UNIVERSITE .
DE LORRAINE lreeia —~

AFADL 2022

June 9, 2022
Vannes

Guaranteeing Timed Opacity using
Parametric Timed Model Checking

Etienne André', Didier Lime?, Dylan Marinho® and Sun Jun®

| L Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
2 Ecole Centrale de Nantes, LS2N, UMR CNRS 6004, Nantes, France

3 School of Information Systems, Singapore Management University, Singapore

Paper accepted at ACM Transactions on Software Engineering and Methodology (TOSEM)
Supported by the ANR-NRF French-Singaporean research program ProMiS (ANR-19-CE25-0015)

Context: timing attacks

» Principle: deduce private information from timing data
(execution time)

Issues:

» May depend on the implementation (or, even worse, be
introduced by the compiler)

P A relatively trivial solution: make the program last always its
maximum execution time
Drawback: loss of efficiency

~ Non-trivial problem

2/23

A simple example of timing attack

input pwd : Real password
input attempt: Tentative password
for i = 0 to min(len(pwd), len(attempt)) — 1 do

if pwd[i] =/= attempt[i] then
return false
done
return true

N o A W N e

3/23

A simple example of timing attack

N o A W N e

input pwd : Real password
input attempt: Tentative password
for i = 0 to min(len(pwd), len(attempt)) — 1 do

if pwd[i] =/= attempt[i] then
return false
done
return true

pwd c h 1 c k e n

attempt ¢ h e e s e

Execution time:

3/23

A simple example of timing attack

N o A W N e

input pwd : Real password
input attempt: Tentative password
for i = 0 to min(len(pwd), len(attempt)) — 1 do

if pwd[i] =/= attempt[i] then
return false
done
return true

pwd !@¢h i ¢ k e n
attempt -h e e s e

Execution time: €

3/23

A simple example of timing attack

N o A W N e

input pwd : Real password
input attempt: Tentative password
for i = 0 to min(len(pwd), len(attempt)) — 1 do

if pwd[i] =/= attempt[i] then
return false
done
return true

pud JEMEN i < k e »
attempt -e e s e

Execution time: € + €

3/23

A simple example of timing attack

N o A W N e

input pwd : Real password
input attempt: Tentative password
for i = 0 to min(len(pwd), len(attempt)) — 1 do

if pwd[i] =/= attempt[i] then
return false
done
return true

pod NS c ¢ o ¢

Execution time: e + €+ ¢

3/23

A simple example of timing attack

1|# input pwd : Real password

2|# input attempt: Tentative password

3l for i = 0 to min(len(pwd), len(attempt)) — 1 do
4 if pwd[i] =/= attempt[i] then

5 return false

6| done

7 return true

pod NS c ¢ o ¢

Execution time: e + €+ ¢

> Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt

3/23

Informal problems

Question: can we exhibit secure execution times?

Time-opacity computation

Exhibit execution times for which it is not possible to infer
information on the internal behavior

4/23

Informal problems

Question: can we exhibit secure execution times?

Time-opacity computation

Exhibit execution times for which it is not possible to infer
information on the internal behavior

Further question: can we also tune internal timing constants to
make the system resisting to timing attacks?

Time-opacity synthesis

Exhibit execution times for which it
is not possible to infer information on the internal behavior

4/23

Outline

Formalism and Computation results

5/23

Timed automaton (TA)

> Finite state automaton (sets of locations)

@ ide
. adding sugar

4,. . . . delivering coffee

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science
126.2 (Apr. 1994), pp. 183-235. 1ssN: 0304-3975. DOI: 10.1016/0304-3975(94)90010-8

6/23

https://doi.org/10.1016/0304-3975(94)90010-8

Timed automaton (TA)

> Finite state automaton (sets of locations and actions)

coffee!

@ ide
/\ . adding sugar

4,. 8 . . delivering coffee

press?
cup!

press?

