
16 May 2025 | MeFoSyLoMa Seminar | Paris, France

Verifying Timed Properties of Programs in IoT nodes
using Parametric Time Petri Nets

Paper presented at SAC-SVT 2025

Étienne André, Jean-Luc Béchennec, Sudipta Chattopadhyay, Sébastien Faucou, Didier Lime,
Dylan Marinho, Olivier H. Roux, Jun Sun

Sorbonne Université, CNRS UMR 7606, LIP6

Context: Verifying complex timed systems

‣ Critical systems: Failures may result in dramatic consequences

‣ Need for early bug detection
‣ Bugs discovered when final testing: expensive
‣ Need for a thorough specification and verification phase

Therac-25
(USA, 1980s)

MIM-104 Pat. Mis. Fail.
(Iraq, 1991)

Sleipner A offshore platform
(Norway, 1991)

Ariane flight V88
(France, 1996)

1 / 19

Context: Verifying complex timed systems

‣ Critical systems: Failures may result in dramatic consequences

‣ Need for early bug detection
‣ Bugs discovered when final testing: expensive
‣ Need for a thorough specification and verification phase

Therac-25
(USA, 1980s)

MIM-104 Pat. Mis. Fail.
(Iraq, 1991)

Sleipner A offshore platform
(Norway, 1991)

Ariane flight V88
(France, 1996)

‣ Verification is needed to ensure the absence of bugs

1 / 19

Context: Timing attacks over programs

1 // input pwd : Real password C
2 // input attempt: Tentative password
3 for (i = 0; i < min(len(pwd), len(attempt)); i++) {
4 if(pwd[i] != attempt[i]){
5 return false
6 }
7 }
8 return true

pwd M e F o S y L o M a

attempt M e S y M a F o

🕓 Execution time (ET):

2 / 19

Context: Timing attacks over programs

1 // input pwd : Real password C
2 // input attempt: Tentative password
3 for (i = 0; i < min(len(pwd), len(attempt)); i++) {
4 if(pwd[i] != attempt[i]){
5 return false
6 }
7 }
8 return true

pwd M e F o S y L o M a

attempt M e S y M a F o

🕓 Execution time (ET): 𝜀

2 / 19

Context: Timing attacks over programs

1 // input pwd : Real password C
2 // input attempt: Tentative password
3 for (i = 0; i < min(len(pwd), len(attempt)); i++) {
4 if(pwd[i] != attempt[i]){
5 return false
6 }
7 }
8 return true

pwd M e F o S y L o M a

attempt M e S y M a F o

🕓 Execution time (ET): 𝜀 𝜀

2 / 19

Context: Timing attacks over programs

1 // input pwd : Real password C
2 // input attempt: Tentative password
3 for (i = 0; i < min(len(pwd), len(attempt)); i++) {
4 if(pwd[i] != attempt[i]){
5 return false
6 }
7 }
8 return true

pwd M e F o S y L o M a

attempt M e S y M a F o

🕓 Execution time (ET): 𝜀 𝜀 𝜀

2 / 19

Context: Timing attacks over programs

1 // input pwd : Real password C
2 // input attempt: Tentative password
3 for (i = 0; i < min(len(pwd), len(attempt)); i++) {
4 if(pwd[i] != attempt[i]){
5 return false
6 }
7 }
8 return true

pwd M e F o S y L o M a

attempt M e S y M a F o

🕓 Execution time (ET): 𝜀 𝜀 𝜀 = 3𝜀 ⇒ 2 correct characters

Problem: The ET is proportional to the number of consecutive correct characters
from the beginning of attempt

2 / 19

Problems

Timing analysis of programs is hard: it depends not just on code, but also on low-level
details of execution

🔍Impact of hardware

‣ ET is heavily influenced by the micro-
architecture
‣ Especially: pipelines, caches, memory

hierarchy

🔙Limitations of existing techniques

‣ Most abstract time away or focus on
coarse properties
‣ e.g., schedulability analysis, worst-case

execution time (WCET)
‣ Insufficient for fine-grained timing

behaviors
‣ e.g., detecting or mitigating timed side-

channels

3 / 19

Our contributions in a nutshell

⚙ A modular and automated approach to build formal models to analyze timing
behaviors
‣ binary code with the hardware

4 / 19

Our contributions in a nutshell

⚙ A modular and automated approach to build formal models to analyze timing
behaviors
‣ binary code with the hardware

💻 An implementation
‣ targeting a realistic micro-architecture of a simple micro-controller
‣ producing time Petri nets models

4 / 19

Our contributions in a nutshell

⚙ A modular and automated approach to build formal models to analyze timing
behaviors
‣ binary code with the hardware

💻 An implementation
‣ targeting a realistic micro-architecture of a simple micro-controller
‣ producing time Petri nets models

