

Journée commune au CT SED et au GT AFSEC

January 30th, 2025 Paris, France

Ensuring timed-opacity in timed systems

Dylan Marinho, PhD

Sorbonne Université, CNRS, LIP6, Dylan.Marinho@lip6.fr

Based on works with Étienne André, Sarah Dépernet, Laetitia Laversa,

Engel Lefaucheux, Didier Lime, and Sun Jun

These works are partially supported by the ANR-NRF research program ProMiS (ANR-19-CE25-0015) and the ANR research program BisoUS (ANR-22-CE48-0012).

Motivation

► Real-time systems:

Not only the functional correctness but also the time to answer is important

Motivation

Critical Real-time systems:

- Not only the functional correctness but also the time to answer is important
- Failures (in correctness or timing) may result in dramatic consequences

Motivation

Critical Real-time systems:

- Not only the functional correctness but also the time to answer is important
- Failures (in correctness or timing) may result in dramatic consequences

Threats to a system using non-algorithmic weaknesses

Threats to a system using non-algorithmic weaknesses

- Cache attacks
- Electromagnetic attacks
- Power attacks
- Acoustic attacks
- Timing attacks
- Temperature attacks
- etc.

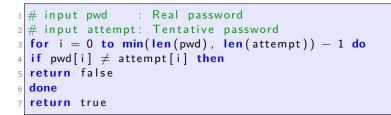
Threats to a system using non-algorithmic weaknesses

- Cache attacks
- Electromagnetic attacks
- Power attacks
- Acoustic attacks
- Timing attacks
- Temperature attacks
- etc.

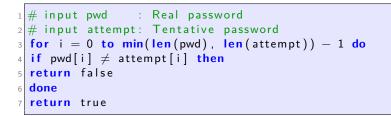
Number of pizzas (and order time) ordered by the white house prior to major war announcements ¹

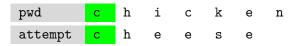
¹http://home.xnet.com/~warinner/pizzacites.html

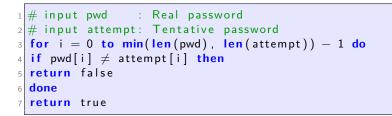
Threats to a system using non-algorithmic weaknesses

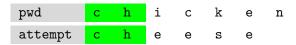

- Cache attacks
- Electromagnetic attacks
- Power attacks
- Acoustic attacks
- Timing attacks
- Temperature attacks
- etc.

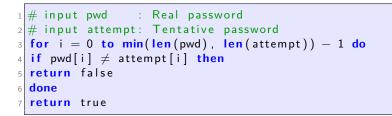
Number of pizzas (and order time) ordered by the white house prior to major war announcements ¹

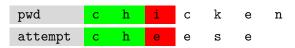

¹http://home.xnet.com/~warinner/pizzacites.html

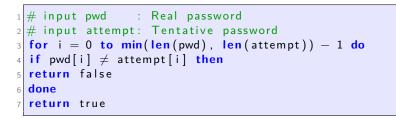

```
1 # input pwd : Real password
2 # input attempt: Tentative password
3 for i = 0 to min(len(pwd), len(attempt)) - 1 do
4 if pwd[i] ≠ attempt[i] then
5 return false
6 done
7 return true
```



pwd	С	h	i	с	k	е	n
attempt	с	h	е	е	s	е	


Execution time:

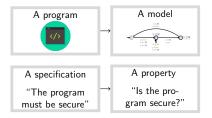


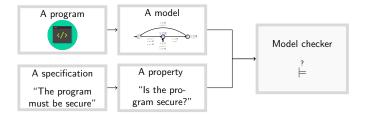

Execution time: ϵ

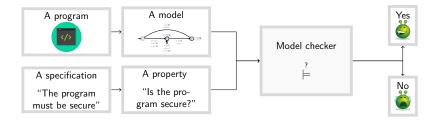


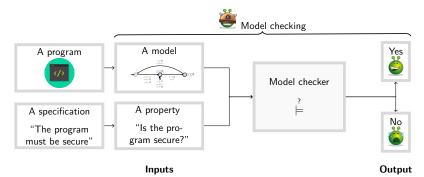
Execution time: $\epsilon + \epsilon$

Execution time: $\epsilon + \epsilon + \epsilon$

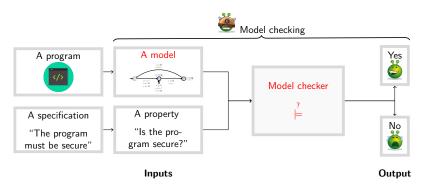


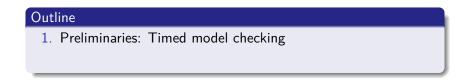

Execution time: $\epsilon + \epsilon + \epsilon$

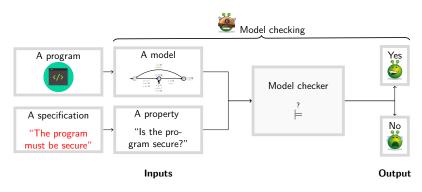

Problem: The execution time is proportional to the number of consecutive correct characters from the beginning of attempt

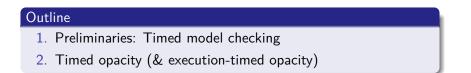


A specification "The program must be secure"







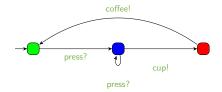

Outline

Outline

Preliminaries: (Parametric) Timed model checking

Timed opacity

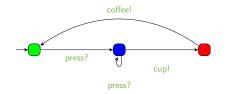
Solutions


Conclusion & Perspectives

Finite state automaton (sets of locations)

[AD94]

Finite state automaton (sets of locations and actions)


idle adding sugar delivering coffee

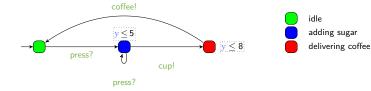
7 / 33

[AD94]

Finite state automaton (sets of locations and actions) augmented with a set X of clocks

Real-valued variables evolving linearly at the same rate

idle adding sugar delivering coffee [AD94]

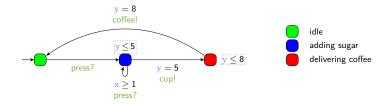

Finite state automaton (sets of locations and actions) augmented with a set X of clocks

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants

Features

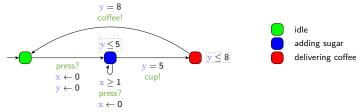
Location invariant: property to be verified to stay at a location

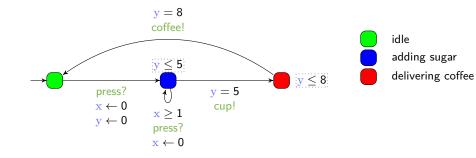

 Finite state automaton (sets of locations and actions) augmented with a set X of clocks

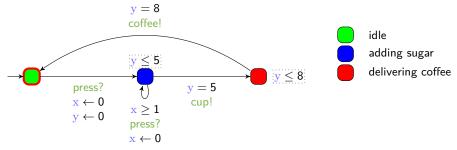
Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants and guards

Features

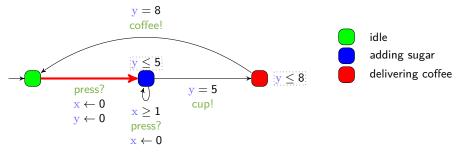

Location invariant: property to be verified to stay at a location
 Transition guard: property to be verified to enable a transition




- Finite state automaton (sets of locations and actions) augmented with a set X of clocks
 - Real-valued variables evolving linearly at the same rate
 - Can be compared to integer constants in invariants and guards

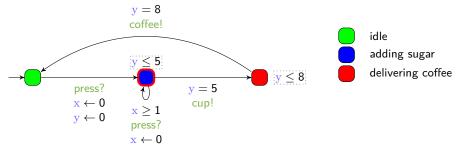
Features

- Location invariant: property to be verified to stay at a location
- Transition guard: property to be verified to enable a transition
- Clock reset: some of the clocks can be set to 0 along transitions



