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Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
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Context: timing attacks

▶ Principle: deduce private information from timing data
(execution time)

Issues:

▶ May depend on the implementation (or, even worse, be
introduced by the compiler)

▶ A relatively trivial solution: make the program last always its
maximum execution time
Drawback: loss of efficiency

⇝ Non-trivial problem
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A simple example of timing attack

1 # inpu t pwd : Rea l password
2 # inpu t attempt : Ten t a t i v e password
3 f o r i = 0 to min ( l en (pwd) , l en ( attempt ) ) − 1 do
4 i f pwd [ i ] =/= attempt [ i ] then
5 re tu rn f a l s e
6 done
7 re tu rn t r u e

pwd c h i c k e n

attempt c h e e s e

Execution time:

ϵ+ ϵ+ ϵ

▶ Problem: The execution time is proportional to the number of
consecutive correct characters from the beginning of attempt
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Informal problems

Question: can we exhibit secure execution times?

Computation problem: Execution-time opacity computation

Exhibit execution times for which it is not possible to infer
information on the internal behavior

Question: can we make sure all execution times are secure?

Decision problem: Full execution-time opacity

Can we decide whether it is impossible to infer information on the
internal behavior, whatever (for all) execution times?
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Informal parametric problems

Further question: can we also tune internal timing constants to
make the system resisting to timing attacks?

Synthesis problem: Execution-time opacity synthesis

Exhibit execution times and internal timing constants for which it
is not possible to infer information on the internal behavior
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Outline

ET-opacity problems in timed automata

ET-opacity parametrization

Results

Perspectives
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Timed model checking

y = 2

x ≤ 2

x ← 0

x < 1

A model of the system

?

|=

is unreachable

A property to be satisfied

▶ Question: does the model of the system satisfy the property?

Yes No
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Timed automaton (TA)
▶ Finite state automaton (sets of locations)

and actions) augmented with a

set X of clocks [AD94]

▶ Real-valued variables evolving linearly at the same rate

▶ Can be compared to integer constants in invariants

and guards

▶ Features

▶ Location invariant: property to be verified to stay at a location
▶ Transition guard: property to be verified to enable a transition
▶ Clock reset: some of the clocks can be set to 0 along

transitions

idle

adding sugar

delivering coffee

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theoretical Computer Science
126.2 (Apr. 1994), pp. 183–235. doi: 10.1016/0304-3975(94)90010-8
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The most critical system: The coffee machine

y ≤ 5
y ≤ 8

press?
x ← 0
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y = 5
cup!

x ≥ 1
press?
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y = 8
coffee!

idle

adding sugar

delivering coffee

▶ Example of concrete run for the coffee machine

▶ Coffee with 2 doses of sugar

0
0

x =
y =
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Formalization

Hypotheses: [AS19]

▶ A start location ℓ0 and an end location ℓf
▶ A special private location ℓpriv

ℓ0

ℓpriv

ℓf

Definition (execution-time opacity)

The system is ET-opaque for a duration d if there exist two runs
to ℓf of duration d

1. one visiting ℓpriv

2. one not visiting ℓpriv

[AS19] Étienne André and Jun Sun. “Parametric Timed Model Checking for Guaranteeing Timed Opacity”.
In: ATVA (Oct. 28–31, 2019). Ed. by Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza. Vol. 11781. Lecture
Notes in Computer Science. Taipei, Taiwan: Springer, 2019, pp. 115–130. doi: 10.1007/978-3-030-31784-3_7
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Three levels of ET-opacity

Existential – ∃
There exist two runs of duration d ,

one visiting ℓpriv ,
one not visiting ℓpriv

Weak

For all duration d ,
There exists a run of duration d visiting ℓpriv

⇒
There exists a run of duration d not visiting ℓpriv

Full

For all duration d ,
There exists a run of duration d visiting ℓpriv

⇔
There exists a run of duration d not visiting ℓpriv
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Three levels of ET-opacity

Existential – ∃
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Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

▶ There exist (at least) two runs of duration d = 2:

visiting ℓpriv

ℓ0 ℓ0 ℓpriv ℓpriv ℓf
1 b 1 c

not visiting ℓpriv

ℓ0 ℓ0 ℓf
2 a

The system is ∃-ET-opaque

▶ But,
▶ private execution times are [1, 2.5]

public execution times are [0, 3]

▶ private durations ⊆ public durations

The system is weakly ET-opaque

▶ private durations ̸= public durations

The system is not fully ET-opaque
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Expiring ET-opacity

Idea

The secret can expire: beyond a certain duration, knowing the
secret is useless to the attacker (e. g., a cache value)

Secret runs Non-secret runs

ET-opacity
Runs visiting the private lo-
cation

Runs not visiting the pri-
vate location

(= private runs) (= public runs)

expiring-ET-opacity
Private runs with ℓpriv visit
≤ ∆ before the system
completion

(i) Public runs and
(ii) Private runs with ℓpriv
visit > ∆ before the system
completion
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Three levels of

expiring

ET-opacity

Existential–∃

expiring

private durations ∩ public durations ̸= ∅

Weak

expiring

private durations ⊆ public durations

Full

expiring

private durations = public durations
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Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1

a

c

ET-opacity notion Secret Non secret Answer
∃

[1, 2.5] [0, 3]

√

weak
√

full ×

∆ = 1
∃-exp.

