S sasus crs lip

27 January 2026 | APR Seminar | Paris, France

Detecting Timing Leaks of Programs
using Parametric Timed Model Checking

Dylan Marinho
Sorbonne Université, CNRS UMR 7606, LIP6

@il

Context: Verifying complex timed systems

» Critical systems: Failures may result in dramatic consequences

» Need for early bug detection
» Bugs discovered when final testing: expensive
» Need for a thorough specification and verification phase

Therac-25 MIM-104 Pat. Mis. Fail. ~ Sleipner A offshore platform Ariane flight V88
(USA, 1980s) (Iraq, 1991) (Norway, 1991) (France, 1996)

1/36

Context: Verifying complex timed systems

» Critical systems: Failures may result in dramatic consequences

» Need for early bug detection
» Bugs discovered when final testing: expensive
» Need for a thorough specification and verification phase

il
Therac-25 MIM-104 Pat. Mis. Fail. ~ Sleipner A offshore platform Ariane flight V88
(USA, 1980s) (Iraq, 1991) (Norway, 1991) (France, 1996)
[» Verification is needed to ensure the absence of bugs]

1/36

Context: Side-channel attacks

Side-channel attacks

Threats to a system using non-algorithmic weaknesses
J > e.g., power consumption, electromagnetic radiation, cache usage, timing, accoustic emissions,
temperature variations, etc.

'home.xnet.com/~warinner/pizzacites.html (1990s)
2/ 36

http://home.xnet.com/~warinner/pizzacites.html

Context: Side-channel attacks

Side-channel attacks

Threats to a system using non-algorithmic weaknesses
J > e.g., power consumption, electromagnetic radiation, cache usage, timing, accoustic emissions,
temperature variations, etc.

Example

Fo Number of pizzas (and order time) ordered by the white house prior to major war
¢

C
< ¢ announcements®

'home.xnet.com/~warinner/pizzacites.html (1990s)

2/ 36

http://home.xnet.com/~warinner/pizzacites.html

Context: Side-channel attacks

Side-channel attacks

Th--"

Example

; 13 there was a surge in P!
{;.- Nu On April 13 there o2 e penta
«$ ann

[wooierst

2" What is the Pizza Me

. rday du
spiked on Satu \(srael

,7a orders from 0 .
gon, and the Department of Detenss. vuse prior to major war

ter? The signal that
ring lran’s attack on

buildings such as the White

government
US>8 efense.

'home.xnet.com/~warinner/pizzacites.html (1990s)

2/ 36

http://home.xnet.com/~warinner/pizzacites.html

Context: Side-channel attacks

Papa Johns Pizza < X
B, Overview Menu Reviews Photos Updat ~
The~-* - Popular times Mondays + @ 5“ al that
° J8 |
Z wha Live 6 PM attaCk on"

Less busy than usual - Usually no wait

spike

Example ings such as the White
se.)
Ze Nuw gl ol . . . ' ' . ® @ |-wwuse prior to major war
-' ¢ ann ’a 12p
\ =
No wait

'home.xnet.com/~warinner/pizzacites.html (1990s)
2/36

http://home.xnet.com/~warinner/pizzacites.html

Context: Side-channel attacks

Pap| Papa Johns Pizza < X
1 Side-channel atta Overv Overview Menu Reviews Photos Updat)
The~-* - Popy Popular times Tuesdays~ @ rhat
ms,
5 Wha' Live 5 PM :k on
o Busier than usual - Usually no wait
splke
Example s the White
e Nu mmm..... brior to major war

o' ¢ ann 12p

\ [——
No wait

'home.xnet.com/~warinner/pizzacites.html (1990s)
2/36

http://home.xnet.com/~warinner/pizzacites.html

St Newsly ¢
Sale N
P J]

Charles de Gaulle
Etoile

Rue

3
-~

s, A

uzu\kmv\

Franklin
D. Roosevelt

Cours Abertier SGrand
Palais Crs\a Reine

POt plesandre u :
PR

La Seine

o Invaln‘les -

Funiversite
z i

Esplana
gdn it

V% oo 2

‘“‘"méambronne
&
/<

o
'Commerce @

°
27

,,
St5écaphin
S

i Pasteu

3
I

N -
Volormlres %
<

(OF a2,
Vauglr-%)

et

Bienveniie

%
Conventlon
Versa.ues °"”"""e

[[Traverse]

de * Usbonne 3

"er,"um.“ o | e

, i
e de S
IM Madeleir. % .“&‘ﬁ’u EDRolss
B nﬁ‘\"mﬁl:ﬂlﬂ/flnz 7
Clemepceau = i de Gaulle

Your turn: where was this picture taken?

