
27 January 2026 | APR Seminar | Paris, France

Detecting Timing Leaks of Programs
using Parametric Timed Model Checking

Dylan Marinho

Sorbonne Université, CNRS UMR 7606, LIP6

Context: Verifying complex timed systems

‣ Critical systems: Failures may result in dramatic consequences

‣ Need for early bug detection
‣ Bugs discovered when final testing: expensive

‣ Need for a thorough specification and verification phase

Therac-25

(USA, 1980s)

MIM-104 Pat. Mis. Fail.

(Iraq, 1991)

Sleipner A offshore platform

(Norway, 1991)

Ariane flight V88

(France, 1996)

1 / 36

Context: Verifying complex timed systems

‣ Critical systems: Failures may result in dramatic consequences

‣ Need for early bug detection
‣ Bugs discovered when final testing: expensive

‣ Need for a thorough specification and verification phase

Therac-25

(USA, 1980s)

MIM-104 Pat. Mis. Fail.

(Iraq, 1991)

Sleipner A offshore platform

(Norway, 1991)

Ariane flight V88

(France, 1996)

‣ Verification is needed to ensure the absence of bugs

1 / 36

Context: Side-channel attacks

Side-channel attacks

⚙️
Threats to a system using non-algorithmic weaknesses
‣ e.g., power consumption, electromagnetic radiation, cache usage, timing, accoustic emissions,

temperature variations, etc.

1home.xnet.com/~warinner/pizzacites.html (1990s)
2 / 36

http://home.xnet.com/~warinner/pizzacites.html

Context: Side-channel attacks

Side-channel attacks

⚙️
Threats to a system using non-algorithmic weaknesses
‣ e.g., power consumption, electromagnetic radiation, cache usage, timing, accoustic emissions,

temperature variations, etc.

Example

🍕
Number of pizzas (and order time) ordered by the white house prior to major war
announcements1

1home.xnet.com/~warinner/pizzacites.html (1990s)
2 / 36

http://home.xnet.com/~warinner/pizzacites.html

Context: Side-channel attacks

Side-channel attacks

⚙️
Threats to a system using non-algorithmic weaknesses
‣ e.g., power consumption, electromagnetic radiation, cache usage, timing, accoustic emissions,

temperature variations, etc.

Example

🍕
Number of pizzas (and order time) ordered by the white house prior to major war
announcements1

1home.xnet.com/~warinner/pizzacites.html (1990s)
2 / 36

http://home.xnet.com/~warinner/pizzacites.html

Context: Side-channel attacks

Side-channel attacks

⚙️
Threats to a system using non-algorithmic weaknesses
‣ e.g., power consumption, electromagnetic radiation, cache usage, timing, accoustic emissions,

temperature variations, etc.

Example

🍕
Number of pizzas (and order time) ordered by the white house prior to major war
announcements1

1home.xnet.com/~warinner/pizzacites.html (1990s)
2 / 36

http://home.xnet.com/~warinner/pizzacites.html

Context: Side-channel attacks

Side-channel attacks

⚙️
Threats to a system using non-algorithmic weaknesses
‣ e.g., power consumption, electromagnetic radiation, cache usage, timing, accoustic emissions,

temperature variations, etc.

Example

🍕
Number of pizzas (and order time) ordered by the white house prior to major war
announcements1

1home.xnet.com/~warinner/pizzacites.html (1990s)
2 / 36

http://home.xnet.com/~warinner/pizzacites.html

Your turn: where was this picture taken?

3 / 36

Context: Timing attacks over programs

1 // input pwd : Real password C

2 // input attempt: Tentative password

3 for (i = 0; i < min(len(pwd), len(attempt)); i++) {

4 if(pwd[i] != attempt[i]){

5 return false

6 }

7 }

8 return true

pwd A L M A S T Y

attempt A L S O C

🕓️ Execution time (ET):

4 / 36

Context: Timing attacks over programs

1 // input pwd : Real password C

2 // input attempt: Tentative password

3 for (i = 0; i < min(len(pwd), len(attempt)); i++) {

4 if(pwd[i] != attempt[i]){

5 return false

6 }

7 }

8 return true

pwd A L M A S T Y

attempt A L S O C

🕓️ Execution time (ET): 𝜀

4 / 36

Context: Timing attacks over programs

1 // input pwd : Real password C

2 // input attempt: Tentative password

3 for (i = 0; i < min(len(pwd), len(attempt)); i++) {

4 if(pwd[i] != attempt[i]){

5 return false

6 }

7 }

8 return true

pwd A L M A S T Y

attempt A L S O C

🕓️ Execution time (ET): 𝜀 𝜀

4 / 36

Context: Timing attacks over programs

1 // input pwd : Real password C

2 // input attempt: Tentative password

3 for (i = 0; i < min(len(pwd), len(attempt)); i++) {

4 if(pwd[i] != attempt[i]){

5 return false

6 }

7 }

8 return true

pwd A L M A S T Y

attempt A L S O C

🕓️ Execution time (ET): 𝜀 𝜀 𝜀

4 / 36

Context: Timing attacks over programs

1 // input pwd : Real password C

2 // input attempt: Tentative password

3 for (i = 0; i < min(len(pwd), len(attempt)); i++) {

4 if(pwd[i] != attempt[i]){

5 return false

6 }

7 }

8 return true

pwd A L M A S T Y

attempt A L S O C

🕓️ Execution time (ET): 𝜀 𝜀 𝜀 = 3𝜀 ⇒ 2 correct characters

Problem: The ET is proportional to the number of consecutive correct characters
from the beginning of attempt

4 / 36

Context: The use of formal methods

Need to detect timing-leak vulnerabilities

‣ We want formal guarantees → formal methods

‣ Various methods:
‣ Abstract interpretation
‣ Static analysis
‣ Model checking
‣ Theorem proving

5 / 36

Context: The use of formal methods

Need to detect timing-leak vulnerabilities

‣ We want formal guarantees → formal methods

‣ Various methods:
‣ Abstract interpretation
‣ Static analysis
‣ Model checking

‣ Theorem proving

5 / 36

Context: Model checking overview

System

Specification
“The system must be

safe”

6 / 36

Context: Model checking overview

System

Specification
“The system must be

safe”

Formal model

Property

𝐴𝐺 ¬

6 / 36

Context: Model checking overview

System

Specification
“The system must be

safe”

Formal model

Property

𝐴𝐺 ¬

Model checking

⊧
?

6 / 36

Context: Model checking overview

System

Specification
“The system must be

safe”

Formal model

Property

𝐴𝐺 ¬

Model checking

⊧
?

Yes

No

Question: does the model of the system satisfy the property?

6 / 36

Timed automaton (TA)

‣ Finite-state automaton (sets of locations,)

I S P

[AD94] Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, 1994.