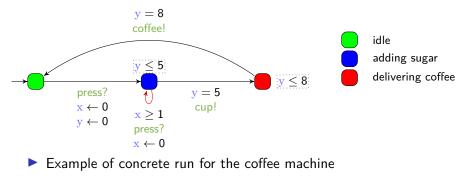
Example of concrete run for the coffee machine

Coffee with 2 doses of sugar

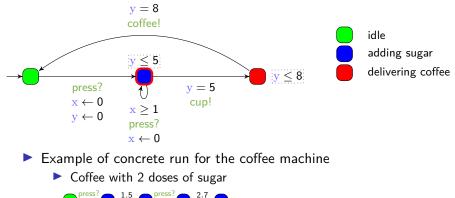

 $\begin{array}{c} x = & 0 \\ y = & 0 \end{array}$

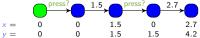
Example of concrete run for the coffee machine

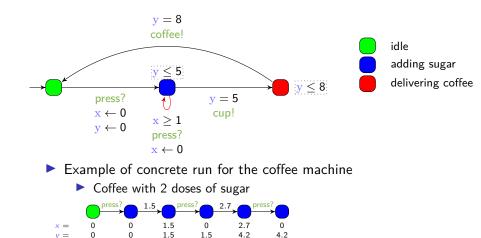
Coffee with 2 doses of sugar

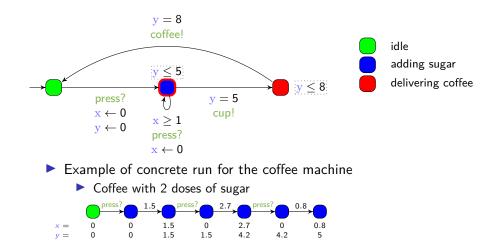


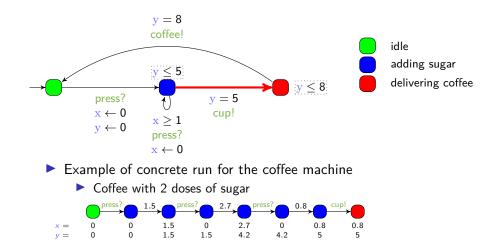

Example of concrete run for the coffee machine

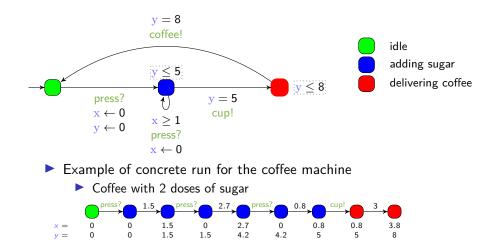

Coffee with 2 doses of sugar






Coffee with 2 doses of sugar





The most critical system: The coffee machine

The most critical system: The coffee machine

The most critical system: The coffee machine

Preliminaries: (Parametric) Timed model checking

Timed opacity

Solutions

Conclusion & Perspectives

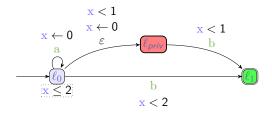
A first attacker model

Attacker capabilities

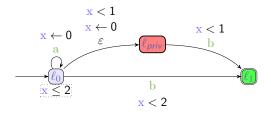
- Has access to the model (white box)
- Can observe an execution

A first attacker model

Attacker capabilities

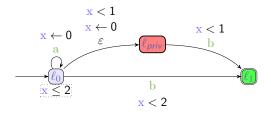

- Has access to the model (white box)
- Can observe an execution

Attacker goal


- Wants to deduce some private information based on these observations
 - \rightarrow visit of a private location

Attacker Setting

Observed trace: (a, 0.7)(b, 1.3)


Attacker Setting

Observed trace: (a, 0.7)(b, 1.3)

Question: Can they infer if ℓ_{priv} has been visited ?

Attacker Setting

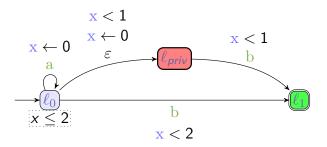
▶ Observed trace: (*a*, 0.7)(*b*, 1.3)

Question: Can they infer if ℓ_{priv} has been visited ?