13 imnite ¥

d’Estienne
0 Notre-Dame
e de-Lorette

e -

Le Peletier

N
ot
Haussmann

Stillazare)

e St

O E gyl

nt
L3 Fayette Rlcmleu
Grands
i ”Bon ev d5
g et o
3 tm;

o

Pontd& <
13 Concorde

v X

7 qﬂgsvs g
pold sécar
g Ssenghor
Inaices I“'Mn o

lAssembIée
Nationale

,hd“c'"""“' Palais Royal R
‘. Musge du/Louvre\ A

oy -
9

o Luembourg /S e
A | TN
oy gt g
oy

Montparnasse

Poissonniere_

S

sevincent
de Paul

te s,

LU
Cha«eau

7 &
Hgtellde Vill

oo s
deparis

Context: Timing attacks over programs

1
2
3
4
5
6
7
8

pwd L M A S TY

// input pwd : Real password
// input attempt: Tentative password
for (1 = 0; 1 < min(len(pwd), len(attempt)); i++) {
if(pwd[i] !'= attempt[i]){
return false

}

return true

&) Execution time (ET):

4/ 36

Context: Timing attacks over programs

1
2
3
4
5
6
7
8

// input pwd : Real password
// input attempt: Tentative password
for (1 = 0; 1 < min(len(pwd), len(attempt)); i++) {
if(pwd[i] !'= attempt[i]){
return false

}

return true

pwd

L M aAs T Y
ECEE— ; o

&) Execution time (ET): ¢

4/ 36

Context: Timing attacks over programs

1
2
3
4
5
6
7
8

// input pwd : Real password
// input attempt: Tentative password
for (1 = 0; 1 < min(len(pwd), len(attempt)); i++) {
if(pwd[i] !'= attempt[i]){
return false

}

return true

e
EEN I« o -

&) Execution time (ET): ¢

4/ 36

Context: Timing attacks over programs

1
2
3
4
5
6
7
8

// input pwd : Real password
// input attempt: Tentative password
for (1 = 0; 1 < min(len(pwd), len(attempt)); i++) {
if(pwd[i] !'= attempt[i]){
return false

}

return true

T

B s
M o c

attempt

4) Execution time (ET): € ¢ ¢

Y

4/ 36

Context: Timing attacks over programs

1
2
3
4
5
6
7
8

// input pwd : Real password
// input attempt: Tentative password
for (1 = 0; 1 < min(len(pwd), len(attempt)); i++) {
if(pwd[i] !'= attempt[i]){
return false

}

return true

ENE S - ¢
RN -

&) Execution time (ET): ¢ = 3¢ = 2 correct characters

Problem: The ET is proportional to the number of consecutive correct characters
from the beginning of attempt

4/ 36

Context: The use of formal methods

[Need to detect timing-leak vulnerabilities

» We want formal guarantees — formal methods

» Various methods:
» Abstract interpretation
» Static analysis

» Model checking
» Theorem proving

5/36

Context: The use of formal methods

[Need to detect timing-leak vulnerabilities

» We want formal guarantees — formal methods

» Various methods:
» Abstract interpretation
» Static analysis
» Model checking

» Theorem proving

5/36

Context: Model checking overview

System

Specification
“The system must be

safe”

6/ 36

Context: Model checking overview

Syst
ystem Formal model

=7

Specification Property

AG - 0O

“The system must be —

safe”

6/ 36

Context: Model checking overview

System

Formal model

L Model checking
?
Specification Property T

“The system must be —

safe” AG -0

6/ 36

Context: Model checking overview

System

Formal model Yes
=5 Model checking 1 N\t
7
) Specification Prpay 7
The system must be — AC o
safe”
Question: does the model of the system satisfy the property?]

6/ 36

Timed automaton (TA)

» Finite-state automaton (sets of locations,)

[AD94] Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, 1994.
7/36

Timed automaton (TA)

» Finite-state automaton (sets of locations, transitions,)

[AD94] Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, 1994.
7/36

Timed automaton (TA)

» Finite-state automaton (sets of locations, transitions, and)

[AD94] Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, 1994.
7/36

Timed automaton (TA)

» Finite-state automaton (sets of locations, transitions, and) augmented with a set X of clocks
» Real-valued variables evolving linearly at the same rate

» Features:

[AD94] Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, 1994.
7/36

Timed automaton (TA)

» Finite-state automaton (sets of locations, transitions, and) augmented with a set X of clocks
» Real-valued variables evolving linearly at the same rate

» Features:

» Location invariant: property to be verified to stay at a location

[AD94] Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, 1994.