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science
126.2 (Apr. 1994), pp. 183-235. 1ssN: 0304-3975. DOI: 10.1016/0304-3975(94)90010-8

6/23

https://doi.org/10.1016/0304-3975(94)90010-8

Timed automaton (TA)

> Finite state automaton (sets of locations and actions) augmented with a
set X of clocks [AD94]

» Real-valued variables evolving linearly at the same rate

coffee!

@ ide
/\ . adding sugar

4,. 8 . . delivering coffee

press?

cup!

press?

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science
126.2 (Apr. 1994), pp. 183-235. 1ssN: 0304-3975. DOI: 10.1016/0304-3975(94)90010-8

6/23

https://doi.org/10.1016/0304-3975(94)90010-8

Timed automaton (TA)
> Finite state automaton (sets of locations and actions) augmented with a
set X of clocks [AD94]

» Real-valued variables evolving linearly at the same rate
» Can be compared to integer constants in invariants

> Features
» Location invariant: property to be verified to stay at a location

idle
adding sugar
delivering coffee

>
IN
&)
[
<
IN
©
e

press?

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science
126.2 (Apr. 1994), pp. 183-235. 1ssN: 0304-3975. DOI: 10.1016/0304-3975(94)90010-8
6/23

https://doi.org/10.1016/0304-3975(94)90010-8

Timed automaton (TA)

> Finite state automaton (sets of locations and actions) augmented with a
set X of clocks [AD94]

» Real-valued variables evolving linearly at the same rate
» Can be compared to integer constants in invariants and guards

> Features
» Location invariant: property to be verified to stay at a location
» Transition guard: property to be verified to enable a transition

y=

coffee!

@ ide
m . adding sugar
—0 8 @ <8 @ delivering coffee

press? y=

Y1 cup!
press?

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science

126.2 (Apr. 1994), pp. 183-235. 1ssN: 0304-3975. DOI: 10.1016/0304-3975(94)90010-8

6/23

https://doi.org/10.1016/0304-3975(94)90010-8

Timed automaton (TA)

> Finite state automaton (sets of locations and actions) augmented with a

set X of clocks [AD94]

» Real-valued variables evolving linearly at the same rate
» Can be compared to integer constants in invariants and guards

> Features
» Location invariant: property to be verified to stay at a location
» Transition guard: property to be verified to enable a transition
» Clock reset: some of the clocks can be set to 0 along

transitions
y=28
coffee!

@ ide
y<5 . adding sugar
@ <8 @ delivering coffee

="
press y=

X ig v>1 cup!
Y= press?
x:=0

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science

126.2 (Apr. 1994), pp. 183-235. 1ssN: 0304-3975. DOI: 10.1016/0304-3975(94)90010-8

6/23

https://doi.org/10.1016/0304-3975(94)90010-8

The most critical system: The coffee machine

y=28
coffee!

© ide
. adding sugar
. y§8 . delivering coffee

press? y=

- |

X = 8 >1 cup!
o= press?
x:=0

7/23

The most critical system: The coffee machine

y=8
coffee!

© ide
. adding sugar
. y§8 . delivering coffee

press? y=
X i 8 >1 cup!
o= press?

x:=0

» Example of concrete run for the coffee machine
» Coffee with 2 doses of sugar

x = 0
y = 0

7/23

The most critical system: The coffee machine

y=8
coffee!

© ide
. adding sugar
. delivering coffee

» Example of concrete run for the coffee machine
» Coffee with 2 doses of sugar

. press? .

0 0
0 0

< X%
I

7/23

The most critical system: The coffee machine

y=2
coffee!

O ide
m . adding sugar
N . delivering coffee

—-@ ? @ <38

= |

X = 8 > 1 cup
Y= press?
x:=0

» Example of concrete run for the coffee machine
» Coffee with 2 doses of sugar

' press? ' 1.5 .

0 0 1.5
0 0 1.5

< X%
I

7/23

The most critical system: The coffee machine

y=28
coffee!
O ide
s . adding sugar
* N ' <8 . delivering coffee
press? y=5 T
= !
X = 8 > 1 cup!
Y= press?
x:=0

» Example of concrete run for the coffee machine
» Coffee with 2 doses of sugar

>ss7 press?
.pmss . 1.5 .} .
0 0 1.5 0

X =
y = 0 0 1.5 1.5

7/23

The most critical system: The coffee machine

y=2
coffee!