7 / 36

Timed automaton (TA)

‣ Finite-state automaton (sets of locations, transitions,)

I S P

[AD94] Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, 1994.

7 / 36

Timed automaton (TA)

‣ Finite-state automaton (sets of locations, transitions, and actions)

presspress

presspress

cupcup

coffeecoffee

I S P

[AD94] Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, 1994.

7 / 36

Timed automaton (TA)

‣ Finite-state automaton (sets of locations, transitions, and actions) augmented with a set 𝑋 of clocks [AD94]

‣ Real-valued variables evolving linearly at the same rate

‣ Features:

presspress

presspress

cupcup

coffeecoffee

I S

𝑦 ≤ 5

P 𝑦 ≤ 8

[AD94] Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, 1994.

7 / 36

Timed automaton (TA)

‣ Finite-state automaton (sets of locations, transitions, and actions) augmented with a set 𝑋 of clocks [AD94]

‣ Real-valued variables evolving linearly at the same rate

‣ Features:
‣ Location invariant: property to be verified to stay at a location

presspress

presspress

cupcup

coffeecoffee

I S

𝑦 ≤ 5

P 𝑦 ≤ 8

[AD94] Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, 1994.

7 / 36

Timed automaton (TA)

‣ Finite-state automaton (sets of locations, transitions, and actions) augmented with a set 𝑋 of clocks [AD94]

‣ Real-valued variables evolving linearly at the same rate

‣ Features:
‣ Location invariant: property to be verified to stay at a location
‣ Transition guard: property to be verified to enable a transition

presspress

𝑥 ≥ 1

press

𝑥 ≥ 1

press

𝑦 = 5

cup

𝑦 = 5

cup

𝑦 = 8

coffee

𝑦 = 8

coffee

I S

𝑦 ≤ 5

P 𝑦 ≤ 8

[AD94] Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, 1994.

7 / 36

Timed automaton (TA)

‣ Finite-state automaton (sets of locations, transitions, and actions) augmented with a set 𝑋 of clocks [AD94]

‣ Real-valued variables evolving linearly at the same rate

‣ Features:
‣ Location invariant: property to be verified to stay at a location
‣ Transition guard: property to be verified to enable a transition
‣ Clock reset: some of the clocks can be set to 0 along transitions

press
𝑥 ← 0

𝑦 ← 0

press
𝑥 ← 0

𝑦 ← 0 𝑥 ≥ 1

press

𝑥 ← 0

𝑥 ≥ 1

press

𝑥 ← 0

𝑦 = 5

cup

𝑦 = 5

cup

𝑦 = 8

coffee

𝑦 = 8

coffee

I S

𝑦 ≤ 5

P 𝑦 ≤ 8

[AD94] Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, 1994.