7/ 36

Timed automaton (TA)

» Finite-state automaton (sets of locations, transitions, and) augmented with a set X of clocks
» Real-valued variables evolving linearly at the same rate

» Features:

» Location invariant: property to be verified to stay at a location
» Transition guard: property to be verified to enable a transition

y=28

y<9d
r>1

[AD94] Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, 1994.
7/36

Timed automaton (TA)

» Finite-state automaton (sets of locations, transitions, and) augmented with a set X of clocks
» Real-valued variables evolving linearly at the same rate

» Features:

» Location invariant: property to be verified to stay at a location
» Transition guard: property to be verified to enable a transition

» Clock reset: some of the clocks can be set to 0 along transitions
y=38

<+ 0
y+0

y<9d
r>1

z<+0

[AD94] Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, 1994.
7/36

The most critical system: The coftee machine

y<+<0

» Coftee with two doses of sugar

8/ 36

The most critical system: The coftee machine

y=28

coffee

<+ 0 @S0 cup
y<+<0

» Coftee with two doses of sugar

8/ 36

The most critical system: The coftee machine

y=28

coffee

<+ 0 s cup
y<+<0

» Coftee with two doses of sugar

| press I
r= 0 0
y= 0 0

8/ 36

The most critical system: The coftee machine

y=28

coffee

<+ 0 s cup
y<+<0

» Coftee with two doses of sugar

I press I 1.5 I

= 0 0 1.5
y= 0 0 1.5

8/ 36

The most critical system: The coftee machine

y=28

coffee

xz <+ 0 x“>'"1 cup
y<+<0

z <+ 0
» Coftee with two doses of sugar
| press I 1.5 I press I
z= 0 0 1.5 0
y= 0 0 1.5 1.5

8/ 36

The most critical system: The coftee machine

y=28

coffee

<+ 0 s cup
y<+<0

» Coftee with two doses of sugar

I Press I 1.5 I Press I 2.7 I

= 0 0 1.5 0 2ol
y= 0 0 1.5 1.5 4.2

8/ 36

The most critical system: The coftee machine

y=28

coffee

xz <+ 0 x“>'"1 cup
y<+<0

» Coftee with two doses of sugar

|press I 1.5 I press I 2.7 I press I

= 0 0 1.5 0 2ol 0
y= 0 0 1.5 1.5 4.2 4.2

8/ 36

The most critical system: The coftee machine

y=28

coffee

y<9d

press ’8 y=>5

<+ 0 @S0 cup
y<+<0

press

z <+ 0
» Coftee with two doses of sugar

.press. 1.5 . press . 2.7 . press . 0.8 .

= 0 0 1.5 0 2ol 0 0.8
y= 0 0 1.5 1.5 4.2 4.2 5

8/ 36

The most critical system: The coftee machine

y=28

coffee

x4+ 0 s cup
y <0

» Coftee with two doses of sugar

|press| 1.5 Ipressl 2.7 Ipressl 0.8 I cup I

= 0 0 1.5 0 2ol 0 0.8 0.8
y= 0 0 1.5 1.5 4.2 4.2 5 5

8/ 36

The most critical system: The coftee machine

y=28

coffee

r <+ 0 @S0 cup
y<+<0

» Coftee with two doses of sugar

.press. 1.5 . press . 2.7 . press . 0.8 . cup . 3 .

= 0 0 1.5 0 2ol 0 0.8 0.8 3.8
y= 0 0 1.5 1.5 4.2 4.2 5 5 8

8/ 36

The most critical system: The coftee machine

» Coftee with two doses of sugar

. press . 1.5 . press . 2.7 . press . 0.8 . cup . 3 . coffee .
rxr= 0 0 1.5 0 2.7 0 0.8 0.8 3.8 3.8
y= 0 0 1.5 1.5 4.2 4.2 5 5 8 8

8/ 36

The most critical system: The coftee machine

y=28

coffee

r <+ 0 @S0 cup
y<+<0

» Coftee with two doses of sugar

.press. 1.5 . press . 2.7 . press . 0.8 . cup . 3 .Coffee.

= 0 0 1.5 0 2ol 0 0.8 0.8 3.8 3.8
y= 0 0 1.5 1.5 4.2 4.2 5 5 8 8

8/ 36

Timed opacity

The attacker model

Attacker capabilities

» Has access to the model (white box)

» Can observe an execution

10/ 36

The attacker model

Attacker capabilities

» Has access to the model (white box)
» Can observe an execution

Attacker goal

» Deduce secret information from these observations

— visit of a private location

10/ 36

Attacker setting

r<l1
<0 <l
&)
w0 @ Observed trace:
0.7)(b,1.3
_____________ . - (4,0.7)(b, 1.3
<9 T < 2,
Question: Can the attacker infer if 7 ; has been visited?]

11/ 36

Attacker setting

r<l1
r<+0 Tz <l

Observed trace:

,0.7)(0,1.3

________ . - (4,0.7)(b, 1.3
x <2 z<2

Question: Can the attacker infer if 7 ; has been visited?]

No, eg.

11/ 36

Attacker setting

r<l1
r<+0 Tz <l

Observed trace:

,0.7)(0,1.3

________ . - (4,0.7)(b, 1.3
x <2 z<2

Question: Can the attacker infer if 7 ; has been visited?]

No, eg.

