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Context: Verifying complex timed systems

‣ Critical systems: Failures may result in dramatic consequences

‣ Need for early bug detection
‣ Bugs discovered when final testing: expensive

‣ Need for a thorough specification and verification phase

Therac-25

(USA, 1980s)

MIM-104 Pat. Mis. Fail.

(Iraq, 1991)

Sleipner A offshore platform

(Norway, 1991)

Ariane flight V88

(France, 1996)
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MIM-104 Pat. Mis. Fail.

(Iraq, 1991)

Sleipner A offshore platform

(Norway, 1991)

Ariane flight V88

(France, 1996)

‣ Verification is needed to ensure the absence of bugs
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Context: Side-channel attacks

Side-channel attacks

⚙️
Threats to a system using non-algorithmic weaknesses
‣ e.g., power consumption, electromagnetic radiation, cache usage, timing, accoustic emissions, 

temperature variations, etc.

1home.xnet.com/~warinner/pizzacites.html (1990s)
2 / 36

http://home.xnet.com/~warinner/pizzacites.html


Context: Side-channel attacks

Side-channel attacks

⚙️
Threats to a system using non-algorithmic weaknesses
‣ e.g., power consumption, electromagnetic radiation, cache usage, timing, accoustic emissions, 

temperature variations, etc.

Example

🍕
Number of pizzas (and order time) ordered by the white house prior to major war 
announcements1

1home.xnet.com/~warinner/pizzacites.html (1990s)
2 / 36

http://home.xnet.com/~warinner/pizzacites.html


Context: Side-channel attacks

Side-channel attacks

⚙️
Threats to a system using non-algorithmic weaknesses
‣ e.g., power consumption, electromagnetic radiation, cache usage, timing, accoustic emissions, 

temperature variations, etc.

Example

🍕
Number of pizzas (and order time) ordered by the white house prior to major war 
announcements1

1home.xnet.com/~warinner/pizzacites.html (1990s)
2 / 36

http://home.xnet.com/~warinner/pizzacites.html


Context: Side-channel attacks

Side-channel attacks

⚙️
Threats to a system using non-algorithmic weaknesses
‣ e.g., power consumption, electromagnetic radiation, cache usage, timing, accoustic emissions, 

temperature variations, etc.

Example

🍕
Number of pizzas (and order time) ordered by the white house prior to major war 
announcements1

1home.xnet.com/~warinner/pizzacites.html (1990s)
2 / 36

http://home.xnet.com/~warinner/pizzacites.html


Context: Side-channel attacks

Side-channel attacks

⚙️
Threats to a system using non-algorithmic weaknesses
‣ e.g., power consumption, electromagnetic radiation, cache usage, timing, accoustic emissions, 

temperature variations, etc.

Example

🍕
Number of pizzas (and order time) ordered by the white house prior to major war 
announcements1

1home.xnet.com/~warinner/pizzacites.html (1990s)
2 / 36

http://home.xnet.com/~warinner/pizzacites.html


Your turn: where was this picture taken?
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Context: Timing attacks over programs

1 // input pwd    : Real password C

2 // input attempt: Tentative password

3 for (i = 0; i < min(len(pwd), len(attempt)); i++) {

4     if(pwd[i] != attempt[i]){

5         return false

6     }

7 }

8 return true

pwd A L M A S T Y

attempt A L S O C

🕓️ Execution time (ET):
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1 // input pwd    : Real password C

2 // input attempt: Tentative password

3 for (i = 0; i < min(len(pwd), len(attempt)); i++) {

4     if(pwd[i] != attempt[i]){

5         return false

6     }

7 }

8 return true

pwd A L M A S T Y

attempt A L S O C

🕓️ Execution time (ET): 𝜀 𝜀 𝜀 = 3𝜀 ⇒ 2 correct characters

Problem: The ET is proportional to the number of consecutive correct characters 
from the beginning of attempt
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Context: The use of formal methods

Need to detect timing-leak vulnerabilities

‣ We want formal guarantees → formal methods

‣ Various methods:
‣ Abstract interpretation
‣ Static analysis
‣ Model checking
‣ Theorem proving
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Context: Model checking overview

System

Specification
“The system must be 

safe”
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Context: Model checking overview

System

Specification
“The system must be 

safe”

Formal model

Property

𝐴𝐺  ¬

Model checking

⊧
?