No: there is

- ▶ a run visiting ℓ_{priv}
- a run not visiting ℓ_{priv} of trace (a, 0.7)(b, 1.3) too.

Opacity in Timed Automata

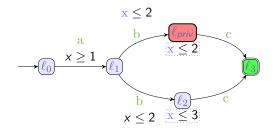

The TA is opaque iff all traces can be obtained **both**

- by runs visiting ℓ_{priv}
- and by runs not visiting it.

Opacity in Timed Automata

The TA is opaque iff all traces can be obtained **both**

- by runs visiting ℓ_{priv}
- and by runs not visiting it.



OPAQUE

Opacity in Timed Automata

The TA is opaque iff all traces can be obtained both

- by runs visiting ℓ_{priv}
- and by runs not visiting it.

NON OPAQUE

non-opaque trace: (a, 1)(b, 2)(c, 3)

Decision problem

Opacity Decision Problem

Is the given timed automaton opaque?

[Cas09] Franck Cassez. "The Dark Side of Timed Opacity". In: ISA (2009). LNCS. Springer, 2009

Opacity Decision Problem

Is the given timed automaton opaque?

Franck Cassez, The Dark Side of Timed Opacity (2009) \rightarrow Opacity is undecidable for timed automata!

So... is it the end?

[[]Cas09] Franck Cassez. "The Dark Side of Timed Opacity". In: ISA (2009). LNCS. Springer, 2009

Opacity Decision Problem

Is the given timed automaton opaque?

Franck Cassez, The Dark Side of Timed Opacity (2009) \rightarrow Opacity is undecidable for timed automata!

So... is it the end? Not yet!

[[]Cas09] Franck Cassez. "The Dark Side of Timed Opacity". In: ISA (2009). LNCS. Springer, 2009

Preliminaries: (Parametric) Timed model checking

Timed opacity

Solutions

Conclusion & Perspectives

Our Contributions

change the system:

subclasses of TA for which opacity can be decided

- restriction on the number of actions
- restriction on the number of clocks
- discrete time

• change the problem \rightarrow weaker attackers

- bounded number of observations
- limited observation

Outline

Preliminaries: (Parametric) Timed model checking

Timed opacity

Solutions Low dimension

Bounded number of observations Execution-time opacity

Conclusion & Perspectives

Changing the System

Subclass	Opacity
One-action TAs	X
One-clock TAs without silent actions	non-primitive recc.
One-clock TAs with silent actions	×
(>1)-clock TAs	×
Discrete-time TAs	$\sqrt{\text{EXPSPACE-c.}^2}$
Observable ERAs	$\sqrt{PSPACE-c.}$

Verifying opacity of discrete-timed automata, Klein and al., FormaliSE'24 and in *The opacity of timed automata*, An and al., FM 2024

[[]ÉL24] Sarah Dépernet Étienne André and Engel Lefaucheux. "The Bright Side of Timed Opacity". In: ICFEM. 2024

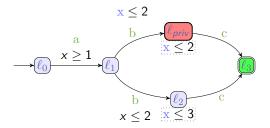
²Fun fact: decidability result also proved this year in

Outline

Preliminaries: (Parametric) Timed model checking

Timed opacity

Solutions Low dimension Bounded number of observations Execution-time opacity

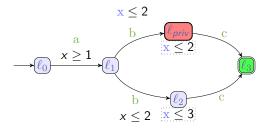

Conclusion & Perspectives

What if the attacker has a limited observation budget?

[[]ÉL24] Sarah Dépernet Étienne André and Engel Lefaucheux. "The Bright Side of Timed Opacity". In: ICFEM. 2024

What if the attacker has a limited observation budget?

The attacker can only see the first N observations of the run.

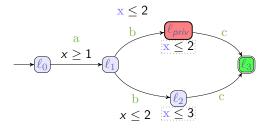


Possible traces with N = 2: $(a, \tau_1)(b, \tau_2)$ with $1 \le \tau_1 \le \tau_2 \le 2$

[[]ÉL24] Sarah Dépernet Étienne André and Engel Lefaucheux. "The Bright Side of Timed Opacity". In: ICFEM. 2024

What if the attacker has a limited observation budget?

