC:12e:v                   |                 |   | 2               | 3 | 8        | 1.10     | (×)          |
| STAC:14:n                    |                 |   | 2               | 3 | 8        | 22.34    | (×)          |

 $\surd =$  not vulnerable; (  $\times$  ) = vulnerable, can be repaired;  $\times =$  vulnerable, cannot be repaired

## Experiments: (parametric) timed-opacity synthesis

| Model                        |                 |   | Transf. PTA |                 | Result |          |          |            |
|------------------------------|-----------------|---|-------------|-----------------|--------|----------|----------|------------|
| Name                         | $ \mathcal{A} $ | X | <b>P</b>    | $ \mathcal{A} $ | X      | <b>P</b> | Time (s) | Constraint |
| Fig. 5, [VNN18]              | 1               | 1 | 0           | 2               | 3      | 4        | 0.02     | K          |
| Fig. 1b, [GMR07]             | 1               | 1 | 0           | 2               | 3      | 3        | 0.03     | K          |
| Fig. 2, [GMR07]              | 1               | 1 | 0           | 2               | 3      | 3        | 0.05     | K          |
| Web privacy problem [Ben+15] | 1               | 2 | 2           | 2               | 4      | 3        | 0.07     | K          |
| Coffee                       | 1               | 2 | 3           | 2               | 5      | 4        | 0.10     | Т          |
| Fischer-HSRV02               | 3               | 2 | 2           | 6               | 5      | 3        | 7.53     | K          |
| STAC:3:v                     |                 |   | 2           | 2               | 3      | 9        | 0.93     | K          |

- K = some valuations make the system non-vulnerable;
- $\mathsf{T} = \mathsf{all}$  valuations make the system non-vulnerable

#### Outline

Formalism and Computation results

Toward parameter synthesis

Experiments

Perspectives

#### Perspectives

#### On the theoretical side

- Some restricted problems remain open e.g., PTA with one clock
- Study more restrictive sub-classes, with the hope to exhibit a decidable one

#### Perspectives

#### On the theoretical side

- Some restricted problems remain open e.g., PTA with one clock
- Study more restrictive sub-classes, with the hope to exhibit a decidable one

#### On the pratical side

Have an automatic translation of programs to PTAs

 $\rightarrow$  Some experiments were done, but on Java programs manually translated to PTAs

Repairing a non-opaque system

 $\rightarrow$  Preliminary ideas in  ${\rm [TOSEM22]}^a,$  but not fixed

<sup>&</sup>lt;sup>a</sup>[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: *TOSEM* (2022). To appear

#### References I

[AD94]

Rajeev Alur and David L. Dill. "A theory of timed automata". In: *Theoretical Computer Science* 126.2 (Apr. 1994), pp. 183–235. ISSN: 0304-3975. DOI: 10.1016/0304-3975(94)90010-8.

 [AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. "Parametric real-time reasoning". In: STOC. Ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California, United States: ACM, 1993, pp. 592–601. ISBN: 0-89791-591-7. DOI: 10.1145/167088.167242.

#### References II

[AS19]

Étienne André and Jun Sun. "Parametric Timed Model Checking for Guaranteeing Timed Opacity". In: *ATVA* (Oct. 28–31, 2019). Ed. by Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza. Vol. 11781. Lecture Notes in Computer Science. Taipei, Taiwan: Springer, 2019, pp. 115–130. DOI: 10.1007/978-3-030-31784-3\_7.

[Ben+15] Gilles Benattar, Franck Cassez, Didier Lime, and Olivier H. Roux. "Control and synthesis of non-interferent timed systems". In: International Journal of Control 88.2 (2015), pp. 217–236. DOI: 10.1080/00207179.2014.944356.

#### References III

[GMR07]

Guillaume Gardey, John Mullins, and Olivier H. Roux. "Non-Interference Control Synthesis for Security Timed Automata". In: *Electronic Notes in Theoretical Computer Science* 180.1 (2007), pp. 35–53. DOI: 10.1016/j.entcs.2005.05.046.

 [TAP21] Étienne André, Dylan Marinho, and Jaco van de Pol. "A Benchmarks Library for Extended Parametric Timed Automata". In: *TAP 2021*. Ed. by Frédéric Loulergue and Franz Wotawa. Vol. 12740. Lecture Notes in Computer Science. Springer, 2021, pp. 39–50. DOI: 10.1007/978-3-030-79379-1\_3.

[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: *TOSEM* (2022). To appear.

#### References IV

[VNN18]

Panagiotis Vasilikos, Flemming Nielson, and Hanne Riis Nielson. "Secure Information Release in Timed Automata". In: *POST* (Apr. 14–20, 2018). Ed. by Lujo Bauer and Ralf Küsters. Vol. 10804. Lecture Notes in Computer Science. Thessaloniki, Greece: Springer, 2018, pp. 28–52. DOI: 10.1007/978-3-319-89722-6\_2.