11/ 36

Attacker setting

r<l1
<0 <l
&)
w0 @ Observed trace:
0.7)(b,1.3
_____________ . - (4,0.7)(b, 1.3
<9 T < 2,
Question: Can the attacker infer if 7 ; has been visited?]

No, eg.

11/ 36

Attacker setting

r<l1
<0 <l
&)
w0 @ Observed trace:
0.7)(b,1.3
_____________ . - (4,0.7)(b, 1.3
<9 T < 2,
Question: Can the attacker infer if 7 ; has been visited?]

No, eg.

11/ 36

Attacker setting

r<l1
<0 <l
&)
w0 @ Observed trace:
0.7)(b,1.3
_____________ . - (4,0.7)(b, 1.3
<9 T < 2,
Question: Can the attacker infer if 7 ; has been visited?]

No, eg. 0.7 0.1
-------- B B

11/ 36

Attacker setting

r<l1
<0 <l
&)
w0 @ Observed trace:
0.7)(b,1.3
_____________ . - (4,0.7)(b, 1.3
<9 T < 2,
Question: Can the attacker infer if 7 ; has been visited?]

No, eg. 0.7 0.1 €
-------- D (I

11/ 36

Attacker setting

r<l1
<0 <l
&)
w0 @ Observed trace:
0.7)(b,1.3
_____________ . - (4,0.7)(b, 1.3
<9 T < 2,
Question: Can the attacker infer if 7 ; has been visited?]

No, eg. 0.7 0.1 € 0.5
-------- ()—)———ED—ED

11/ 36

Attacker setting

r<l1
<0 <l
&)
w0 @ Observed trace:
,0.7)(0,1.3
_____________ . . (3,07)(0:13
<9 T < 2,
Question: Can the attacker infer if 7 ; has been visited?]
No, eg. 0.7 0.1 0.5

O—@—@—®

11/ 36

Attacker setting

r<l1
<0 <l
&)
w0 @ Observed trace:
,0.7)(0,1.3
_____________ . . (3,07)(0:13
<9 T < 2,
Question: Can the attacker infer if 7 ; has been visited?]
No, eg. 0.7 0.1 0.5

O—@—@—®

11/ 36

Attacker setting

r<l1
<0 <l
&)
w0 @ Observed trace:
,0.7)(0,1.3
_____________ . . (3,07)(0:13
<9 T < 2,
Question: Can the attacker infer if 7 ; has been visited?]
No, eg. 0.7 0.1 0.5

O—@—@—®

11/ 36

Attacker setting

r<l1
<0 <l
&)
w0 @ Observed trace:
0.7)(b,1.3
_____________ . - (4,0.7)(b, 1.3
<9 T < 2,
Question: Can the attacker infer if 7 ; has been visited?]

No, eg.

11/ 36

Attacker setting

r<l1
<0 <l
&)
w0 @ Observed trace:
0.7)(b,1.3
_____________ . - (4,0.7)(b, 1.3
<9 T < 2,
Question: Can the attacker infer if 7 ; has been visited?]

No, eg.

0.7 0.1 € 0.5
-------- LG OB @@
—~(t)—(& |

11/ 36

Attacker setting

r<l1
<0 <l
&)
w0 @ Observed trace:
0.7)(b,1.3
_____________ . - (4,0.7)(b, 1.3
<9 T < 2,
Question: Can the attacker infer if 7 ; has been visited?]

No, eg. 0.7 0.1 € 0.5
-------- DR D — ()

11/ 36

Opacity in timed automata
Definition 1 (Opacity) \

A TA is opaque iff all observable traces can be obtained both

> by runs visiting £ .

> by runs not visiting £,

[Cas09] Franck Cassez, “The Dark Side of Timed Opacity,” in ISA, 2009.
12/ 36

Opacity in timed automata
Definition 1 (Opacity) \

A TA is opaque iff all observable traces can be obtained both

> by runs visiting £ .

> by runs not visiting £,

. J

Opacity decision problem

l Is the given timed automaton opaque?

[Cas09] Franck Cassez, “The Dark Side of Timed Opacity,” in ISA, 2009.
12/ 36

Opacity in timed automata
Definition 1 (Opacity) \

A TA is opaque iff all observable traces can be obtained both

> by runs visiting £ .

> by runs not visiting £,

g

[Opacity decision problem
l Is the given timed automaton opaque?

Franck Cassez, The Dark Side of Timed Opacity (2009)

— Opacity is undecidable for timed automata!

[Cas09] Franck Cassez, “The Dark Side of Timed Opacity,” in ISA, 2009.
12/ 36

Opacity in timed automata
Definition 1 (Opacity) \

A TA is opaque iff all observable traces can be obtained both

> by runs visiting £ .

» by runs not visiting 7......

g

So... is it the end? \

[Opacity decision pr
l Is the given timed automaton opaque?

Franck Cassez, The Dark Side of Timed Opacity (2009)

— Opacity is undecidable for timed automata!