Yes

No

Question: does the model of the system satisfy the property?
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Timed automaton (TA)

‣ Finite-state automaton (sets of locations, ) 

I S P

[AD94] Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, 1994.
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‣ Finite-state automaton (sets of locations, transitions, and actions) augmented with a set 𝑋 of clocks [AD94]

‣ Real-valued variables evolving linearly at the same rate

‣ Features:
‣ Location invariant: property to be verified to stay at a location
‣ Transition guard: property to be verified to enable a transition
‣ Clock reset: some of the clocks can be set to 0 along transitions
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The most critical system: The coffee machine
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Timed opacity



The attacker model

Attacker capabilities

‣ Has access to the model (white box)
‣ Can observe an execution
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Attacker capabilities

‣ Has access to the model (white box)
‣ Can observe an execution

Attacker goal

‣ Deduce secret information from these observations
→ visit of a private location
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Attacker setting

𝑥 ← 0, 𝑎𝑥 ← 0, 𝑎

𝑥 < 1

𝑥 ← 0
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𝑏
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ℓf

Observed trace:

(𝑎, 0.7)(𝑏, 1.3)

Question: Can the attacker infer if ℓpriv has been visited?
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Opacity in timed automata

Definition 1 (Opacity)

A TA is opaque iff all observable traces can be obtained both

‣ by runs visiting ℓpriv

‣ by runs not visiting ℓpriv
♣︎

[Cas09] Franck Cassez, “The Dark Side of Timed Opacity,” in ISA,  2009.
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♣︎

Opacity decision problem

Is the given timed automaton opaque?

Franck Cassez, The Dark Side of Timed Opacity (2009)

→ Opacity is undecidable for timed automata!

So… is it the end?

[Cas09] Franck Cassez, “The Dark Side of Timed Opacity,” in ISA,  2009.
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Solutions



Proposed solutions

Change the system → Subclasses of TA

‣ restriction on the number of actions
‣ restriction on the number of clocks
‣ discrete time
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Execution-time opacity



Hypothesis

‣ A start location and an end location
‣ A special private location ℓpriv ℓ0 ℓ1

ℓpriv

Definition 1 (Execution-time opacity)

The system is ET-opaque for a duration 𝑑 if there exist two runs of duration 𝑑
1. visiting ℓpriv

2. one not visiting ℓpriv
♣︎

[And+22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun, “Guaranteeing Timed Opacity using Parametric Timed Model 
Checking,” TOSEM, 2022.
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ET-opacity in timed automata

ET-opacity decision problem

Is the given timed automaton ET-opaque?

[And+22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun, “Guaranteeing Timed Opacity using Parametric Timed Model 
Checking,” TOSEM, 2022.
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Is the given timed automaton ET-opaque?
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[And+22] Étienne André, Didier Lime, Dylan Marinho, and Jun Sun, “Guaranteeing Timed Opacity using Parametric Timed Model 
Checking,” TOSEM, 2022.
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Analyzing timing behaviors of 

programs



Problems

Timing analysis of programs is hard: it depends not just on code, but also on low-level 

details of execution

Impact of hardware 🔍
‣ ET is heavily influenced by the 

micro-architecture
‣ Especially: pipelines, caches, memory 

hierarchy

Limitations of existing 

techniques 🔙
‣ Most abstract time away or focus on 

coarse properties
‣ e.g., schedulability analysis, worst-case 

execution time (WCET)

‣ Insufficient for fine-grained timing 
behaviors
‣ e.g., detecting or mitigating timed side-

channels

20 / 36



Model checking

System

Specification
“The system must be 

safe”

Formal model

Property

𝐴𝐺  ¬

Model checking

⊧
?