The attacker can only see the first N observations of the run.


Possible traces with N = 2: $(a, \tau_1)(b, \tau_2)$ with $1 \le \tau_1 \le \tau_2 \le 2$

- OPAQUE with N = 2
- NON OPAQUE with N = 3: (a, 1)(b, 2)(c, 3)

[ÉL24] Sarah Dépernet Étienne André and Engel Lefaucheux. "The Bright Side of Timed Opacity". In: ICFEM. 2024

What if the attacker has a limited observation budget?

The attacker can only see the first N observations of the run.

Result

The problem of opacity with a bounded number of observations is decidable, and moreover we have a **2EXPSPACE** algorithm.

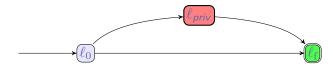
[ÉL24] Sarah Dépernet Étienne André and Engel Lefaucheux. "The Bright Side of Timed Opacity". In: ICFEM. 2024

Outline

Preliminaries: (Parametric) Timed model checking

Timed opacity

Solutions Low dimension Bounded number of observations Execution-time opacity

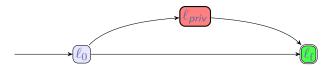

Conclusion & Perspectives

Formalization

Hypotheses:

[AS19][TOSEM22]

- \blacktriangleright A start location ℓ_0 and an end location ℓ_f
- ► A special private location ℓ_{priv}

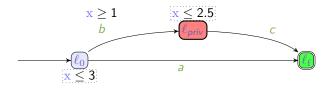

[[]TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: ACM TOSEM (2022)

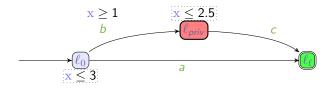
Formalization

Hypotheses:

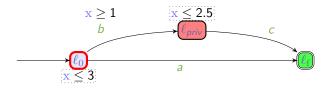
[AS19][TOSEM22]

- \blacktriangleright A start location ℓ_0 and an end location ℓ_f
- A special private location ℓ_{priv}

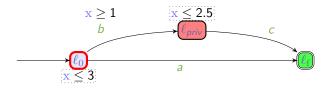



Definition (execution-time opacity)

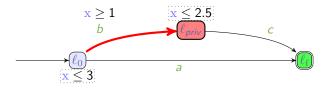
The system is ET-opaque for a duration d if there exist two runs to ℓ_f of duration d


- 1. one visiting ℓ_{priv}
- 2. one not visiting ℓ_{priv}

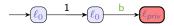
[[]TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: ACM TOSEM (2022)

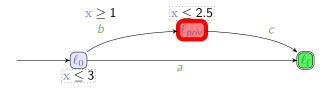

• There exist (at least) two runs of duration d = 2:

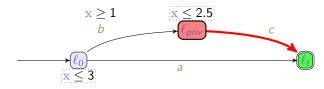
• There exist (at least) two runs of duration d = 2:

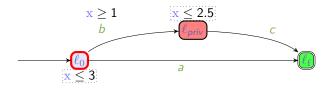

visiting ℓ_{priv}

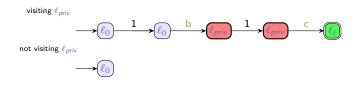
 $\rightarrow \ell_0$

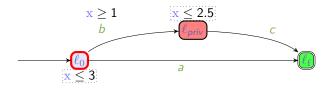


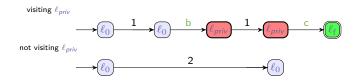

• There exist (at least) two runs of duration d = 2:

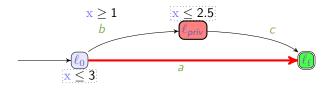

• There exist (at least) two runs of duration d = 2:

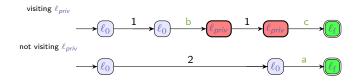

• There exist (at least) two runs of duration d = 2:

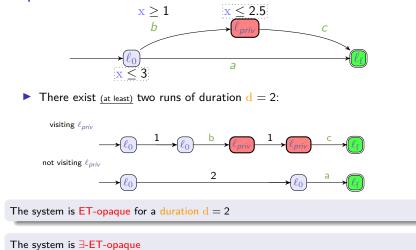


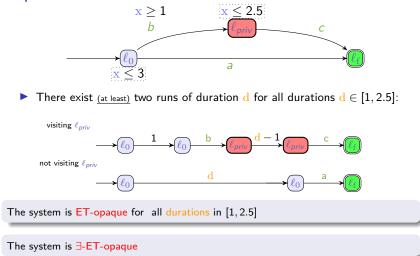

• There exist (at least) two runs of duration d = 2:

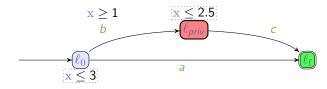



• There exist (at least) two runs of duration d = 2:

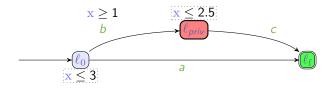



• There exist (at least) two runs of duration d = 2:

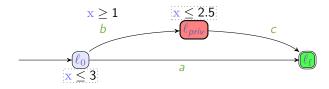




• There exist (at least) two runs of duration d = 2:

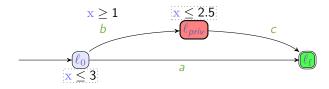


▶ There exist (at least) two runs of duration d for all durations $d \in [1, 2.5]$


The system is ∃-ET-opaque

▶ There exist (at least) two runs of duration d for all durations $d \in [1, 2.5]$

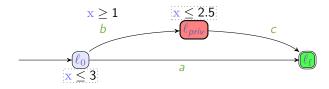
The system is ∃-ET-opaque


 private durations are [1, 2.5] public durations are [0, 3]

▶ There exist (at least) two runs of duration d for all durations $d \in [1, 2.5]$

The system is ∃-ET-opaque

- private durations are [1, 2.5]
 public durations are [0, 3]
- ▶ private durations ⊆ public durations

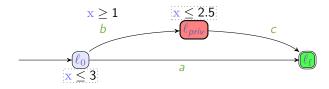


• There exist (at least) two runs of duration d for all durations $d \in [1, 2.5]$

The system is ∃-ET-opaque

- private durations are [1, 2.5]
 public durations are [0, 3]
- ▶ private durations ⊆ public durations

The system is weakly ET-opaque


▶ There exist (at least) two runs of duration d for all durations $d \in [1, 2.5]$

The system is ∃-ET-opaque

- private durations are [1, 2.5]
 public durations are [0, 3]
- ▶ private durations ⊆ public durations

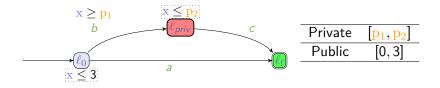
The system is weakly ET-opaque

• private durations \neq public durations

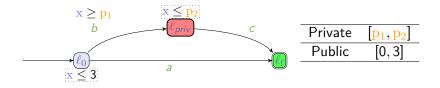
• There exist (at | east) two runs of duration d for all durations $d \in [1, 2.5]$

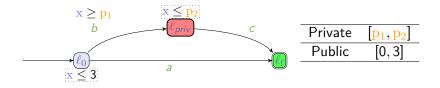

The system is ∃-ET-opaque

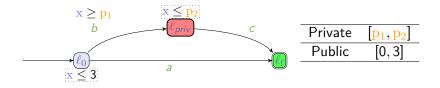
- private durations are [1, 2.5]
 public durations are [0, 3]
- ▶ private durations ⊆ public durations


The system is weakly ET-opaque

• private durations \neq public durations


The system is not fully ET-opaque


ET-opacity notion	Э	Weak	Full
p-Emptiness			
p-Synthesis			


ET-opacity notion	Э	Weak	Full
p-Emptiness	×(∃v)	×(∃v)	×(∃v)
p-Synthesis			

ET-opacity notion	Э	Weak	Full
p-Emptiness	×(∃v)	×(∃v)	×(∃v)
p-Synthesis	$0 \le p_1 \le 3$		
	$\wedge \ p_1 \leq p_2$		
	P2		
	P1		