[Cas09] Franck Cassez, “The Dark Side of Timed Opacity,” in ISA, 2009.
12/ 36

Solutions

Proposed solutions

Change the system — Subclasses of TA

» restriction on the number of actions
» restriction on the number of clocks
» discrete time

14/ 36

Proposed solutions

Change the system — Subclasses of TA

» restriction on the number of actions
» restriction on the number of clocks
» discrete time

Change the problem — Weaker attackers

» bounded number of observations
» limited observation

14/ 36

Proposed solutions

Change the system — Subclasses of TA

» restriction on the number of actions
» restriction on the number of clocks
» discrete time

Change the problem — Weaker attackers

» bounded number of observations
» limited observation

14/ 36

Execution-time opacity

Hypothesis

» A start location and an end location

> A special private location £ ;,

Definition 1 (Execution-time opacity) -

The system is ET-opaque for a duration d if there exist two runs of duration d

1. visiting /

priv

2. one not visiting £ ;.

[And+22] Etienne André, Didier Lime, Dylan Marinho, and Jun Sun, “Guaranteeing Timed Opacity using Parametric Timed Model
Checking,” TOSEM, 2022.

16 / 36

» There exist (at least) two runs of duration d = 2:

17/ 36

r <3

» There exist (at least) two runs of duration d = 2:

17/ 36

r <3

» There exist (at least) two runs of duration d = 2:

17/ 36

Example

17/ 36

r <3

» There exist (at least) two runs of duration d = 2:

17/ 36

Example

17/ 36

17/ 36

r <3

» There exist (at least) two runs of duration d = 2:

17/ 36

r <3

» There exist (at least) two runs of duration d = 2:

17/ 36

r <3

» There exist (at least) two runs of duration d = 2:

17/ 36

17/ 36

» ET-opaque for d = 2
, @ @ » 3-ET-opaque
-------- @ GS0

17/ 36

1 » ET-opaque for d = 2
@ , @ @ @ » 3-ET-opaque
-------- @ GS0

17/ 36

1 » ET-opaque for d = 2
@ @ @ @ » 3-ET-opaque

» D, =[1,25]%D_, =]0,3] » Not full-ET-opaque

17/ 36

ET-opacity in timed automata

[ET-opacity decision problem

l Is the given timed automaton ET-opaque?

[And+22] Etienne André, Didier Lime, Dylan Marinho, and Jun Sun, “Guaranteeing Timed Opacity using Parametric Timed Model
Checking,” TOSEM, 2022.

18/ 36

ET-opacity in timed automata

[ET-opacity decision problem

l Is the given timed automaton ET-opaque?

— ET-opacity is decidable for timed automata!

[And+22] Etienne André, Didier Lime, Dylan Marinho, and Jun Sun, “Guaranteeing Timed Opacity using Parametric Timed Model
Checking,” TOSEM, 2022.

18/ 36

Analyzing timing behaviors of
programs

Timing analysis of programs is hard: it depends not just on code, but also on low-level
details of execution

Impact of hardware Q\ Limitations of existing
techniques _l
» ET is heavily influenced by the .
: : » Most abstract time away or focus on
micro-architecture i
» Especially: pipelines, caches, memory coarse properties
hierarchy » e.g., schedulability analysis, worst-case
execution time (WCET)

» Insufficient for fine-grained timing

behaviors
» e.g., detecting or mitigating timed side-
channels

20/ 36

Model checking

System .

Formal model

— = P

S L&

=7

7
) Specification Prpay 7
The system must be — AC o
safe”
Question: does the model of the system satisfy the property?]

21/ 36

Model checking

System Formal model Yes
<> — ey e
,,,,,,,,,,,,,,,,,,, 1l =)
| ey Model checking 1\
7
) Specification oty 7
The system must be |— AC O
safe”
Question: does the model of the system satisfy the property?]

21/ 36

Model checking

System Formal model Yes

= e Q9P
,,,,,,,,,,,,,,,,,,, 1l =)

RS =] Model checking 1\
7
Specification Propert |:
“The system must be | AC P YO J

safe”
Question: does the model of the system satisfy the property?]

21/ 36

Our contributions in a nutshell

¢ A modular and automated approach to build formal models to analyze timing

behaviors
» binary code with the hardware

[And+25] Etienne André et al., “Verifying Timed Properties of Programs in IoT nodes using Parametric Time Petri Nets,” in SAC 2025,
2025.

22/ 36

Our contributions in a nutshell

¢ A modular and automated approach to build formal models to analyze timing

behaviors
» binary code with the hardware

B An implementation
» targeting a realistic micro-architecture of a simple micro-controller
» producing time Petri nets models

[And+25] Etienne André et al., “Verifying Timed Properties of Programs in IoT nodes using Parametric Time Petri Nets,” in SAC 2025,
2025.