7 / 36

The most critical system: The coffee machine

press

𝑥 ← 0

𝑦 ← 0

press

𝑥 ← 0

𝑦 ← 0
𝑥 ≥ 1
press

𝑥 ← 0

𝑥 ≥ 1
press

𝑥 ← 0

𝑦 = 5

cup

𝑦 = 5

cup

𝑦 = 8

coffee

𝑦 = 8

coffee

I S

𝑦 ≤ 5

P 𝑦 ≤ 8

‣ Coffee with two doses of sugar

8 / 36

The most critical system: The coffee machine

press

𝑥 ← 0

𝑦 ← 0

press

𝑥 ← 0

𝑦 ← 0
𝑥 ≥ 1
press

𝑥 ← 0

𝑥 ≥ 1
press

𝑥 ← 0

𝑦 = 5

cup

𝑦 = 5

cup

𝑦 = 8

coffee

𝑦 = 8

coffee

I S

𝑦 ≤ 5

P 𝑦 ≤ 8I

‣ Coffee with two doses of sugar

𝑥 =

𝑦 =

I

0

0

8 / 36

The most critical system: The coffee machine

press

𝑥 ← 0

𝑦 ← 0

press

𝑥 ← 0

𝑦 ← 0
𝑥 ≥ 1
press

𝑥 ← 0

𝑥 ≥ 1
press

𝑥 ← 0

𝑦 = 5

cup

𝑦 = 5

cup

𝑦 = 8

coffee

𝑦 = 8

coffee

I S

𝑦 ≤ 5

P 𝑦 ≤ 8

‣ Coffee with two doses of sugar

presspress

𝑥 =

𝑦 =

I

0

0

S

0

0

8 / 36

The most critical system: The coffee machine

press

𝑥 ← 0

𝑦 ← 0

press

𝑥 ← 0

𝑦 ← 0
𝑥 ≥ 1
press

𝑥 ← 0

𝑥 ≥ 1
press

𝑥 ← 0

𝑦 = 5

cup

𝑦 = 5

cup

𝑦 = 8

coffee

𝑦 = 8

coffee

I S

𝑦 ≤ 5

P 𝑦 ≤ 8S

‣ Coffee with two doses of sugar

presspress 1.51.5

𝑥 =

𝑦 =

I

0

0

S

0

0

S

1.5

1.5

8 / 36

The most critical system: The coffee machine

press

𝑥 ← 0

𝑦 ← 0

press

𝑥 ← 0

𝑦 ← 0
𝑥 ≥ 1
press

𝑥 ← 0

𝑥 ≥ 1
press

𝑥 ← 0

𝑦 = 5

cup

𝑦 = 5

cup

𝑦 = 8

coffee

𝑦 = 8

coffee

I S

𝑦 ≤ 5

P 𝑦 ≤ 8

‣ Coffee with two doses of sugar

presspress 1.51.5 presspress

𝑥 =

𝑦 =

I

0

0

S

0

0

S

1.5

1.5

S

0

1.5

8 / 36

The most critical system: The coffee machine

press

𝑥 ← 0

𝑦 ← 0

press

𝑥 ← 0

𝑦 ← 0
𝑥 ≥ 1
press

𝑥 ← 0

𝑥 ≥ 1
press

𝑥 ← 0

𝑦 = 5

cup

𝑦 = 5

cup

𝑦 = 8

coffee

𝑦 = 8

coffee

I S

𝑦 ≤ 5

P 𝑦 ≤ 8S

‣ Coffee with two doses of sugar

presspress 1.51.5 presspress 2.72.7

𝑥 =

𝑦 =

I

0

0

S

0

0

S

1.5

1.5

S

0

1.5

S

2.7

4.2

8 / 36

The most critical system: The coffee machine

press

𝑥 ← 0

𝑦 ← 0

press

𝑥 ← 0

𝑦 ← 0
𝑥 ≥ 1
press

𝑥 ← 0

𝑥 ≥ 1
press

𝑥 ← 0

𝑦 = 5

cup

𝑦 = 5

cup

𝑦 = 8

coffee

𝑦 = 8

coffee

I S

𝑦 ≤ 5

P 𝑦 ≤ 8

‣ Coffee with two doses of sugar

presspress 1.51.5 presspress 2.72.7 presspress

𝑥 =

𝑦 =

I

0

0

S

0

0

S

1.5

1.5

S

0

1.5

S

2.7

4.2

S

0

4.2

8 / 36

The most critical system: The coffee machine

press

𝑥 ← 0

𝑦 ← 0

press

𝑥 ← 0

𝑦 ← 0
𝑥 ≥ 1
press

𝑥 ← 0

𝑥 ≥ 1
press

𝑥 ← 0

𝑦 = 5

cup

𝑦 = 5

cup

𝑦 = 8

coffee

𝑦 = 8

coffee

I S

𝑦 ≤ 5

P 𝑦 ≤ 8S

‣ Coffee with two doses of sugar

presspress 1.51.5 presspress 2.72.7 presspress 0.80.8

𝑥 =

𝑦 =

I

0

0

S

0

0

S

1.5

1.5

S

0

1.5

S

2.7

4.2

S

0

4.2

S

0.8

5

8 / 36

The most critical system: The coffee machine

press

𝑥 ← 0

𝑦 ← 0

press

𝑥 ← 0

𝑦 ← 0
𝑥 ≥ 1
press

𝑥 ← 0

𝑥 ≥ 1
press

𝑥 ← 0

𝑦 = 5

cup

𝑦 = 5

cup

𝑦 = 8

coffee

𝑦 = 8

coffee

I S

𝑦 ≤ 5

P 𝑦 ≤ 8

‣ Coffee with two doses of sugar

presspress 1.51.5 presspress 2.72.7 presspress 0.80.8 cupcup

𝑥 =

𝑦 =

I

0

0

S

0

0

S

1.5

1.5

S

0

1.5

S

2.7

4.2

S

0

4.2

S

0.8

5

P

0.8

5

8 / 36

The most critical system: The coffee machine

press

𝑥 ← 0

𝑦 ← 0

press

𝑥 ← 0

𝑦 ← 0
𝑥 ≥ 1
press

𝑥 ← 0

𝑥 ≥ 1
press

𝑥 ← 0

𝑦 = 5

cup

𝑦 = 5

cup

𝑦 = 8

coffee

𝑦 = 8

coffee

I S

𝑦 ≤ 5

P 𝑦 ≤ 8P

‣ Coffee with two doses of sugar

presspress 1.51.5 presspress 2.72.7 presspress 0.80.8 cupcup 33

𝑥 =

𝑦 =

I

0

0

S

0

0

S

1.5

1.5

S

0

1.5

S

2.7

4.2

S

0

4.2

S

0.8

5

P

0.8

5

P

3.8

8

8 / 36

The most critical system: The coffee machine

press

𝑥 ← 0

𝑦 ← 0

press

𝑥 ← 0

𝑦 ← 0
𝑥 ≥ 1
press

𝑥 ← 0

𝑥 ≥ 1
press

𝑥 ← 0

𝑦 = 5

cup

𝑦 = 5

cup

𝑦 = 8

coffee

𝑦 = 8

coffee

I S

𝑦 ≤ 5

P 𝑦 ≤ 8

‣ Coffee with two doses of sugar

presspress 1.51.5 presspress 2.72.7 presspress 0.80.8 cupcup 33 coffeecoffee

𝑥 =

𝑦 =

I

0

0

S

0

0

S

1.5

1.5

S

0

1.5

S

2.7

4.2

S

0

4.2

S

0.8

5

P

0.8

5

P

3.8

8

I

3.8

8

8 / 36

The most critical system: The coffee machine

press

𝑥 ← 0

𝑦 ← 0

press

𝑥 ← 0

𝑦 ← 0
𝑥 ≥ 1
press

𝑥 ← 0

𝑥 ≥ 1
press

𝑥 ← 0

𝑦 = 5

cup

𝑦 = 5

cup

𝑦 = 8

coffee

𝑦 = 8

coffee

I S

𝑦 ≤ 5

P 𝑦 ≤ 8I

‣ Coffee with two doses of sugar

presspress 1.51.5 presspress 2.72.7 presspress 0.80.8 cupcup 33 coffeecoffee

𝑥 =

𝑦 =

I

0

0

S

0

0

S

1.5

1.5

S

0

1.5

S

2.7

4.2

S

0

4.2

S

0.8

5

P

0.8

5

P

3.8

8

I

3.8

8

8 / 36

Timed opacity

The attacker model

Attacker capabilities

‣ Has access to the model (white box)
‣ Can observe an execution

10 / 36

The attacker model

Attacker capabilities

‣ Has access to the model (white box)
‣ Can observe an execution

Attacker goal

‣ Deduce secret information from these observations
→ visit of a private location

10 / 36

Attacker setting

𝑥 ← 0, 𝑎𝑥 ← 0, 𝑎

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑏

𝑥 < 1

𝑏

𝑥 < 2, 𝑏𝑥 < 2, 𝑏
ℓ0

𝑥 ≤ 2

ℓpriv

ℓf

Observed trace:

(𝑎, 0.7)(𝑏, 1.3)

Question: Can the attacker infer if ℓpriv has been visited?

11 / 36

Attacker setting

𝑥 ← 0, 𝑎𝑥 ← 0, 𝑎

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑏

𝑥 < 1

𝑏

𝑥 < 2, 𝑏𝑥 < 2, 𝑏
ℓ0

𝑥 ≤ 2

ℓpriv

ℓf

Observed trace:

(𝑎, 0.7)(𝑏, 1.3)

Question: Can the attacker infer if ℓpriv has been visited?

No, eg.

11 / 36

Attacker setting

𝑥 ← 0, 𝑎𝑥 ← 0, 𝑎

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑏

𝑥 < 1

𝑏

𝑥 < 2, 𝑏𝑥 < 2, 𝑏
ℓ0

𝑥 ≤ 2

ℓpriv

ℓf

Observed trace:

(𝑎, 0.7)(𝑏, 1.3)

Question: Can the attacker infer if ℓpriv has been visited?

No, eg.
ℓ0

11 / 36

Attacker setting

𝑥 ← 0, 𝑎𝑥 ← 0, 𝑎

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑏

𝑥 < 1

𝑏

𝑥 < 2, 𝑏𝑥 < 2, 𝑏
ℓ0

𝑥 ≤ 2

ℓpriv

ℓf

Observed trace:

(𝑎, 0.7)(𝑏, 1.3)

Question: Can the attacker infer if ℓpriv has been visited?

No, eg. 0.70.7
ℓ0 ℓ0

11 / 36

Attacker setting

𝑥 ← 0, 𝑎𝑥 ← 0, 𝑎

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑏

𝑥 < 1

𝑏

𝑥 < 2, 𝑏𝑥 < 2, 𝑏
ℓ0

𝑥 ≤ 2

ℓpriv

ℓf

Observed trace:

(𝑎, 0.7)(𝑏, 1.3)

Question: Can the attacker infer if ℓpriv has been visited?