⚔ An application to timing attacks in C programs using the Roméo model checker

4 / 19

Methodology

Overall methodology

Inputs

Binary code

6 / 19

Overall methodology

Inputs

Binary code
➔

Workflow

Translate binary code
→ PTPN

Add static hardware
model (PTPN)

 Perform parametric
timed model
checking

6 / 19

Overall methodology

Inputs

Binary code
➔

Workflow

Translate binary code
→ PTPN

Add static hardware
model (PTPN)

 Perform parametric
timed model
checking

➔

Outputs

 Set of timing valuations
satisfying a property

6 / 19

Overall methodology

Inputs

Binary code
➔

Workflow

Translate binary code
→ PTPN

Add static hardware
model (PTPN)

 Perform parametric
timed model
checking

➔

Outputs

 Set of timing valuations
satisfying a property

‣ e.g., possible execution times
‣ application: password leak detection

6 / 19

Parametric time Petri nets with variables

Extension of Petri nets with ‣
‣
‣

[TLR09]

𝑝1

𝑡1

𝑝2

𝑝3

𝑡2

𝑝4

[TLR09] Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux, “Parametric Model-Checking of Stopwatch Petri Nets,” Journal of
Universal Computer Science, 2009.

7 / 19

Parametric time Petri nets with variables

Extension of Petri nets with ‣ firing times
‣ timing parameters
‣

[TLR09]

𝑝1

𝑡1
[2, 𝜆]

𝑝2

𝑝3

𝑡2
[5, 7]

𝑝4

[TLR09] Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux, “Parametric Model-Checking of Stopwatch Petri Nets,” Journal of
Universal Computer Science, 2009.

7 / 19

Parametric time Petri nets with variables

Extension of Petri nets with ‣ firing times
‣ timing parameters
‣ integer-valued variables (with guards and updates)

[TLR09]

𝑝1

𝑡1
[2, 𝜆]
𝑣 ≥ 3

𝑝2

𝑝3

𝑡2
[5, 7]
𝑣 ← 𝑣 − 2

𝑝4

[TLR09] Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux, “Parametric Model-Checking of Stopwatch Petri Nets,” Journal of
Universal Computer Science, 2009.

7 / 19

Considered hardware

🔧Our hardware

‣ Model of the processor architecture
‣ relatively simple micro-architecture similar to

ARM Cortex M0+ core, with a 2-stage pipeline
(Fetch and Execute)

‣ Model of the instruction set
architecture (ISA)
‣ ARMv6-M ISA

📝Features

‣ Execution pipeline of the processor
‣ Unique memory space

‣ (instructions and data)

‣ Bus between the processor and
memory

‣ Direct-mapped instruction cache
‣ with 16 lines of 32 bytes

‣ no actual instructions, but only information
about their presence

‣ No data cache

‣ Among the limitations: no switch/case, function pointers. . .

8 / 19

PTPN hardware model

‣ doFetch, isHit and accessCount: variables used to synchronize with the software

𝑝1

Fetch

[0, 0]
doFetch == 0
doFetch ← 1 𝑝2

ICacheHit

[1, 1]
doFetch == 1
∧ isHit == 1 𝑝5

Exe

[0, 0]
accessCount == 0

doFetch ← 0
𝑝7

IWaitBus
[0, 0]

doFetch == 0
∧ isHit == 0

𝑝3
ICacheMiss

[10, 10]
𝑝6 EndExe

[1, 1]
𝑝4

EndMem[0, 0]
ac == 0

DWaitBus
[0, 0]

accessCount > 0
ac ← accessCount

𝑝8

Mem
[4, 4]

ac > 0
ac − −

Memory access

9 / 19

PTPN software model

‣ Captures the binary code of the
program (ARMv6-M)
‣ Firing a transition corresponds to

executing the instruction
‣ Pipeline fetch: doFetch
‣ Memory access: accessCount and isHit

‣ Structurally identical to the control
flow graph

INST80B0

INST80B2

INST80B4

INST80B6 INST809E

 [0, 0]
doFetch == 1

doFetch ← 0
isHit ← inst80b0(proc, mem)
accessCount ← 1

 [0, 0]
doFetch == 1

doFetch ← 0
isHit ←
inst80b2(proc, mem)
accessCount ← 0

[0, 0]

!((proc.regs.sr Zmask) ≠
Zmask)

∧ doFetch == 1

doFetch ← 0
isHit ←
inst80b4(proc, mem)
accessCount ← 0

[0, 0]

!((proc.regs.sr Zmask) ≠
Zmask)

∧ doFetch == 1

doFetch ← 0
isHit ←
inst80b4(proc, mem)
accessCount ← 0

10 / 19

Parametric timed model checking

System

Specification
“The system must be

safe”

11 / 19

Parametric timed model checking

System

Specification
“The system must be

safe”

Formal model

Property
𝐴𝐺 ¬

11 / 19

Parametric timed model checking

System

Specification
“The system must be

safe”

Formal model

Property
𝐴𝐺 ¬

Model checking

⊧
?