22/ 36

Our contributions in a nutshell

¢ A modular and automated approach to build formal models to analyze timing

behaviors
» binary code with the hardware

B An implementation
» targeting a realistic micro-architecture of a simple micro-controller
» producing time Petri nets models

<% An application to timing attacks in C programs using the Roméo model checker

[And+25] Etienne André et al., “Verifying Timed Properties of Programs in IoT nodes using Parametric Time Petri Nets,” in SAC 2025,
2025.

22/ 36

Modeling hardware

Considered hardware

Our hardware b Features 7

» Model of the processor architecture » Execution pipeline of the processor
» relatively simple micro-architecture similar to

» Unique memory space
ARM Cortex M0+ core, with a 2-stage pipeline

» (instructions and data)

(Fetch and Execute) » Bus between the processor and
» Model of the instruction set memory
architecture (ISA) » Direct-mapped instruction cache
> ARMv6-M ISA » with 16 lines of 32 bytes

» no actual instructions, but only information
about their presence

» No data cache

» Among the limitations: no switch/case, function pointers. . .

24/ 36

PTPN hardware model

» doFetch, isHit and accessCount: variables used to synchronize with the software

1, 1]
doFetch == doFetch == ascessCount ==
oFetch «+ 1 P2 A isHit == Ps

Fetch ‘{>\>ICacheHit ‘{P\ Exe ﬂ D7
o~ ﬂ% 1
IWaitBus » [CacheMiss D EndExe
0,0] [10, 10 1,1]
doFetch == 0
A isHit == Endl\/[eLQl7 0]
\ / T 0
DWaitBus Mem
0,0] i
accessCount > 0 ac >0
ac < accessCount ac — —

Mlemory access

25/ 36

Modeling programs

PTPN software model

Software

» Captures the binary code of the
program (ARMv6-M)
» Firing a transition corresponds to
executing the instruction
» Pipeline fetch: doFetch
» Memory access: accessCount and isHit

» Structurally identical to the control
flow graph

INSTS0BO (&)

0, 0]+
doFetch ==1

INST80B2 O

[0, 0]
doFetch ==1

INST80B4 C

[0,0]

!((proc.regs.sr Zmask) #r
Zmask)

A doFetch ==1

INST80B6 O

doFetch + 0
isHit < inst80b0(proc, mem)
accessCount + 1

doFetch «+ 0

isHit «
inst80b2(proc, mem)
accessCount < 0

0]
!((proc.regs.sr Zmask)
Zmask)
doFetch <+ 0 A doFetch ==1
isHit <
inst80b4 (proc, mem)
accessCount < 0

doFetch «+ 0

isHit «
inst80b4(proc, mem)
accessCount < 0

O INST8O9E

27/ 36

A fully automated translation

A tfully automated translation

» Including the hardware and software models
~ * Writtenin @ and ©

n > All the way from the @ source code to the PTPN model
- © Entirely open source (github.com/DylanMarinho/codeToPN/)

Target model checker: RomEo

» Parametric timed model checker supporting
(extensions) of PTPNs

» Including C-like code to be executed during transitions

[Lim+09] Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie Traonouez, “Romeo: A Parametric Model-Checker for
Petri Nets with Stopwatches,” in TACAS 2009, 2009.

29/ 36

https://github.com/DylanMarinho/codeToPN/

Application to security
properties

Application to security properties

Timing attacks N Execution-time opacity L
» Attacker can infer information
about the secret key by measuring the Can the attacker deduce internal
execution time of the program behavior by only observing the execution
> e.g., password checking program time?”

[And+23] Etienne André, Engel Lefaucheux, Didier Lime, Dylan Marinho, and Jun Sun, “Configuring Timing Parameters to Ensure
Execution-Time Opacity in Timed Automata,” in TiCSA@ETAPS 2023, 2023.

31/36

Application to security properties

Timing attacks N Execution-time opacity L
» Attacker can infer information
about the secret key by measuring the Can the attacker deduce internal
execution time of the program behavior by only observing the execution
> e.g., password checking program time?”
» Use of : to measure execution times

[And+23] Etienne André, Engel Lefaucheux, Didier Lime, Dylan Marinho, and Jun Sun, “Configuring Timing Parameters to Ensure
Execution-Time Opacity in Timed Automata,” in TiCSA@ETAPS 2023, 2023.

31/36

Which of the following two programs is not secure?

Program 1 Program 2
1 int main() { 1 int main() {
2 int i; int length = 10; 2 int i; int length = 10;
3 char ca[ll] = "patehenaff"; 3 char ca[ll] = "patehenaff";
4 char cb[11] = "pasta"; 4 char cb[11] = "pasta";
5 5
6 for (1 = 0; i < length; i++){ 6 int result = 1; // true
7 if (cal[i] != cb[il) {) 7
8 for (i = 0; i < length; i++){

8 return 0; // false
o) 9 | result & (cal[il == cb[i]);]
10 } 10 }
11 N Y e 11 return result;
12 } 12 }

.