No, eg. 0.70.7 𝑎𝑎
ℓ0 ℓ0 ℓ0

11 / 36

Attacker setting

𝑥 ← 0, 𝑎𝑥 ← 0, 𝑎

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑏

𝑥 < 1

𝑏

𝑥 < 2, 𝑏𝑥 < 2, 𝑏
ℓ0

𝑥 ≤ 2

ℓpriv

ℓf

Observed trace:

(𝑎, 0.7)(𝑏, 1.3)

Question: Can the attacker infer if ℓpriv has been visited?

No, eg. 0.70.7 𝑎𝑎 0.10.1
ℓ0 ℓ0 ℓ0 ℓ0

11 / 36

Attacker setting

𝑥 ← 0, 𝑎𝑥 ← 0, 𝑎

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑏

𝑥 < 1

𝑏

𝑥 < 2, 𝑏𝑥 < 2, 𝑏
ℓ0

𝑥 ≤ 2

ℓpriv

ℓf

Observed trace:

(𝑎, 0.7)(𝑏, 1.3)

Question: Can the attacker infer if ℓpriv has been visited?

No, eg. 0.70.7 𝑎𝑎 0.10.1 𝜀𝜀
ℓ0 ℓ0 ℓ0 ℓ0 ℓpriv

11 / 36

Attacker setting

𝑥 ← 0, 𝑎𝑥 ← 0, 𝑎

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑏

𝑥 < 1

𝑏

𝑥 < 2, 𝑏𝑥 < 2, 𝑏
ℓ0

𝑥 ≤ 2

ℓpriv

ℓf

Observed trace:

(𝑎, 0.7)(𝑏, 1.3)

Question: Can the attacker infer if ℓpriv has been visited?

No, eg. 0.70.7 𝑎𝑎 0.10.1 𝜀𝜀 0.50.5
ℓ0 ℓ0 ℓ0 ℓ0 ℓpriv ℓpriv

11 / 36

Attacker setting

𝑥 ← 0, 𝑎𝑥 ← 0, 𝑎

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑏

𝑥 < 1

𝑏

𝑥 < 2, 𝑏𝑥 < 2, 𝑏
ℓ0

𝑥 ≤ 2

ℓpriv

ℓf

Observed trace:

(𝑎, 0.7)(𝑏, 1.3)

Question: Can the attacker infer if ℓpriv has been visited?

No, eg. 0.70.7 𝑎𝑎 0.10.1 𝜀𝜀 0.50.5 𝑏𝑏
ℓ0 ℓ0 ℓ0 ℓ0 ℓpriv ℓpriv ℓf

11 / 36

Attacker setting

𝑥 ← 0, 𝑎𝑥 ← 0, 𝑎

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑏

𝑥 < 1

𝑏

𝑥 < 2, 𝑏𝑥 < 2, 𝑏
ℓ0

𝑥 ≤ 2

ℓpriv

ℓf

Observed trace:

(𝑎, 0.7)(𝑏, 1.3)

Question: Can the attacker infer if ℓpriv has been visited?

No, eg. 0.70.7 𝑎𝑎 0.10.1 𝜀𝜀 0.50.5 𝑏𝑏
ℓ0 ℓ0 ℓ0 ℓ0 ℓpriv ℓpriv ℓf

ℓ0

11 / 36

Attacker setting

𝑥 ← 0, 𝑎𝑥 ← 0, 𝑎

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑏

𝑥 < 1

𝑏

𝑥 < 2, 𝑏𝑥 < 2, 𝑏
ℓ0

𝑥 ≤ 2

ℓpriv

ℓf

Observed trace:

(𝑎, 0.7)(𝑏, 1.3)

Question: Can the attacker infer if ℓpriv has been visited?

No, eg. 0.70.7 𝑎𝑎 0.10.1 𝜀𝜀 0.50.5 𝑏𝑏

0.70.7

ℓ0 ℓ0 ℓ0 ℓ0 ℓpriv ℓpriv ℓf

ℓ0 ℓ0

11 / 36

Attacker setting

𝑥 ← 0, 𝑎𝑥 ← 0, 𝑎

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑏

𝑥 < 1

𝑏

𝑥 < 2, 𝑏𝑥 < 2, 𝑏
ℓ0

𝑥 ≤ 2

ℓpriv

ℓf

Observed trace:

(𝑎, 0.7)(𝑏, 1.3)

Question: Can the attacker infer if ℓpriv has been visited?

No, eg. 0.70.7 𝑎𝑎 0.10.1 𝜀𝜀 0.50.5 𝑏𝑏

0.70.7 𝑎𝑎

ℓ0 ℓ0 ℓ0 ℓ0 ℓpriv ℓpriv ℓf

ℓ0 ℓ0 ℓ0

11 / 36

Attacker setting

𝑥 ← 0, 𝑎𝑥 ← 0, 𝑎

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑏

𝑥 < 1

𝑏

𝑥 < 2, 𝑏𝑥 < 2, 𝑏
ℓ0

𝑥 ≤ 2

ℓpriv

ℓf

Observed trace:

(𝑎, 0.7)(𝑏, 1.3)

Question: Can the attacker infer if ℓpriv has been visited?

No, eg. 0.70.7 𝑎𝑎 0.10.1 𝜀𝜀 0.50.5 𝑏𝑏

0.70.7 𝑎𝑎 0.60.6

ℓ0 ℓ0 ℓ0 ℓ0 ℓpriv ℓpriv ℓf

ℓ0 ℓ0 ℓ0 ℓ0

11 / 36

Attacker setting

𝑥 ← 0, 𝑎𝑥 ← 0, 𝑎

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑥 ← 0
𝜀

𝑥 < 1

𝑏

𝑥 < 1

𝑏

𝑥 < 2, 𝑏𝑥 < 2, 𝑏
ℓ0

𝑥 ≤ 2

ℓpriv

ℓf

Observed trace:

(𝑎, 0.7)(𝑏, 1.3)

Question: Can the attacker infer if ℓpriv has been visited?

No, eg. 0.70.7 𝑎𝑎 0.10.1 𝜀𝜀 0.50.5 𝑏𝑏

0.70.7 𝑎𝑎 0.60.6 𝑏𝑏

ℓ0 ℓ0 ℓ0 ℓ0 ℓpriv ℓpriv ℓf

ℓ0 ℓ0 ℓ0 ℓ0 ℓf

11 / 36

Opacity in timed automata

Definition 1 (Opacity)

A TA is opaque iff all observable traces can be obtained both

‣ by runs visiting ℓpriv

‣ by runs not visiting ℓpriv
♣︎

[Cas09] Franck Cassez, “The Dark Side of Timed Opacity,” in ISA, 2009.