11 / 19

Parametric timed model checking

System

Specification
“The system must be

safe”

Formal model

Property
𝐴𝐺 ¬

Model checking

⊧
?

Yes

No

Question: does the model of the system satisfy the property?

11 / 19

A fully automated translation

🧰‣ Including the hardware and software models

‣ Written in and

‣ All the way from the source code to the PTPN model

‣ Entirely open source (github.com/DylanMarinho/codeToPN/)

✨Target model checker: Roméo [Lim+09]

‣ Parametric timed model checker supporting
(extensions) of PTPNs

‣ Including C-like code to be executed during transitions

[Lim+09] Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie Traonouez, “Romeo: A Parametric Model-Checker for
Petri Nets with Stopwatches,” in TACAS 2009, 2009.

12 / 19

https://github.com/DylanMarinho/codeToPN/

Application to security
properties

Application to security properties

⚔Timing attacks

‣ Attacker can infer information about
the secret key by measuring the
execution time of the program
‣ e.g., password checking program

🕓Execution-time opacity [And+23]

“Can the attacker deduce internal behavior
by only observing the execution time?”

[And+23] Étienne André, Engel Lefaucheux, Didier Lime, Dylan Marinho, and Jun Sun, “Configuring Timing Parameters to Ensure
Execution-Time Opacity in Timed Automata,” in TiCSA@ETAPS 2023, 2023.

14 / 19

Application to security properties

⚔Timing attacks

‣ Attacker can infer information about
the secret key by measuring the
execution time of the program
‣ e.g., password checking program

🕓Execution-time opacity [And+23]

“Can the attacker deduce internal behavior
by only observing the execution time?”

‣ Use of timing parameters: to measure execution times

[And+23] Étienne André, Engel Lefaucheux, Didier Lime, Dylan Marinho, and Jun Sun, “Configuring Timing Parameters to Ensure
Execution-Time Opacity in Timed Automata,” in TiCSA@ETAPS 2023, 2023.

14 / 19

Which of the following two programs is not secure?

1 int main() { C
2 int i;
3 int length = 10; // length of the strings
4
5 char ca[11] = "patehenaff";
6 char cb[11] = "pasta";
7

8 int result = 1; // true

9
10 for (i = 0; i < length; i++){

11 result &= (ca[i] == cb[i]);

12 }

13 return result;

14 }

1 int main() { C
2 int i;
3 int length = 10; // length of the strings
4
5 char ca[11] = "patehenaff";
6 char cb[11] = "pasta";
7
8 for (i = 0; i < length; i++){

9 if (ca[i] != cb[i]) {

10 return 0; // false

11 }
12 }

13 return 1; // true

14 }

15 / 19

Which of the following two programs is not secure?

1 int main() { C
2 int i;
3 int length = 10; // length of the strings
4
5 char ca[11] = "patehenaff";
6 char cb[11] = "pasta";
7

8 int result = 1; // true

9
10 for (i = 0; i < length; i++){

11 result &= (ca[i] == cb[i]);

12 }

13 return result;

14 }

Secure

1 int main() { C
2 int i;
3 int length = 10; // length of the strings
4
5 char ca[11] = "patehenaff";
6 char cb[11] = "pasta";
7
8 for (i = 0; i < length; i++){

9 if (ca[i] != cb[i]) {

10 return 0; // false

11 }
12 }

13 return 1; // true

14 }

Unsecure

15 / 19

Which of the following two programs is not secure?

1 int main() { C
2 int i;
3 int length = 10; // length of the strings
4
5 char ca[11] = "patehenaff";
6 char cb[11] = "pasta";
7

8 int result = 1; // true

9
10 for (i = 0; i < length; i++){

11 result &= (ca[i] == cb[i]);

12 }

13 return result;

14 }

Secure - Constant ET: 876

1 int main() { C
2 int i;
3 int length = 10; // length of the strings
4
5 char ca[11] = "patehenaff";
6 char cb[11] = "pasta";
7
8 for (i = 0; i < length; i++){

9 if (ca[i] != cb[i]) {

10 return 0; // false

11 }
12 }

13 return 1; // true

14 }

Unsecure - ET sensitive
‣ 758 for the secret password
‣ {362, 404, 446, 488, 530, 572, 614, 656, 698, 740} for any

other password

15 / 19

Is this third program secure?