32/36

Which of the following two programs is not secure?

Program 1 Program 2
1 int main() { 1 int main() {
2 int i; int length = 10; 2 int i; int length = 10;
3 char ca[ll] = "patehenaff"; 3 char ca[ll] = "patehenaff";
4 char cb[11] = "pasta"; 4 char cb[11] = "pasta";
5 5
6 for (1 = 0; i < length; i++){ 6 int result = 1; // true
7 if (cal[i] != cb[il) {) 7
8 for (i = 0; i < length; i++){
8 return 0; // false
.) 9 | result & (cal[il == cb[i]);]
10 } 10 }
11 P Py 11 return result;
12 } 12 }
\.
Unsecure Secure

32/36

Which of the following two programs is not secure?

Program 1 Program 2
1 int main() { 1 int main() {
2 int i; int length = 10; 2 int i; int length = 10;
3 char ca[ll] = "patehenaff"; 3 char ca[ll] = "patehenaff";
4 char cb[11] = "pasta"; 4 char cb[11] = "pasta";
5 5
6 for (i = 0; i < length; i++){ 6 int result = 1; // true
7 if (ca[i] '= cb[i]) {] J
8 for (1 = 0; i1 < length; i++){

8 return 0; // false
o) 9 | result & (cal[il == cb[il);
10 } 10 }
11 return 1; // true 11 return result;
12 3 12 }

Unsecure - ET sensitive Secure - Constant ET: 876

» 758 for the secret password
» {362, 404, 446, 488, 530, 572, 614, 656, 698, 740} for any
other password

32/36

Is this third program secure?

Program 3

1 int main () {
2 int i ;

3 int length = 10; // length of the strings
4 char ca[ll] = " patehenaff " ;

5 char cb[11l] = " pasta " ;

6

7 int result = 1; // true

8 (for (i=@; i<length ; i++) {]

9 if (cal[i] == cb[i]) {

10 result &= 1;

11 } else {

12 result &= 0;

13 }

14 }

15 return result ;

16 }

33/36

Is this third program secure?

r

Program 3) » It seems so: very close to the former secure

rogram
int main () { p g

int i ;
int length = 10; // length of the strings
char ca[11]

1

; » But it is not due to the instruction cache
4

5 char cb[11]

6

7

8

9

" patehenaff " ; » 876 for the secret password
" pasta " ; » {816, 822, 828, 834, 840, 846, 852, 858, 864, 870} for
any other password

int result = 1; // true

(for (i=@; i<length ; i++) {]

if (ca[i] == cb[1i]) {

10 result &= 1;
11 } else {

12 result &= 0;
13 }

14 }

15 return result ;
16 }

33/36

Is this third program secure?

r

Program 3) » It seems so: very close to the former secure

rogram
int main () { p g

int 1 ;

| | » But it is not due to the instruction cache
int length = 10; // length of the strings

1
2
3
4 char ca[ll] = " patehenaff " » 876 for the secret password

5 char cb[11] = " pasta " ; » {816, 822, 828, 834, 840, 846, 852, 858, 864, 870} for
6

7

8

9

any other password
int result = 1; // true

(for (i=@; i<length ; i++) {]

if (ca[i] == cb[i]) {

10 result &= 1;
11 1

} else { We can reconfigure the
12 result &= 0;

13) program, by making it opaque
14 3} g # » adding 6 nop instructions at the end of
15 return result ;

16 } > (see paper)

B =)

one branch

33/36

Conclusion and perspectives

Conclusion

End-to-end approach on binary code timing analysis, subject to micro-
architectural constraints

)= » automated production of timed formal models of both the program and the
hardware architecture

» using (parametric) time Petri nets

Ilustrative case-study: detection of timing leaks in @ programs
/ » via parameter synthesis techniques using Roméo

» (manual) reconfiguration of the program to make it opaque

35/ 36

Perspectives

wddah » Modeling and analysis of programs on multicore architectures
» Automatic modification of a program to make it opaque

» Handling more complex attacks
» Fault-injection

¢ » Cache side-channels
‘>\ & » flush and reload, prime and probe

» Energy-based attacks

E » Formal proof of our translation?

36/ 36

S sasus crs lip

27 January 2026 | APR Seminar | Paris, France

Detecting Timing Leaks of Programs
using Parametric Timed Model Checking

Dylan Marinho
Sorbonne Université, CNRS UMR 7606, LIP6

@il

Bibliography

Bibliography

[AD94]
[Cas09]

[And+22]

[And+25]

[Lim+09]

[And+23]

Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, 1994.
Franck Cassez, “The Dark Side of Timed Opacity,” in ISA, 2009.

Etienne André, Didier Lime, Dylan Marinho, and Jun Sun, “Guaranteeing Timed Opacity using Parametric Timed
Model Checking,” TOSEM, 2022.