[1, 2.5] (2, 2.5] ∪ [0, 3]

√

weak-exp.
√

full-exp. ×

∆ = 1.25
∃-exp.

[1, 2.5] (2.25, 2.5] ∪ [0, 3]

√

weak-exp.
√

full-exp. ×
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Parametric

timed model checking

y = 2× delay

x ≤ 20.46× periodx < period

A model of the system

?

|= is unreachable

A property to be satisfied

▶ Question: does the model of the system satisfy the property?

Yes

if. . .

No

Counterexample

23 / 35



Parametric timed model checking

y = 2× delay

x ≤ 20.46× periodx < period

A model of the system

?

|= is unreachable

A property to be satisfied

▶ Question: for what values of the parameters does the model
of the system satisfy the property?

Yes if. . .

No

2× delay > 20.46× period
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Parametric

Timed Automaton (PTA)

▶ Timed automaton (sets of locations, actions and clocks)

augmented with a set P of parameters [AHV93]

▶ Unknown constants compared to a clock in guards and
invariants

y ≤ 5
y ≤ 8

press?
x ← 0
y ← 0

y =5
cup!

x ≥ 1
press?
x← 0

y =8
coffee!

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. “Parametric real-time reasoning”. In:
STOC (May 16–18, 1993). Ed. by S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California,
United States: ACM, 1993, pp. 592–601. doi: 10.1145/167088.167242
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Example

ℓ0

ℓpriv

ℓf
x ≤ 3

x ≤ 2.5x ≥ 1
b

a

c

ET-opacity notion Private Public Answer

∃
weak
full

∃
[0, 3] [0, 3]

√

weak
√

full
√
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Two classes of parametric problems

p-Emptiness problem

Is the set of parameter valuations ensuring the property empty?

p-Synthesis problem

Synthesize all the parameter valuations ensuring the property
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ET-opacity notion p-Emptiness p-Synthesis
∃

0 ≤ p1 ≤ 3 ∧ p1 ≤ p2

weak
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full

p1 = 0 ∧ p2 = 3
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Summary of the results for ET-opacity [And+22]

∃-ET-opaque weakly ET-
opaque

fully ET-
opaque

Decision TA

√
?

√

p-emptiness
L/U-PTA

√
? ×

PTA × ? ×

p-synthesis
L/U-PTA × ? ×

PTA × ? ×

L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either

compared to clocks as upperbound, or as lower bound) [BL09]

[BL09] Laura Bozzelli and Salvatore La Torre. “Decision problems for lower/upper bound parametric timed
automata”. In: Formal Methods in System Design 35.2 (2009), pp. 121–151. doi: 10.1007/s10703-009-0074-0

[And+22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. “Guaranteeing timed opacity using
parametric timed model checking”. In: ACM Transactions on Software Engineering and Methodology 31.4 (Oct.
2022), pp. 1–36. doi: 10.1145/3502851
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Summary of the results for expiring-ET-opacity [ALM23]

∃-expiring-
ET-opaque

weakly
expiring-
ET-opaque

fully
expiring-
ET-opaque

∆-emptiness
TA

?
√ √

∆-synthesis ?
√

?

(p +∆)-emptiness
L/U-PTA ? × ×

PTA ? × ×

(p +∆)-synthesis
L/U-PTA ? × ×

PTA ? × ×

[ALM23] Étienne André, Engel Lefaucheux, and Dylan Marinho. “Expiring opacity problems in parametric
timed automata”. In: ICECCS (June 12–16, 2023). Ed. by Yamine Ait-Ameur and Ferhat Khendek. Accepted.
Toulouse, France, 2023
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Perspectives

Theory

▶ Some restricted problems remain open
e. g., PTA with one clock

▶ Study more restrictive sub-classes, with the hope to exhibit a
decidable one
Promising subclass: U-PTAs (only upper-bound parameters)

Algorithmic and implementation

▶ Automatic translation of programs to timed automata

▶ Repairing a non ET-opaque system
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