ET-opacity notion	Ξ	Weak	Full
p-Emptiness	×(∃v)	×(∃v)	×(∃v)
p-Synthesis	$0 \le p_1 \le 3$	$0 \leq p_1 \wedge p_2 \leq 3$	
	$\land p_1 \leq p_2$	$\land p_1 \leq p_2$	
	P2	P2	
	P1	P1	

ET-opacity notion	Э	Weak	Full
p-Emptiness	×(∃v)	×(∃v)	×(∃v)
p-Synthesis	$0 \leq \mathbf{p}_1 \leq 3$	$0 \leq p_1 \wedge p_2 \leq 3$	$\mathbf{p}_1 = 0 \wedge \mathbf{p}_2 = 3$
	$\land p_1 \leq p_2$	$\land p_1 \leq p_2$	
	P2	P2	P2
			• • • • • • •
	P1	P1	

Decidability results for ET-opacity

		∃-ET-opaque	weakly ET-	fully ET-
			opaque	opaque
Decision	ТА	\checkmark	\checkmark	\checkmark
<i>p</i> -emptiness	L/U-PTA	\checkmark	×	×
p-cmptmess	PTA	×	×	×
<i>p</i> -synthesis	L/U-PTA	×	×	×
p-synthesis	PTA	×	×	×

- L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either compared to clocks as upperbound, or as lower bound) [Hun+02]
- Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs). (see formal proofs in [TOSEM22])

[[]TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: ACM TOSEM (2022)

Expiring ET-opacity

How to deal with outdated secrets?
 e. g., cache values, status of the memory, ...

Idea

The secret can expire: beyond a certain duration, knowing the secret is useless to the attacker (e.g., a cache value) [Amm+21]

Expiring ET-opacity

Assumption

Knowing an expired secret is equivalent to not knowing a secret

	Secret runs	Non-secret runs
ET-opacity	Runs visiting the private lo-	Runs not visiting the pri-
	cation	vate location
	(= private runs)	(= public runs)
expiring-ET-opacity	Private runs with ℓ_{priv} visit	(i) Public runs and
expiring-E r-opacity	$\leq \Delta$ before the system	(ii) Private runs with ℓ_{priv}
	completion	visit $> \Delta$ before the system
		completion

[[]ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. "Expiring opacity problems in parametric timed automata". In: ICECCS (2023). Springer, 2023

Decidability results for expiring-ET-opacity

		weakly expiring- ET-opaque	fully expiring- ET-opaque
Δ -emptiness Δ -synthesis	ТА		√ ?
$(p + \Delta)$ -emptiness	L/U-PTA	×	×
$(p + \Delta)$ -emptiliess	РТА	×	×
$(p+\Delta)$ -synthesis	L/U-PTA	×	×
$(p + \Delta)$ -synthesis	РТА	×	×

∃-expiring ET-opacity was left as a future work.

 L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either compared to clocks as upperbound, or as lower bound) [Hun+02]

[[]ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. "Expiring opacity problems in parametric timed automata". In: ICECCS (2023). Springer, 2023

Decidability results for expiring-ET-opacity

		weakly expiring- ET-opaque	fully expiring- ET-opaque
Δ -emptiness Δ -synthesis	ТА		√ ?
$(p + \Delta)$ -emptiness	L/U-PTA	×	×
$(p + \Delta)$ -emptiliess	ΡΤΑ	×	×
$(p+\Delta)$ -synthesis	L/U-PTA	×	×
$(p + \Delta)$ -synthesis	РТА	×	×

∃-expiring ET-opacity was left as a future work.

- L/U-PTA (Lower/Upper-PTA): subclass of PTA where the parameters are partitioned into two sets (either compared to clocks as upperbound, or as lower bound) [Hun+02]
- Proofs are based on the region automaton (for TAs) and by reduction from EF-emptiness (for PTAs). (see formal proofs in [ICECCS23])

[[]ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. "Expiring opacity problems in parametric timed automata". In: ICECCS (2023). Springer, 2023

Outline

Preliminaries: (Parametric) Timed model checking

Timed opacity

Solutions

Conclusion & Perspectives

Conclusion

Context: vulnerability by timing-attacks

- Goal: avoid leaking information on whether some discrete state has been visited
- Variations of the notion of timed opacity
 - Model: weaker models considered
 - Attacker: limited number of observations & observability of the global execution time