O ide
m . adding sugar

* ? ' <8 . delivering coffee

press? y=
X i 8 > 1 cup!
Y= press?

x:=0

» Example of concrete run for the coffee machine
» Coffee with 2 doses of sugar

.prcss’. 1.5 .prcss?. 2.7 .
0 0 1.5 0 2.7

X =
y = 0 0 1.5 1.5 4.2

7/23

The most critical system: The coffee machine

y=28
coffee!
O ide
s . adding sugar
* S >. V<8 . delivering coffee
press? y=5 T
= !
X = 8 > 1 cup!
Y= press?
x:=0

» Example of concrete run for the coffee machine
» Coffee with 2 doses of sugar

.prcss’. 1.5 .prcss?. 2.7 .prcss?.
0 0 1.5 0 2.7 0

X =
y = 0 0 1.5 1.5 4.2 4.2

7/23

The most critical system: The coffee machine

y=2
coffee!

O ide
m . adding sugar

* ? ' <8 . delivering coffee

press? y=
X i 8 > 1 cup!
Y= press?

x:=0

» Example of concrete run for the coffee machine
» Coffee with 2 doses of sugar

.prcss’. 1.5 .prcss?. 2.7 .prcss?. 0.8 .
0 0 1.5 0 2.7 0 0.8

X =
y= 0 0 1.5 1.5 4.2 4.2 5

7/23

The most critical system: The coffee machine

y=8
coffee!
y <5
—@ >@ <38
press? y=5
= |
X = 8 > 1 cup!
o= press?
x:=0

» Example of concrete run for the coffee machine
» Coffee with 2 doses of sugar

.prcss’. 1.5 .prcss?. 2.7 .prcss?. 0.8 . cup! .
0 0 1.5 0 2.7 0 0.8 0.8

X =
y= 0 0 1.5 1.5 4.2 4.2 5

O ide

. adding sugar
. delivering coffee

5

7/23

The most critical system: The coffee machine

y=28
coffee!
O ide
V<5 . adding sugar
,. N <8 . delivering coffee
press? y = ‘
= |
X = 8 > 1 cup!
Y= press?
x:=0

» Example of concrete run for the coffee machine
» Coffee with 2 doses of sugar

.prcss’. 1.5 .prcss?. 2.7 .prcss?. 0.8 . cup! . 3 .
0 0 1.5 0 2.7 0 0.8 0.8 3.8

X =
y= 0 0 1.5 1.5 4.2 4.2 5 5 8

7/23

The most critical system: The coffee machine

y=8

coffee!
O ide

. adding sugar

y<5
—@ : @ s @ delivering coffee
press? y=5 ‘
= [
X = 8 > 1 cup!
Y= press?
x:=0

» Example of concrete run for the coffee machine
» Coffee with 2 doses of sugar

.PVCSS). 1.5 .PTCSS?. 2.7 .P'C557. 0.8 . cup! . 3 .coffcc‘..
0 0 1.5 0 2.7 0 0.8 0.8 3.8 3.8

x =
y = 0 0 1.5 1.5 4.2 4.2 5 5 8 8

7/23

Formalization

Hypotheses: [AS19]
> A start location /g and an end location /¢

» A special private location £,

Definition (timed opacity)

The system is opaque w.r.t. /., on the way to /r for a
if there exist two runs to /; of duration

1. one passing by /i,

2. one not passing by (i,

[AS19] Etienne André and Jun Sun. “Parametric Timed Model Checking for Guaranteeing Timed Opacity”.
In: ATVA (Oct. 28-31, 2019). Ed. by Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza. Vol. 11781. Lecture
Notes in Computer Science. Taipei, Taiwan: Springer, 2019, pp. 115-130. DOI: 10.1007/978-3-030-31784-3_7

8/23

https://doi.org/10.1007/978-3-030-31784-3_7

Example

b

(<3 <3

e x>1 =T
a c

9/23

Example

X S 3 x 2 1 X S 3
% Epriv
x> 2
» There exist two runs of duration ¢ = 2:

9/23

Example

x> 2

» There exist two runs of duration d = 2:

9/23

Example

x> 2

» There exist two runs of duration d = 2:

D@

9/23

Example

» There exist two runs of duration d = 2:

B @

9/23

Example

» There exist two runs of duration d = 2:

—G 0@ @

9/23

Example

» There exist two runs of duration d = 2:

— -0 -E@——®

9/23

Example

» There exist two runs of duration d = 2:

—B @ @B

9/23

Example

» There exist two runs of duration d = 2:
—— -0

9/23

Example

» There exist two runs of duration d = 2:

—B @@

2

9/23

Example

» There exist two runs of duration d = 2:
e D (D s () S () S ()

We say that the system is opaque w.r.t. £,,, on the way to /; for a duration d =2 J

9/23

Example

» There exist two runs of duration ¢ for all durations ¢ € [2,3]:
—0 -0 @ @O

We say that the system is opaque w.r.t. £, on the way to /¢ for all durations in [2,3])

10/23

Example

» There exist two runs of duration ¢ for all durations ¢ € [2,3]:

We say that the system is opaque w.r.t. £, on the way to /¢ for all durations in [2,3])

10/23

Example

» There exist two runs of duration ¢ for all durations ¢ € [2,3]:

We say that the system is opaque w.r.t. £, on the way to /¢ for all durations in [2,3])

» But

11/23

Example

» There exist two runs of duration ¢ for all durations ¢ € [2,3]:

We say that the system is opaque w.r.t. £, on the way to /¢ for all durations in [2,3])

» But

There exists a run of duration 1.5 passing by £,

~-0—-0-@">-@—0

11/23

Example

x> 2

» There exist two runs of duration ¢ for all durations ¢ € [2,3]:

We say that the system is opaque w.r.t. /,;, on the way to /¢ for all in [2,3])

> But

There exists a run of duration 1.5 passing by /.,

It is not possible to reach /¢ with a path of duration 1.5 not passing by /.,

11/23

Example

» There exist two runs of duration ¢ for all durations ¢ € [2,3]:

We say that the system is opaque w.r.t. £, on the way to /¢ for all durations in [2’3]J

> But

There exists a run of duration 1.5 passing by /.,

~-0-0-@ @0

It is not possible to reach /¢ with a path of duration 1.5 not passing by /.,

We say that the system is not fully opaque w.r.t. £,;, on the way to /¢ J

11/23

Problem 1: timed-opacity computation

Timed-opacity computation problem

Find durations ¢ (“execution times") of runs from (y to /¢ such
that the system is opaque w.r.t. /,,, on the way to /¢

Theorem The durations ¢ such that the system is opaque can
be effectively computed and defined

[TOSEM22] Etienne André, Didier Lime, Dylan Marinho, and Jun Sun. “Guaranteeing Timed Opacity using
Parametric Timed Model Checking”. In: TOSEM (2022). To appear

12/23

Problem 1: timed-opacity computation

Timed-opacity computation problem

Find durations ¢ (“execution times") of runs from (y to /¢ such
that the system is opaque w.r.t. /,,, on the way to /¢

Theorem The durations ¢ such that the system is opaque can
be effectively computed and defined

Corollary Asking if a TA is opaque for all its execution times is
decidable

[TOSEM22] Etienne André, Didier Lime, Dylan Marinho, and Jun Sun. “Guaranteeing Timed Opacity using
Parametric Timed Model Checking”. In: TOSEM (2022). To appear

12/23

Problem 1: timed-opacity computation

Timed-opacity computation problem

Find durations ¢ (“execution times") of runs from (y to /¢ such
that the system is opaque w.r.t. /,,, on the way to /¢

Theorem The durations ¢ such that the system is opaque can
be effectively computed and defined

Corollary Asking if a TA is opaque for all its execution times is
decidable

Proof: based on the region graph and RA-arithmetic (see [TOSEM22])

Exact complexity: unproved (EXPSPACE upper bound proved, but exponential hardness seems likely)