Yes

No

Question: does the model of the system satisfy the property?
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Our contributions in a nutshell

[And+25]

⚙️ A modular and automated approach to build formal models to analyze timing 

behaviors
‣ binary code with the hardware

[And+25] Étienne André et al., “Verifying Timed Properties of Programs in IoT nodes using Parametric Time Petri Nets,” in SAC 2025,  
2025.
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⚙️ A modular and automated approach to build formal models to analyze timing 

behaviors
‣ binary code with the hardware

💻️ An implementation
‣ targeting a realistic micro-architecture of a simple micro-controller

‣ producing time Petri nets models

⚔️ An application to timing attacks in C programs using the Roméo model checker

[And+25] Étienne André et al., “Verifying Timed Properties of Programs in IoT nodes using Parametric Time Petri Nets,” in SAC 2025,  
2025.
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Modeling hardware



Considered hardware

Our hardware 🔧
‣ Model of the processor architecture

‣ relatively simple micro-architecture similar to 

ARM Cortex M0+ core, with a 2-stage pipeline 

(Fetch and Execute)

‣ Model of the instruction set 
architecture (ISA)
‣ ARMv6-M ISA

Features 📝
‣ Execution pipeline of the processor
‣ Unique memory space

‣ (instructions and data)

‣ Bus between the processor and 
memory

‣ Direct-mapped instruction cache

‣ with 16 lines of 32 bytes

‣ no actual instructions, but only information 

about their presence

‣ No data cache

‣ Among the limitations: no switch/case, function pointers. . .
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PTPN hardware model

‣ doFetch, isHit and accessCount: variables used to synchronize with the software

𝑝1

Fetch

[0, 0]

doFetch == 0

doFetch ← 1 𝑝2

ICacheHit

[1, 1]
doFetch == 1

∧ isHit == 1 𝑝5

Exe

[0, 0]

accessCount == 0

doFetch ← 0
𝑝7

IWaitBus
[0, 0]

doFetch == 0

∧ isHit == 0

𝑝3

ICacheMiss
[10, 10]

𝑝6 EndExe
[1, 1]

𝑝4

EndMem
[0, 0]

ac == 0

DWaitBus
[0, 0]

accessCount > 0

ac ← accessCount

𝑝8

Mem
[4, 4]

ac > 0

ac − −

Memory access
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Modeling programs



PTPN software model

Software

‣ Captures the binary code of the 
program (ARMv6-M)

‣ Firing a transition corresponds to 
executing the instruction

‣ Pipeline fetch: doFetch

‣ Memory access: accessCount and isHit

‣ Structurally identical to the control 

flow graph

INST80B0

INST80B2

INST80B4

INST80B6 INST809E

 
[0, 0]

doFetch == 1

doFetch ← 0

isHit ← inst80b0(proc, mem)

accessCount ← 1

 
[0, 0]

doFetch == 1

doFetch ← 0

isHit ←

inst80b2(proc, mem)

accessCount ← 0

 

[0, 0]

!((proc.regs.sr Zmask) ≠

Zmask)

∧ doFetch == 1

doFetch ← 0

isHit ←

inst80b4(proc, mem)

accessCount ← 0

 

[0, 0]

!((proc.regs.sr Zmask) ≠

Zmask)

∧ doFetch == 1

doFetch ← 0

isHit ←

inst80b4(proc, mem)

accessCount ← 0
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A fully automated translation



A fully automated translation

🧰
‣ Including the hardware and software models
‣ Written in  and 

‣ All the way from the  source code to the PTPN model

‣  Entirely open source (github.com/DylanMarinho/codeToPN/)

Target model checker: Roméo [Lim+09] ✨️
‣ Parametric timed model checker supporting 

(extensions) of PTPNs

‣ Including C-like code to be executed during transitions

[Lim+09] Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie Traonouez, “Romeo: A Parametric Model-Checker for 
Petri Nets with Stopwatches,” in TACAS 2009,  2009.
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Application to security 

properties



Application to security properties

Timing attacks ⚔️
‣ Attacker can infer information 

about the secret key by measuring the 
execution time of the program
‣ e.g., password checking program

Execution-time opacity [And+23] 🕓️

“Can the attacker deduce internal 

behavior by only observing the execution 

time?”