Several problems studied for timed automata

- Ø Mostly undecidable with observations
- Mostly decidable for weaker attackers

Conclusion

Extension of ET-opacity to parametric timed automata

- Quickly undecidable
- © One procedure for one synthesis problem

Other contributions

- Untimed and timed control
- ▶ ∃ and weak timed opacity with observations

Perspectives

Theoretical perspectives

- Existential version of expiring ET-opacity
- Δ-synthesis for full expiring ET-opacity

Algorithmic perspectives

- Synthesis for weak and full ET-opacity
- Synthesis for expiring problems

Automatic translation of programs to PTAs

► Our translation required non-trivial creativity → Translation with Petri nets including cache system

Perspectives

Theoretical perspectives

- Existential version of expiring ET-opacity
- Δ-synthesis for full expiring ET-opacity

Algorithmic perspectives

- Synthesis for weak and full ET-opacity
- Synthesis for expiring problems

Automatic translation of programs to PTAs

► Our translation required non-trivial creativity → Translation with Petri nets including cache system see you in SAC'25!

References I

[AD94]	Rajeev Alur and David L. Dill. "A theory of timed automata". In: <u>TCS</u> 126 (Apr. 1994).
[Amm+21]	Ikhlass Ammar, Yamen El Touati, Moez Yeddes, and John Mullins. "Bounded opacity for timed systems". In: Journal of Information Security and Applications 61 (Sept. 2021).
[AS19]	Étienne André and Jun Sun. "Parametric Timed Model Checking for Guaranteeing Timed Opacity". In: <u>ATVA</u> (2019). LNCS. Springer, 2019.
[Cas09]	Franck Cassez. "The Dark Side of Timed Opacity". In: <u>ISA</u> (2009). LNCS. Springer, 2009.
[ÉL24]	Sarah Dépernet Étienne André and Engel Lefaucheux. "The Bright Side of Timed Opacity". In: <u>ICFEM</u> . 2024.

References II

[Hun+02]

Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager. "Linear parametric model checking of timed automata". In: Journal of Logic and Algebraic Programming 52-53 (2002).

[ICECCS23] Étienne André, Engel Lefaucheux, and Dylan Marinho. "Expiring opacity problems in parametric timed automata". In: <u>ICECCS</u> (2023). Springer, 2023.

[TOSEM22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun. "Guaranteeing Timed Opacity using Parametric Timed Model Checking". In: ACM TOSEM 31 (2022).

Licensing

Source of the graphics used I

Title: Smiley green alien big eyes (aaah) Author: LadyofHats Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg License: public domain

Title: Smiley green alien big eyes (cry) Author: LadyofHats Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg License: public domain

Title: Smiley green alien exterminate Author: LadyofHats Source: https://commons.wikimedia.org/wiki/File:Smiley_green_alien_exterminate.svg License: public domain

Title: Piratey, vector version Author: Gustavb Source: https://commons.wikimedia.org/wiki/File:Piratey,_vector_version.svg License: CC by-sa

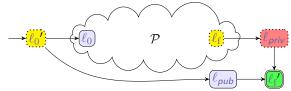
Title: Expired Author: RRZEicons Source: https://commons.wikimedia.org/wiki/File:Expired.svg License: CC by-sa

License of this document

This presentation can be published, reused and modified under the terms of the license Creative Commons **Attribution-ShareAlike 4.0 Unported (CC BY-SA 4.0)**

(MTEX source available on demand)

Authors: Étienne André, Sarah Dépernet, and Dylan Marinho


creativecommons.org/licenses/by-sa/4.0/

ET-opacity synthesis is (very) difficult

Theorem (Undecidability of \exists -ET-opacity *p*-emptiness)

Given \mathcal{P} , the mere existence of a parameter valuation v s.t. $v(\mathcal{P})$ \exists -ET-opacity is undecidable.

Proof idea: reduction from reachability-emptiness for PTAs

Remark: L/U-PTA is a decidable subclass