[TOSEM22] Etienne André, Didier Lime, Dylan Marinho, and Jun Sun. “Guaranteeing Timed Opacity using
Parametric Timed Model Checking”. In: TOSEM (2022). To appear

12/23

Outline

Toward parameter synthesis

13/23

Parametric Timed Automaton (PTA)

» Timed automaton (sets of locations, actions and clocks)

y=8
coffeel!

x:=0 P> 1 cup!
y:=0 press?
Xx:=

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. “Parametric real-time reasoning”. In:
STOC. ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California, United States: ACM,
1993, pp. 592-601. 1SBN: 0-89791-591-7. DOL: 10.1145/167088.167242

14/23

https://doi.org/10.1145/167088.167242

Parametric Timed Automaton (PTA)

» Timed automaton (sets of locations, actions and clocks)
augmented with a set P of parameters [AHVO3]

» Unknown constants compared to a clock in guards and
invariants

Yy=ps
coffee!

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. “Parametric real-time reasoning”. In:
STOC. ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California, United States: ACM,
1993, pp. 592-601. 1SBN: 0-89791-591-7. DOL: 10.1145/167088.167242

14/23

https://doi.org/10.1145/167088.167242

Valuation of a PTA = TA

» Given a PTA A and a parameter valuation
(A) is the TA where each parameter p is valuated by v(p)

15/23

Valuation of a PTA = TA

» Given a PTA A and a parameter valuation
(A) is the TA where each parameter p is valuated by v(p)

— 1
with v : — 5
— 8

15/23

Problem 2: timed-opacity synthesis

Timed-opacity synthesis problem

Find durations ¢ (“execution times")
of runs of A from /g to /¢ such that the system is opaque w.r.t.
Lpriv on the way to (¢

16/23

Problem 2: timed-opacity synthesis

Timed-opacity synthesis problem

Find and durations ¢ (“execution times")
of runs of v(A) from / to /¢ such that the system is opaque w.r.t.
Lpriv on the way to (¢

16/23

Problem 2: timed-opacity synthesis

Timed-opacity synthesis problem

Find and durations ¢ (“execution times")
of runs of v(A) from / to /¢ such that the system is opaque w.r.t.
Lpriv on the way to (¢

Example:
x <3 x <3
K= X > =
@ Zpriv

Xz

16/23

Problem 2: timed-opacity synthesis

Timed-opacity synthesis problem

Find and durations ¢ (“execution times")
of runs of v(A) from / to /¢ such that the system is opaque w.r.t.
Lpriv on the way to (¢

Example:
'X@SO?) x> X&ij
X >
Expected result: <3Ap<3AdE][p,3

16/23

Problem 2: timed-opacity synthesis

Timed-opacity synthesis problem

Find and durations ¢ (“execution times")
of runs of v(A) from / to /¢ such that the system is opaque w.r.t.
Lpriv on the way to (¢

Example:
X < 3 x > x <3
@ epriv
X 2
Expected result: <3Ap<3AdE][p,3
If v(p1) =1and v(p) =2 T AN T A def2,3

16/23

Overview of our theoretical results

» General case: The mere existence of a parameter valuation for
which there exists a duration for which timed-opacity is
achieved is undecidable

[TOSEM22]

[TOSEM22] Etienne André, Didier Lime, Dylan Marinho, and Jun Sun. “Guaranteeing Timed Opacity using
Parametric Timed Model Checking”. In: TOSEM (2022). To appear

17/23

Overview of our theoretical results

» General case: The mere existence of a parameter valuation for
which there exists a duration for which timed-opacity is
achieved is undecidable

» Study of a subclass known for being “at the frontier” of
decidability (L/U-PTA)
» The existence of valuations for timed opacity w.r.t. some
execution times is decidable
» The existence of valuations for full timed opacity is undecidable
» The synthesis is uncomptable in pratice

[TOSEM22]

[TOSEM22] Etienne André, Didier Lime, Dylan Marinho, and Jun Sun. “Guaranteeing Timed Opacity using
Parametric Timed Model Checking”. In: TOSEM (2022). To appear