12 / 36

Opacity in timed automata

Definition 1 (Opacity)

A TA is opaque iff all observable traces can be obtained both

‣ by runs visiting ℓpriv

‣ by runs not visiting ℓpriv
♣︎

Opacity decision problem

Is the given timed automaton opaque?

[Cas09] Franck Cassez, “The Dark Side of Timed Opacity,” in ISA, 2009.

12 / 36

Opacity in timed automata

Definition 1 (Opacity)

A TA is opaque iff all observable traces can be obtained both

‣ by runs visiting ℓpriv

‣ by runs not visiting ℓpriv
♣︎

Opacity decision problem

Is the given timed automaton opaque?

Franck Cassez, The Dark Side of Timed Opacity (2009)

→ Opacity is undecidable for timed automata!

[Cas09] Franck Cassez, “The Dark Side of Timed Opacity,” in ISA, 2009.

12 / 36

Opacity in timed automata

Definition 1 (Opacity)

A TA is opaque iff all observable traces can be obtained both

‣ by runs visiting ℓpriv

‣ by runs not visiting ℓpriv
♣︎

Opacity decision problem

Is the given timed automaton opaque?

Franck Cassez, The Dark Side of Timed Opacity (2009)

→ Opacity is undecidable for timed automata!

So… is it the end?

[Cas09] Franck Cassez, “The Dark Side of Timed Opacity,” in ISA, 2009.

12 / 36

Solutions

Proposed solutions

Change the system → Subclasses of TA

‣ restriction on the number of actions
‣ restriction on the number of clocks
‣ discrete time

14 / 36

Proposed solutions

Change the system → Subclasses of TA

‣ restriction on the number of actions
‣ restriction on the number of clocks
‣ discrete time

Change the problem → Weaker attackers

‣ bounded number of observations
‣ limited observation

14 / 36

Proposed solutions

Change the system → Subclasses of TA

‣ restriction on the number of actions
‣ restriction on the number of clocks
‣ discrete time

Change the problem → Weaker attackers

‣ bounded number of observations
‣ limited observation

14 / 36

Execution-time opacity

Hypothesis

‣ A start location and an end location
‣ A special private location ℓpriv ℓ0 ℓ1

ℓpriv

Definition 1 (Execution-time opacity)

The system is ET-opaque for a duration 𝑑 if there exist two runs of duration 𝑑
1. visiting ℓpriv

2. one not visiting ℓpriv
♣︎

[And+22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun, “Guaranteeing Timed Opacity using Parametric Timed Model
Checking,” TOSEM, 2022.

16 / 36

Example

𝑏

𝑥 ≥ 1

𝑏

𝑥 ≥ 1 𝑐𝑐

𝑎𝑎
ℓ0

𝑥 ≤ 3

ℓpriv

𝑥 ≤ 2.5

ℓf

‣ There exist (at least) two runs of duration 𝑑 = 2:

17 / 36

Example

𝑏

𝑥 ≥ 1

𝑏

𝑥 ≥ 1 𝑐𝑐

𝑎𝑎
ℓ0

𝑥 ≤ 3

ℓpriv

𝑥 ≤ 2.5

ℓfℓ0

‣ There exist (at least) two runs of duration 𝑑 = 2:

ℓ0

17 / 36

Example

𝑏

𝑥 ≥ 1

𝑏

𝑥 ≥ 1 𝑐𝑐

𝑎𝑎
ℓ0

𝑥 ≤ 3

ℓpriv

𝑥 ≤ 2.5

ℓfℓ0

‣ There exist (at least) two runs of duration 𝑑 = 2:

11
ℓ0 ℓ0

17 / 36

Example

𝑏

𝑥 ≥ 1

𝑏

𝑥 ≥ 1 𝑐𝑐

𝑎𝑎
ℓ0

𝑥 ≤ 3

ℓpriv

𝑥 ≤ 2.5

ℓf

‣ There exist (at least) two runs of duration 𝑑 = 2:

11 𝑏𝑏
ℓ0 ℓ0 ℓpriv

17 / 36

Example

𝑏

𝑥 ≥ 1

𝑏

𝑥 ≥ 1 𝑐𝑐

𝑎𝑎
ℓ0

𝑥 ≤ 3

ℓpriv

𝑥 ≤ 2.5

ℓf

ℓpriv

‣ There exist (at least) two runs of duration 𝑑 = 2:

11 𝑏𝑏 11
ℓ0 ℓ0 ℓpriv ℓpriv

17 / 36

Example

𝑏

𝑥 ≥ 1

𝑏

𝑥 ≥ 1 𝑐𝑐

𝑎𝑎
ℓ0

𝑥 ≤ 3

ℓpriv

𝑥 ≤ 2.5

ℓf

‣ There exist (at least) two runs of duration 𝑑 = 2:

11 𝑏𝑏 11 𝑐𝑐
ℓ0 ℓ0 ℓpriv ℓpriv ℓf

17 / 36

Example

𝑏

𝑥 ≥ 1

𝑏

𝑥 ≥ 1 𝑐𝑐

𝑎𝑎
ℓ0

𝑥 ≤ 3

ℓpriv

𝑥 ≤ 2.5

ℓfℓf

‣ There exist (at least) two runs of duration 𝑑 = 2:

11 𝑏𝑏 11 𝑐𝑐
ℓ0 ℓ0 ℓpriv ℓpriv ℓf

17 / 36

Example

𝑏

𝑥 ≥ 1

𝑏

𝑥 ≥ 1 𝑐𝑐

𝑎𝑎
ℓ0

𝑥 ≤ 3

ℓpriv

𝑥 ≤ 2.5

ℓfℓ0

‣ There exist (at least) two runs of duration 𝑑 = 2:

11 𝑏𝑏 11 𝑐𝑐
ℓ0 ℓ0 ℓpriv ℓpriv ℓf

ℓ0

17 / 36

Example

𝑏

𝑥 ≥ 1

𝑏

𝑥 ≥ 1 𝑐𝑐

𝑎𝑎
ℓ0

𝑥 ≤ 3

ℓpriv

𝑥 ≤ 2.5

ℓfℓ0

‣ There exist (at least) two runs of duration 𝑑 = 2:

11 𝑏𝑏 11 𝑐𝑐

22

ℓ0 ℓ0 ℓpriv ℓpriv ℓf

ℓ0 ℓ0

17 / 36

Example

𝑏

𝑥 ≥ 1

𝑏

𝑥 ≥ 1 𝑐𝑐

𝑎𝑎
ℓ0

𝑥 ≤ 3

ℓpriv

𝑥 ≤ 2.5

ℓf

‣ There exist (at least) two runs of duration 𝑑 = 2:

11 𝑏𝑏 11 𝑐𝑐

22 𝑎𝑎

ℓ0 ℓ0 ℓpriv ℓpriv ℓf

ℓ0 ℓ0 ℓf

17 / 36

Example

𝑏

𝑥 ≥ 1

𝑏

𝑥 ≥ 1 𝑐𝑐

𝑎𝑎
ℓ0

𝑥 ≤ 3

ℓpriv

𝑥 ≤ 2.5

ℓfℓf

‣ There exist (at least) two runs of duration 𝑑 = 2:

11 𝑏𝑏 11 𝑐𝑐

22 𝑎𝑎

ℓ0 ℓ0 ℓpriv ℓpriv ℓf

ℓ0 ℓ0 ℓf

17 / 36

Example

𝑏

𝑥 ≥ 1

𝑏

𝑥 ≥ 1 𝑐𝑐

𝑎𝑎
ℓ0

𝑥 ≤ 3

ℓpriv

𝑥 ≤ 2.5

ℓf

‣ There exist (at least) two runs of duration 𝑑 = 2:

11 𝑏𝑏 11 𝑐𝑐

22 𝑎𝑎

ℓ0 ℓ0 ℓpriv ℓpriv ℓf

ℓ0 ℓ0 ℓf

‣ ET-opaque for 𝑑 = 2

‣ ∃-ET-opaque

17 / 36

Example

𝑏

𝑥 ≥ 1

𝑏

𝑥 ≥ 1 𝑐𝑐

𝑎𝑎
ℓ0

𝑥 ≤ 3

ℓpriv

𝑥 ≤ 2.5

ℓf

‣ There exist (at least) two runs of duration 𝑑 = 2:

11 𝑏𝑏 11 𝑐𝑐

22 𝑎𝑎

ℓ0 ℓ0 ℓpriv ℓpriv ℓf

ℓ0 ℓ0 ℓf

‣ ET-opaque for 𝑑 = 2

‣ ∃-ET-opaque

‣ 𝐷ℓpriv
= [1, 2.5] ≠ 𝐷¬ℓpriv

= [0, 3]

17 / 36

Example

𝑏

𝑥 ≥ 1

𝑏

𝑥 ≥ 1 𝑐𝑐

𝑎𝑎
ℓ0

𝑥 ≤ 3

ℓpriv

𝑥 ≤ 2.5

ℓf

‣ There exist (at least) two runs of duration 𝑑 = 2:

11 𝑏𝑏 11 𝑐𝑐

22 𝑎𝑎

ℓ0 ℓ0 ℓpriv ℓpriv ℓf

ℓ0 ℓ0 ℓf

‣ ET-opaque for 𝑑 = 2

‣ ∃-ET-opaque

‣ 𝐷ℓpriv
= [1, 2.5] ≠ 𝐷¬ℓpriv

= [0, 3] ‣ Not full-ET-opaque

17 / 36

ET-opacity in timed automata

ET-opacity decision problem

Is the given timed automaton ET-opaque?

[And+22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun, “Guaranteeing Timed Opacity using Parametric Timed Model
Checking,” TOSEM, 2022.

18 / 36

ET-opacity in timed automata

ET-opacity decision problem

Is the given timed automaton ET-opaque?

→ ET-opacity is decidable for timed automata!

[And+22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun, “Guaranteeing Timed Opacity using Parametric Timed Model
Checking,” TOSEM, 2022.

18 / 36

Analyzing timing behaviors of

programs

Problems

Timing analysis of programs is hard: it depends not just on code, but also on low-level

details of execution

Impact of hardware 🔍
‣ ET is heavily influenced by the

micro-architecture
‣ Especially: pipelines, caches, memory

hierarchy

Limitations of existing

techniques 🔙
‣ Most abstract time away or focus on

coarse properties
‣ e.g., schedulability analysis, worst-case

execution time (WCET)

‣ Insufficient for fine-grained timing
behaviors
‣ e.g., detecting or mitigating timed side-

channels

20 / 36

Model checking

System

Specification
“The system must be

safe”

Formal model

Property

𝐴𝐺 ¬

Model checking

⊧
?

Yes

No

Question: does the model of the system satisfy the property?

21 / 36

Model checking

System

Specification
“The system must be

safe”

Formal model

Property

𝐴𝐺 ¬

Model checking

⊧
?

Yes

No

Question: does the model of the system satisfy the property?

21 / 36

Model checking

System

Specification
“The system must be

safe”

Formal model

Property

𝐴𝐺 ¬

Model checking

⊧
?

Yes

No

Question: does the model of the system satisfy the property?

21 / 36

Our contributions in a nutshell

[And+25]

⚙️ A modular and automated approach to build formal models to analyze timing

behaviors
‣ binary code with the hardware

[And+25] Étienne André et al., “Verifying Timed Properties of Programs in IoT nodes using Parametric Time Petri Nets,” in SAC 2025,
2025.

22 / 36

Our contributions in a nutshell

[And+25]

⚙️ A modular and automated approach to build formal models to analyze timing

behaviors
‣ binary code with the hardware

💻️ An implementation
‣ targeting a realistic micro-architecture of a simple micro-controller

‣ producing time Petri nets models

[And+25] Étienne André et al., “Verifying Timed Properties of Programs in IoT nodes using Parametric Time Petri Nets,” in SAC 2025,
2025.

22 / 36

Our contributions in a nutshell

[And+25]

⚙️ A modular and automated approach to build formal models to analyze timing

behaviors
‣ binary code with the hardware

💻️ An implementation
‣ targeting a realistic micro-architecture of a simple micro-controller

‣ producing time Petri nets models

⚔️ An application to timing attacks in C programs using the Roméo model checker

[And+25] Étienne André et al., “Verifying Timed Properties of Programs in IoT nodes using Parametric Time Petri Nets,” in SAC 2025,
2025.

22 / 36

Modeling hardware

Considered hardware

Our hardware 🔧
‣ Model of the processor architecture

‣ relatively simple micro-architecture similar to

ARM Cortex M0+ core, with a 2-stage pipeline

(Fetch and Execute)

‣ Model of the instruction set
architecture (ISA)
‣ ARMv6-M ISA

Features 📝
‣ Execution pipeline of the processor
‣ Unique memory space

‣ (instructions and data)

‣ Bus between the processor and
memory

‣ Direct-mapped instruction cache

‣ with 16 lines of 32 bytes

‣ no actual instructions, but only information

about their presence

‣ No data cache

‣ Among the limitations: no switch/case, function pointers. . .