1 int main () { C
2 int i ;
3 int length = 10; // length of the strings
4 char ca[11] = " patehenaff " ;
5 char cb[11] = " pasta " ;
6
7 int result = 1; // true
8 for (i=0; i<length ; i++) {
9 if (ca[i] == cb[i]) {

10 result &= 1;

11 } else {

12 result &= 0;

13 }
14 }
15 return result ;
16 }

16 / 19

Is this third program secure?

1 int main () { C
2 int i ;
3 int length = 10; // length of the strings
4 char ca[11] = " patehenaff " ;
5 char cb[11] = " pasta " ;
6
7 int result = 1; // true
8 for (i=0; i<length ; i++) {
9 if (ca[i] == cb[i]) {

10 result &= 1;

11 } else {

12 result &= 0;

13 }
14 }
15 return result ;
16 }

‣ It seems so: very close to the former secure
program

‣ But it is not due to the instruction cache
‣ 876 for the secret password
‣ {816, 822, 828, 834, 840, 846, 852, 858, 864, 870} for

any other password

16 / 19

Is this third program secure?

1 int main () { C
2 int i ;
3 int length = 10; // length of the strings
4 char ca[11] = " patehenaff " ;
5 char cb[11] = " pasta " ;
6
7 int result = 1; // true
8 for (i=0; i<length ; i++) {
9 if (ca[i] == cb[i]) {

10 result &= 1;

11 } else {

12 result &= 0;

13 }
14 }
15 return result ;
16 }

‣ It seems so: very close to the former secure
program

‣ But it is not due to the instruction cache
‣ 876 for the secret password
‣ {816, 822, 828, 834, 840, 846, 852, 858, 864, 870} for

any other password

🏰We can reconfigure the program, by
making it opaque
‣ adding 6 nop instructions at the end of one branch
‣ (see paper)

16 / 19

Conclusion and perspectives

Conclusion

⚙End-to-end approach on binary code timing analysis, subject to micro-architectural
constraints

‣ automated production of timed formal models of both the program and the
hardware architecture

‣ using (parametric) time Petri nets

🧪Illustrative case-study: detection of timing leaks in programs

‣ via parameter synthesis techniques using Roméo

‣ (manual) reconfiguration of the program to make it opaque

18 / 19

Perspectives

🗓‣ Modeling and analysis of programs on multicore architectures
‣ Automatic modification of a program to make it opaque

⚔‣ Handling more complex attacks
‣ Fault-injection
‣ Cache side-channels

‣ flush and reload, prime and probe

‣ Energy-based attacks

♾‣ Formal proof of our translation?

19 / 19

Bibliography

Bibliography

[TLR09] Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux, “Parametric Model-Checking of Stopwatch Petri Nets,”
Journal of Universal Computer Science, 2009.

[Lim+09] Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie Traonouez, “Romeo: A Parametric Model-
Checker for Petri Nets with Stopwatches,” in TACAS 2009, 2009.

[And+23] Étienne André, Engel Lefaucheux, Didier Lime, Dylan Marinho, and Jun Sun, “Configuring Timing Parameters to
Ensure Execution-Time Opacity in Timed Automata,” in TiCSA@ETAPS 2023, 2023.

21 / 19

Additional information

Explanation of the pictures

‣ Therac-25 bug
‣ Computer bug, race condition
‣ Consequences: multiple fatalities

‣ Allusion to the MIM-104 Patriot Missile Failure (Iraq, 1991)
‣ 28 fatalities, hundreds of injured
‣ Computer bug: software error (clock drift)
‣ (Picture of an actual MIM-104 Patriot Missile, though not the one of 1991)

‣ Allusion to the sinking of the Sleipner A offshore platform (Norway, 1991)
‣ No fatalities
‣ Computer bug: inaccurate finite element analysis modeling
‣ (Picture actually from the Deepwater Horizon Offshore Drilling Platform)

23 / 19

Explanation of the pictures

‣ Ariane flight V88 (France, 1996)
‣ Computer bug (notably integer overflow)
‣ Consequences: US$370 million

24 / 19

Licensing

License of this document

This presentation can be published, reused and modified under the terms of the license
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC
BY-NC-SA 4.0)

Authors: Étienne André, Dylan Marinho

creativecommons.org/licenses/by-nc-sa/4.0/

26 / 19

https://creativecommons.org/licenses/by-nc-sa/4.0/

	Impact of hardware
	Limitations of existing techniques
	Methodology
	Overall methodology
	Modeling hardware
	Our hardware
	Features
	Modeling programs
	Software
	Parametric timed model checking
	A fully automated translation
	Target model checker: Roméo

	Application to security properties
	Timing attacks
	Execution-time opacity
	Timing attacks
	Execution-time opacity
	Program 1
	Program 2
	Program 1
	Program 2
	Program 1
	Program 2
	Program 3
	Program 3
	Program 3

	Conclusion and perspectives
	Bibliography
	Additional information
	Licensing