17/23

Overview of our theoretical results

» General case: The mere existence of a parameter valuation for
which there exists a duration for which timed-opacity is
achieved is undecidable

» Study of a subclass known for being “at the frontier” of
decidability (L/U-PTA)
» The existence of valuations for timed opacity w.r.t. some
execution times is decidable
» The existence of valuations for full timed opacity is undecidable
» The synthesis is uncomptable in pratice

[TOSEM22]

We adopt a “best-effort” approach for the general case of PTAs
» Approach not guaranteed to terminate in theory J

[TOSEM22] Etienne André, Didier Lime, Dylan Marinho, and Jun Sun. “Guaranteeing Timed Opacity using
Parametric Timed Model Checking”. In: TOSEM (2022). To appear
17 /23

Outline

Experiments

18/23

Experimental environment

Algorithms

1. Timed-opacity: “for a non-parametric TA, is the TA opaque
for all execution times?”

2. Timed-opacity synthesis: “for a PTA, synthesize parameter
valuations and execution times ensuring timed opacity”

Benchmarks
» Common PTA benchmarks [TAP21]
> Library of Java programs https://github.com/Apogee-Research /STAC/

» Manually translated to PTAs
» User-input variables translated to (non-timing) parameters
(supported by IMITATOR)

See experiments at doi.org/10.5281/zenodo.3251141
and imitator.fr/static/ATVA19/

19/23

http://www.imitator.fr/
https://doi.org/10.5281/zenodo.3251141
https://www.imitator.fr/static/ATVA19/

Experiments: (non-parametric) timed opacity

Model Transf. PTA Result

Name [AJ X JALX]| 7] Time (s) | Opaque?
Fig. 5, [vinig] 1123 3 0.02| (x)
Fig. 1b, [cvRro7] 111123 1 0.04] (x)
Fig. 2a, [GMRo7] 11213 1 0.05| (x)
Fig. 2b, [GMr07) 1[1]2[3] 1 002] (x)
Web privacy problem Bent15)| 1 | 2 | 2 | 4 1 0.07| (x)
Coffee 112|215 1 0.05 v
Fischer-HSRV02 31265 1 5.83| (x)
STAC:1:n 213 6 0.12| (x)
STAC:1:v 2|3 6 0.11 X
STAC:3:n 213 8 0.72 Vi
STAC:3:v 213 8 0.74| (x)
STAC:4:n 2|3 8 6.40 X
STAC:4:v 203 8 | 265.52 X
STAC:5:n 2|3 6 0.24 v
STAC:11A:v 213 8 47.77| (x)
STAC:11B:v 213 8 59.35| (x)
STAC:12c:v 2|3 8 18.44 X
STAC:12e:n 203 8 0.58 X
STAC:12e:v 2|3 8 1.10| (x)
STAC:14:n 2|3 8 22.34| (%)

v/ = not vulnerable; (x) = vulnerable, can be repaired; x = vulnerable, cannot

be repaired

20/23

Experiments: (parametric) timed-opacity synthesis

Model Transf. PTA Result
Name A X 2TALIXT| |7 | Time (s) | Constraint
Fig. 5, [vnN1g] 1/1|]0]2]|3 4 0.02 K
Fig. 1b, [cmRo7] 1111023 3 0.03 K
Fig. 2, [cMRo7] 1111023 3 0.05 K
Web privacy problem Ben+15]| 1 | 2 | 2 | 2 | 4 3 0.07 K
Coffee 112|3]2]|5 4 0.10
Fischer-HSRV02 312(2|6]5 3 7.53 K
STAC:3:v 21213 9 0.93 K

K = some valuations make the system non-vulnerable;

= all valuations make the system non-vulnerable

21/23

Outline

Perspectives

22/23

Perspectives

On the theoretical side

» Some restricted problems remain open
e.g., PTA with one clock

» Study more restritive sub-classes, with the hope to exhibit a
decidable one

23/23

Perspectives

On the theoretical side
» Some restricted problems remain open
e.g., PTA with one clock
» Study more restritive sub-classes, with the hope to exhibit a
decidable one