24 / 36

PTPN hardware model

‣ doFetch, isHit and accessCount: variables used to synchronize with the software

𝑝1

Fetch

[0, 0]

doFetch == 0

doFetch ← 1 𝑝2

ICacheHit

[1, 1]
doFetch == 1

∧ isHit == 1 𝑝5

Exe

[0, 0]

accessCount == 0

doFetch ← 0
𝑝7

IWaitBus
[0, 0]

doFetch == 0

∧ isHit == 0

𝑝3

ICacheMiss
[10, 10]

𝑝6 EndExe
[1, 1]

𝑝4

EndMem
[0, 0]

ac == 0

DWaitBus
[0, 0]

accessCount > 0

ac ← accessCount

𝑝8

Mem
[4, 4]

ac > 0

ac − −

Memory access

25 / 36

Modeling programs

PTPN software model

Software

‣ Captures the binary code of the
program (ARMv6-M)

‣ Firing a transition corresponds to
executing the instruction

‣ Pipeline fetch: doFetch

‣ Memory access: accessCount and isHit

‣ Structurally identical to the control

flow graph

INST80B0

INST80B2

INST80B4

INST80B6 INST809E

[0, 0]

doFetch == 1

doFetch ← 0

isHit ← inst80b0(proc, mem)

accessCount ← 1

[0, 0]

doFetch == 1

doFetch ← 0

isHit ←

inst80b2(proc, mem)

accessCount ← 0

[0, 0]

!((proc.regs.sr Zmask) ≠

Zmask)

∧ doFetch == 1

doFetch ← 0

isHit ←

inst80b4(proc, mem)

accessCount ← 0

[0, 0]

!((proc.regs.sr Zmask) ≠

Zmask)

∧ doFetch == 1

doFetch ← 0

isHit ←

inst80b4(proc, mem)

accessCount ← 0

27 / 36

A fully automated translation

A fully automated translation

🧰
‣ Including the hardware and software models
‣ Written in and

‣ All the way from the source code to the PTPN model

‣ Entirely open source (github.com/DylanMarinho/codeToPN/)

Target model checker: Roméo [Lim+09] ✨️
‣ Parametric timed model checker supporting

(extensions) of PTPNs

‣ Including C-like code to be executed during transitions

[Lim+09] Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie Traonouez, “Romeo: A Parametric Model-Checker for
Petri Nets with Stopwatches,” in TACAS 2009, 2009.

29 / 36

https://github.com/DylanMarinho/codeToPN/

Application to security

properties

Application to security properties

Timing attacks ⚔️
‣ Attacker can infer information

about the secret key by measuring the
execution time of the program
‣ e.g., password checking program

Execution-time opacity [And+23] 🕓️

“Can the attacker deduce internal

behavior by only observing the execution

time?”

[And+23] Étienne André, Engel Lefaucheux, Didier Lime, Dylan Marinho, and Jun Sun, “Configuring Timing Parameters to Ensure
Execution-Time Opacity in Timed Automata,” in TiCSA@ETAPS 2023, 2023.

31 / 36

Application to security properties

Timing attacks ⚔️
‣ Attacker can infer information

about the secret key by measuring the
execution time of the program
‣ e.g., password checking program

Execution-time opacity [And+23] 🕓️

“Can the attacker deduce internal

behavior by only observing the execution

time?”

‣ Use of timing parameters: to measure execution times

[And+23] Étienne André, Engel Lefaucheux, Didier Lime, Dylan Marinho, and Jun Sun, “Configuring Timing Parameters to Ensure
Execution-Time Opacity in Timed Automata,” in TiCSA@ETAPS 2023, 2023.

31 / 36

Which of the following two programs is not secure?

Program 1

1 int main() { C

2 int i; int length = 10;

3 char ca[11] = "patehenaff";

4 char cb[11] = "pasta";

5

6 for (i = 0; i < length; i++){

7 if (ca[i] != cb[i]) {

8 return 0; // false

9 }

10 }

11 return 1; // true

12 }

Program 2

1 int main() { C

2 int i; int length = 10;

3 char ca[11] = "patehenaff";

4 char cb[11] = "pasta";

5

6 int result = 1; // true

7

8 for (i = 0; i < length; i++){

9 result &= (ca[i] == cb[i]);

10 }

11 return result;

12 }

32 / 36

Which of the following two programs is not secure?

Program 1

1 int main() { C

2 int i; int length = 10;

3 char ca[11] = "patehenaff";

4 char cb[11] = "pasta";

5

6 for (i = 0; i < length; i++){

7 if (ca[i] != cb[i]) {

8 return 0; // false

9 }

10 }

11 return 1; // true

12 }

Unsecure

Program 2

1 int main() { C

2 int i; int length = 10;

3 char ca[11] = "patehenaff";

4 char cb[11] = "pasta";

5

6 int result = 1; // true

7

8 for (i = 0; i < length; i++){

9 result &= (ca[i] == cb[i]);

10 }

11 return result;

12 }

Secure

32 / 36

Which of the following two programs is not secure?

Program 1

1 int main() { C

2 int i; int length = 10;

3 char ca[11] = "patehenaff";

4 char cb[11] = "pasta";

5

6 for (i = 0; i < length; i++){

7 if (ca[i] != cb[i]) {

8 return 0; // false

9 }

10 }

11 return 1; // true

12 }

Unsecure - ET sensitive
‣ 758 for the secret password
‣ {362, 404, 446, 488, 530, 572, 614, 656, 698, 740} for any

other password

Program 2

1 int main() { C

2 int i; int length = 10;

3 char ca[11] = "patehenaff";

4 char cb[11] = "pasta";

5

6 int result = 1; // true

7

8 for (i = 0; i < length; i++){

9 result &= (ca[i] == cb[i]);

10 }

11 return result;

12 }

Secure - Constant ET: 876

32 / 36

Is this third program secure?

Program 3

1 int main () { C

2 int i ;

3 int length = 10; // length of the strings

4 char ca[11] = " patehenaff " ;

5 char cb[11] = " pasta " ;

6

7 int result = 1; // true

8 for (i=0; i<length ; i++) {

9 if (ca[i] == cb[i]) {

10 result &= 1;

11 } else {

12 result &= 0;

13 }

14 }

15 return result ;

16 }

33 / 36

Is this third program secure?

Program 3

1 int main () { C

2 int i ;

3 int length = 10; // length of the strings

4 char ca[11] = " patehenaff " ;

5 char cb[11] = " pasta " ;

6

7 int result = 1; // true

8 for (i=0; i<length ; i++) {

9 if (ca[i] == cb[i]) {

10 result &= 1;

11 } else {

12 result &= 0;

13 }

14 }

15 return result ;

16 }

‣ It seems so: very close to the former secure
program

‣ But it is not due to the instruction cache
‣ 876 for the secret password
‣ {816, 822, 828, 834, 840, 846, 852, 858, 864, 870} for

any other password

33 / 36

Is this third program secure?