[And+23] Étienne André, Engel Lefaucheux, Didier Lime, Dylan Marinho, and Jun Sun, “Configuring Timing Parameters to Ensure 
Execution-Time Opacity in Timed Automata,” in TiCSA@ETAPS 2023,  2023.
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Which of the following two programs is not secure?

Program 1

1 int main() { C

2     int i; int length = 10;

3     char ca[11] = "patehenaff";

4     char cb[11] = "pasta";

5

6     for (i = 0; i < length; i++){

7         if (ca[i] != cb[i]) {

8             return 0; // false

9         }

10     }

11     return 1; // true

12 }

Program 2

1 int main() { C

2     int i;  int length = 10;

3     char ca[11] = "patehenaff";

4     char cb[11] = "pasta";

5

6     int result = 1; // true

7

8     for (i = 0; i < length; i++){

9         result &= (ca[i] == cb[i]);

10     }

11     return result;

12 }
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8     for (i = 0; i < length; i++){

9         result &= (ca[i] == cb[i]);

10     }

11     return result;

12 }

Secure
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Which of the following two programs is not secure?

Program 1

1 int main() { C

2     int i; int length = 10;

3     char ca[11] = "patehenaff";

4     char cb[11] = "pasta";

5

6     for (i = 0; i < length; i++){

7         if (ca[i] != cb[i]) {

8             return 0; // false

9         }

10     }

11     return 1; // true

12 }

Unsecure - ET sensitive
‣ 758 for the secret password
‣ {362, 404, 446, 488, 530, 572, 614, 656, 698, 740} for any 

other password

Program 2

1 int main() { C

2     int i;  int length = 10;

3     char ca[11] = "patehenaff";

4     char cb[11] = "pasta";

5

6     int result = 1; // true

7

8     for (i = 0; i < length; i++){

9         result &= (ca[i] == cb[i]);

10     }

11     return result;

12 }

Secure - Constant ET: 876
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Is this third program secure?

Program 3

1 int main () { C

2   int i ;

3   int length = 10; // length of the strings

4   char ca[11] = " patehenaff " ;

5   char cb[11] = " pasta " ;

6

7   int result = 1; // true

8   for (i=0; i<length ; i++) {

9     if (ca[i] == cb[i]) {

10       result &= 1;

11     } else {

12       result &= 0;

13     }

14   }

15   return result ;

16 }
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Is this third program secure?

Program 3

1 int main () { C

2   int i ;

3   int length = 10; // length of the strings

4   char ca[11] = " patehenaff " ;

5   char cb[11] = " pasta " ;

6

7   int result = 1; // true

8   for (i=0; i<length ; i++) {

9     if (ca[i] == cb[i]) {

10       result &= 1;

11     } else {

12       result &= 0;

13     }

14   }

15   return result ;

16 }

‣ It seems so: very close to the former secure 
program

‣ But it is not due to the instruction cache
‣ 876 for the secret password
‣ {816, 822, 828, 834, 840, 846, 852, 858, 864, 870} for 

any other password
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Is this third program secure?

Program 3

1 int main () { C

2   int i ;

3   int length = 10; // length of the strings

4   char ca[11] = " patehenaff " ;

5   char cb[11] = " pasta " ;

6

7   int result = 1; // true

8   for (i=0; i<length ; i++) {

9     if (ca[i] == cb[i]) {

10       result &= 1;

11     } else {

12       result &= 0;

13     }

14   }

15   return result ;

16 }

‣ It seems so: very close to the former secure 
program

‣ But it is not due to the instruction cache
‣ 876 for the secret password
‣ {816, 822, 828, 834, 840, 846, 852, 858, 864, 870} for 

any other password

🏰
We can reconfigure the 
program, by making it opaque
‣ adding 6 nop instructions at the end of 

one branch

‣ (see paper)
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Conclusion and perspectives