On the pratical side

» Have an automatic translation of programs to PTAs
— Some experiments were done, but on Java programs manually

translated to PTAs
» Repairing a non-opaque system
— Preliminary ideas in [Tosem22)?, but not fixed

a['I'OSEI\/\22] Etienne André, Didier Lime, Dylan Marinho, and Jun Sun. “Guaranteeing Timed Opacity using

Parametric Timed Model Checking”. In: TOSEM (2022). To appear

23/23

References |

[AD94]

[AHV93]

Rajeev Alur and David L. Dill. “A theory of timed
automata”. In: Theoretical Computer Science 126.2
(Apr. 1994), pp. 183-235. 1SsN: 0304-3975. DOT:
10.1016/0304-3975(94)90010-8.

Rajeev Alur, Thomas A. Henzinger, and

Moshe Y. Vardi. “Parametric real-time reasoning”.
In: STOC. Ed. by S. Rao Kosaraju,

David S. Johnson, and Alok Aggarwal. San Diego,
California, United States: ACM, 1993, pp. 592-601.
ISBN: 0-89791-591-7. DOI:
10.1145/167088.167242.

24/23

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/167088.167242

References |l

[AS19]

[Ben+15]

Etienne André and Jun Sun. “Parametric Timed
Model Checking for Guaranteeing Timed Opacity”.
In: ATVA (Oct. 28-31, 2019). Ed. by Yu-Fang Chen,
Chih-Hong Cheng, and Javier Esparza. Vol. 11781.
Lecture Notes in Computer Science. Taipei, Taiwan:
Springer, 2019, pp. 115-130. DOLI:
10.1007/978-3-030-31784-3_7.

Gilles Benattar, Franck Cassez, Didier Lime, and
Olivier H. Roux. "Control and synthesis of
non-interferent timed systems”. In: International
Journal of Control 88.2 (2015), pp. 217-236. DOTI:
10.1080/00207179.2014.944356

25/23

https://doi.org/10.1007/978-3-030-31784-3_7
https://doi.org/10.1080/00207179.2014.944356

References 1l

[GMRO7]

[TAP21]

[TOSEM22]

Guillaume Gardey, John Mullins, and

Olivier H. Roux. “Non-Interference Control Synthesis
for Security Timed Automata”. In: Electronic Notes
in Theoretical Computer Science 180.1 (2007),

pp. 35-53. DOI: 10.1016/j.entcs.2005.05.046.

Etienne André, Dylan Marinho, and Jaco van de Pol.
“A Benchmarks Library for Extended Parametric
Timed Automata”. In: TAP 2021. Ed. by

Frédéric Loulergue and Franz Wotawa. Vol. 12740.
Lecture Notes in Computer Science. Springer, 2021,
pp. 39-50. DOT: 10.1007/978-3-030-79379-1_3.

Etienne André, Didier Lime, Dylan Marinho, and
Jun Sun. “Guaranteeing Timed Opacity using
Parametric Timed Model Checking”. In: TOSEM
(2022). To appear.

26/23

https://doi.org/10.1016/j.entcs.2005.05.046
https://doi.org/10.1007/978-3-030-79379-1_3

References IV

[VNN18]

Panagiotis Vasilikos, Flemming Nielson, and
Hanne Riis Nielson. “Secure Information Release in
Timed Automata”. In: POST (Apr. 14-20, 2018).
Ed. by Lujo Bauer and Ralf Kiisters. Vol. 10804.
Lecture Notes in Computer Science. Thessaloniki,
Greece: Springer, 2018, pp. 28-52. DOI:
10.1007/978-3-319-89722-6_2.

27/23

https://doi.org/10.1007/978-3-319-89722-6_2

	Introduction
	General context
	Problem

	Formalism and Computation results
	Timed automata
	Computation problems and results

	Toward parameter synthesis
	Parametric timed automata
	Theoretical results

	Experiments
	Non-parametric comutation
	Parametric synthesis

	Perspectives
	References