Program 3

1 int main () { C

2 int i ;

3 int length = 10; // length of the strings

4 char ca[11] = " patehenaff " ;

5 char cb[11] = " pasta " ;

6

7 int result = 1; // true

8 for (i=0; i<length ; i++) {

9 if (ca[i] == cb[i]) {

10 result &= 1;

11 } else {

12 result &= 0;

13 }

14 }

15 return result ;

16 }

‣ It seems so: very close to the former secure
program

‣ But it is not due to the instruction cache
‣ 876 for the secret password
‣ {816, 822, 828, 834, 840, 846, 852, 858, 864, 870} for

any other password

🏰
We can reconfigure the
program, by making it opaque
‣ adding 6 nop instructions at the end of

one branch

‣ (see paper)

33 / 36

Conclusion and perspectives

Conclusion

⚙️

End-to-end approach on binary code timing analysis, subject to micro-
architectural constraints

‣ automated production of timed formal models of both the program and the
hardware architecture

‣ using (parametric) time Petri nets

🧪
Illustrative case-study: detection of timing leaks in programs

‣ via parameter synthesis techniques using Roméo

‣ (manual) reconfiguration of the program to make it opaque

35 / 36

Perspectives

🗓️
‣ Modeling and analysis of programs on multicore architectures
‣ Automatic modification of a program to make it opaque

⚔️

‣ Handling more complex attacks

‣ Fault-injection
‣ Cache side-channels

‣ flush and reload, prime and probe

‣ Energy-based attacks

♾️ ‣ Formal proof of our translation?

36 / 36

27 January 2026 | APR Seminar | Paris, France

Detecting Timing Leaks of Programs
using Parametric Timed Model Checking

Dylan Marinho

Sorbonne Université, CNRS UMR 7606, LIP6

Bibliography

Bibliography

[AD94] Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, 1994.

[Cas09] Franck Cassez, “The Dark Side of Timed Opacity,” in ISA, 2009.

[And+22]
Étienne André, Didier Lime, Dylan Marinho, and Jun Sun, “Guaranteeing Timed Opacity using Parametric Timed
Model Checking,” TOSEM, 2022.

[And+25]
Étienne André et al., “Verifying Timed Properties of Programs in IoT nodes using Parametric Time Petri Nets,” in
SAC 2025, 2025.

[Lim+09]
Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie Traonouez, “Romeo: A Parametric Model-
Checker for Petri Nets with Stopwatches,” in TACAS 2009, 2009.

[And+23]
Étienne André, Engel Lefaucheux, Didier Lime, Dylan Marinho, and Jun Sun, “Configuring Timing Parameters to
Ensure Execution-Time Opacity in Timed Automata,” in TiCSA@ETAPS 2023, 2023.

38 / 36

Additional information

Explanation of the pictures

‣ Therac-25 bug
‣ Computer bug, race condition
‣ Consequences: multiple fatalities

‣ Allusion to the MIM-104 Patriot Missile Failure (Iraq, 1991)
‣ 28 fatalities, hundreds of injured
‣ Computer bug: software error (clock drift)
‣ (Picture of an actual MIM-104 Patriot Missile, though not the one of 1991)

‣ Allusion to the sinking of the Sleipner A offshore platform (Norway, 1991)
‣ No fatalities
‣ Computer bug: inaccurate finite element analysis modeling
‣ (Picture actually from the Deepwater Horizon Offshore Drilling Platform)

40 / 36

Explanation of the pictures

‣ Ariane flight V88 (France, 1996)
‣ Computer bug (notably integer overflow)
‣ Consequences: US$370 million

‣ USA, June 2025
‣ Empty bars during Iran’s riposte against US military bases.

(Dr. Dominic Ng)

‣ USA, 24 June 2025
‣ After the Israel-Iran ceasefire

(Dr. Dominic Ng)

41 / 36

Explanation of the pictures

‣ Prefecture de Police, Paris (France, 17th July 2024 at 10:10 PM)
‣ Delivers in front of the Prefecture de Police, Paris
‣ The day before closing the center of Paris to prepare the 2024 Olympic Games

‣ Paris Metro map, Madeleine station (Paris, France)

42 / 36

Licensing

Sources of the graphics

‣ Title : Explosion of first Ariane 5 flight, June 4, 1996
‣ Author : ESA
‣ Source : https://www.esa.int/ESA_Multimedia/Images/2009/09/Explosion_of_first_Ariane_5_flight_
‣ License : ESA Standard Licence

‣ Title : Deepwater Horizon Offshore Drilling Platform on Fire
‣ Author : ideum
‣ Source : https://secure.flickr.com/photos/ideum/4711481781/
‣ License : Creative Commons cc-by-sa

‣ Title : DA-SC-88-01663
‣ Author : imcomkorea
‣ Source : https://secure.flickr.com/photos/imcomkorea/3017886760
‣ License : Creative Commons cc-by-nc-nd

44 / 36

https://www.esa.int/ESA_Multimedia/Images/2009/09/Explosion_of_first_Ariane_5_flight_
https://secure.flickr.com/photos/ideum/4711481781/
https://secure.flickr.com/photos/imcomkorea/3017886760

Sources of the graphics

‣ Title : Therac-25
‣ Author : ?
‣ Source : https://arquivonuclear.blogspot.com/2011/03/therac-25.html
‣ License : unknown

‣ Title : Autonomous robot vehicle or ADV typically used for food or grocery delivery
‣ Author : Rlistmedia
‣ Source : https://commons.wikimedia.org/wiki/File:Autonomous_delivery_robot_vehicles_ADV.png
‣ License : Creative Commons cc-by

‣ Title : Smiley green alien big eyes (aaah)
‣ Author : LadyofHats
‣ Source : https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
‣ License : Public domain

45 / 36

https://arquivonuclear.blogspot.com/2011/03/therac-25.html
https://commons.wikimedia.org/wiki/File:Autonomous_delivery_robot_vehicles_ADV.png
https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg

Sources of the graphics

‣ Title : Smiley green alien big eyes (cry)
‣ Author : LadyofHats
‣ Source : https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
‣ License : Public domain

‣ Title : Smiley green alien exterminate
‣ Author : LadyofHats
‣ Source : https://commons.wikimedia.org/wiki/File:Smiley_green_alien_exterminate.svg
‣ License : Public domain

‣ Source: Flaticon.com

‣ Source: Flaticon.com

46 / 36

https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
https://commons.wikimedia.org/wiki/File:Smiley_green_alien_exterminate.svg

License of this document

This presentation can be published, reused and modified under the terms of the license
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC

BY-NC-SA 4.0)

creativecommons.org/licenses/by-nc-sa/4.0/

Authors: Étienne André, Dylan Marinho

Version: 2026-01-27

https://creativecommons.org/licenses/by-nc-sa/4.0/

	Timed opacity
	Solutions
	Execution-time opacity

	Analyzing timing behaviors of programs
	Modeling hardware
	Modeling programs
	A fully automated translation

	Application to security properties
	Conclusion and perspectives
	Bibliography
	Additional information
	Licensing