Conclusion

⚙️

End-to-end approach on binary code timing analysis, subject to micro-
architectural constraints

‣ automated production of timed formal models of both the program and the 
hardware architecture

‣ using (parametric) time Petri nets

🧪
Illustrative case-study: detection of timing leaks in  programs

‣ via parameter synthesis techniques using Roméo

‣ (manual) reconfiguration of the program to make it opaque
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Perspectives

🗓️
‣ Modeling and analysis of programs on multicore architectures
‣ Automatic modification of a program to make it opaque

⚔️

‣ Handling more complex attacks

‣ Fault-injection
‣ Cache side-channels

‣ flush and reload, prime and probe

‣ Energy-based attacks

♾️ ‣ Formal proof of our translation?
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Additional information



Explanation of the pictures

‣ Therac-25 bug
‣ Computer bug, race condition
‣ Consequences: multiple fatalities

‣ Allusion to the MIM-104 Patriot Missile Failure (Iraq, 1991)
‣ 28 fatalities, hundreds of injured
‣ Computer bug: software error (clock drift)
‣ (Picture of an actual MIM-104 Patriot Missile, though not the one of 1991)

‣ Allusion to the sinking of the Sleipner A offshore platform (Norway, 1991)
‣ No fatalities
‣ Computer bug: inaccurate finite element analysis modeling
‣ (Picture actually from the Deepwater Horizon Offshore Drilling Platform)
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Explanation of the pictures

‣ Ariane flight V88 (France, 1996)
‣ Computer bug (notably integer overflow)
‣ Consequences: US$370 million

‣ USA, June 2025
‣ Empty bars during Iran’s riposte against US military bases.

(Dr. Dominic Ng)

‣ USA, 24 June 2025
‣ After the Israel-Iran ceasefire

(Dr. Dominic Ng)
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Explanation of the pictures

‣ Prefecture de Police, Paris (France, 17th July 2024 at 10:10 PM)
‣ Delivers in front of the Prefecture de Police, Paris
‣ The day before closing the center of Paris to prepare the 2024 Olympic Games

‣ Paris Metro map, Madeleine station (Paris, France)
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Licensing



Sources of the graphics

‣ Title : Explosion of first Ariane 5 flight, June 4, 1996
‣ Author : ESA
‣ Source : https://www.esa.int/ESA_Multimedia/Images/2009/09/Explosion_of_first_Ariane_5_flight_
‣ License : ESA Standard Licence

‣ Title : Deepwater Horizon Offshore Drilling Platform on Fire
‣ Author : ideum
‣ Source : https://secure.flickr.com/photos/ideum/4711481781/
‣ License : Creative Commons cc-by-sa

‣ Title : DA-SC-88-01663
‣ Author : imcomkorea
‣ Source : https://secure.flickr.com/photos/imcomkorea/3017886760
‣ License : Creative Commons cc-by-nc-nd
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Sources of the graphics

‣ Title : Therac-25
‣ Author : ?
‣ Source : https://arquivonuclear.blogspot.com/2011/03/therac-25.html
‣ License : unknown

‣ Title : Autonomous robot vehicle or ADV typically used for food or grocery delivery
‣ Author : Rlistmedia
‣ Source : https://commons.wikimedia.org/wiki/File:Autonomous_delivery_robot_vehicles_ADV.png
‣ License : Creative Commons cc-by

‣ Title : Smiley green alien big eyes (aaah)
‣ Author : LadyofHats
‣ Source : https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
‣ License : Public domain
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Sources of the graphics

‣ Title : Smiley green alien big eyes (cry)
‣ Author : LadyofHats
‣ Source : https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
‣ License : Public domain

‣ Title : Smiley green alien exterminate
‣ Author : LadyofHats
‣ Source : https://commons.wikimedia.org/wiki/File:Smiley_green_alien_exterminate.svg
‣ License : Public domain

‣ Source: Flaticon.com

‣ Source: Flaticon.com
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