Etienne André et al.,, “Verifying Timed Properties of Programs in IoT nodes using Parametric Time Petri Nets,” in
SAC 2025, 2025.

Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie Traonouez, “Romeo: A Parametric Model-
Checker for Petri Nets with Stopwatches,” in TACAS 2009, 2009.

Etienne André, Engel Lefaucheux, Didier Lime, Dylan Marinho, and Jun Sun, “Configuring Timing Parameters to
Ensure Execution-Time Opacity in Timed Automata,” in TiCSA@ETAPS 2023, 2023.

38 /36

Additional information

Explanation of the pictures

» Therac-25 bug
» Computer bug, race condition
» Consequences: multiple fatalities

» Allusion to the MIM-104 Patriot Missile Failure (Iraq, 1991)

» 28 fatalities, hundreds of injured

» Computer bug: software error (clock drift)

» (Picture of an actual MIM-104 Patriot Missile, though not the one of 1991)

» Allusion to the sinking of the Sleipner A offshore platform (Norway, 1991)
» No fatalities
» Computer bug: inaccurate finite element analysis modeling

» (Picture actually from the Deepwater Horizon Offshore Drilling Platform)

40 / 36

Explanation of the pictures

Ariane flight V88 (France, 1996)
Computer bug (notably integer overflow)

v

v

v

Consequences: US$370 million

Papa Johns Pizza < X
- » USA, June 2025
» Empty bars during Iran’s riposte against US military bases.

.

b 1o it o

.ollllll-"l..
WS

(Dr. Dominic Ng)
Papa Johns Pizza < X
nlvmw . Menu Reviews Photos Updat > USA’ 24 June 2025

» After the Israel-Iran ceasefire

0000000000¢0..
o e

. (Dr. Dominic Ng)

41/ 36

Explanation of the pictures

v

Prefecture de Police, Paris (France, 17th July 2024 at 10:10 PM)
Delivers in front of the Prefecture de Police, Paris

v

v

The day before closing the center of Paris to prepare the 2024 Olympic Games

v

Paris Metro map, Madeleine station (Paris, France)

42 / 36

Licensing

Sources of the graphics

» Title : Explosion of first Ariane 5 flight, June 4, 1996

» Author : ESA

» Source : https://www.esa.int/ESA_Multimedia/Images/2009/09/Explosion_of_first_Ariane_5_flight_
» License : ESA Standard Licence

» Title : Deepwater Horizon Offshore Drilling Platform on Fire
» Author : ideum

» Source : https://secure.flickr.com/photos/ideum/4711481781/
» License : Creative Commons cc-by-sa

- + Title : DA-SC-88-01663
'\,* » Author : imcomkorea
Ei » Source : https://secure.flickr.com/photos/imcomkorea/3017886760

» License : Creative Commons cc-by-nc-nd

44 / 36

https://www.esa.int/ESA_Multimedia/Images/2009/09/Explosion_of_first_Ariane_5_flight_
https://secure.flickr.com/photos/ideum/4711481781/
https://secure.flickr.com/photos/imcomkorea/3017886760

Sources of the graphics

i

.g(‘@

(=

Title : Therac-25

Author : ?

Source : https://arquivonuclear.blogspot.com/2011/03/therac-25.html
License : unknown

Title : Autonomous robot vehicle or ADV typically used for food or grocery delivery

Author : Rlistmedia

Source : https://commons.wikimedia.org/wiki/File:Autonomous_delivery_robot_vehicles_ ADV.png
License : Creative Commons cc-by

Title : Smiley green alien big eyes (aaah)

Author : LadyofHats

Source : https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
License : Public domain

45/ 36

https://arquivonuclear.blogspot.com/2011/03/therac-25.html
https://commons.wikimedia.org/wiki/File:Autonomous_delivery_robot_vehicles_ADV.png
https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg

Sources of the graphics

» Title : Smiley green alien big eyes (cry)
» Author : LadyofHats
» Source : https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg

» License : Public domain
» Title : Smiley green alien exterminate

» Author : LadyofHats
» Source : https://commons.wikimedia.org/wiki/File:Smiley_green_alien_exterminate.svg
» License : Public domain

E » Source: Flaticon.com

» Source: Flaticon.com

46 / 36

https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
https://commons.wikimedia.org/wiki/File:Smiley_green_alien_exterminate.svg

License of this document

This presentation can be published, reused and modified under the terms of the license
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC

BY-NC-SA 4.0)
OE0)

creativecommons.org/licenses/by-nc-sa/4.0/

Authors: Etienne André, Dylan Marinho

https://creativecommons.org/licenses/by-nc-sa/4.0/

	Timed opacity
	Solutions
	Execution-time opacity

	Analyzing timing behaviors of programs
	Modeling hardware
	Modeling programs
	A fully automated translation

	Application to security properties
	Conclusion and perspectives
	Bibliography
	Additional information
	Licensing

