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Context: Verifying complex timed systems

» Critical systems: Failures may result in dramatic consequences

» Need for early bug detection
» Bugs discovered when final testing: expensive
» Need for a thorough specification and verification phase

Therac-25 MIM-104 Pat. Mis. Fail. ~ Sleipner A offshore platform Ariane flight V88
(USA, 1980s) (Iraq, 1991) (Norway, 1991) (France, 1996)
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Context: Verifying complex timed systems

» Critical systems: Failures may result in dramatic consequences

» Need for early bug detection
» Bugs discovered when final testing: expensive
» Need for a thorough specification and verification phase

il
Therac-25 MIM-104 Pat. Mis. Fail. ~ Sleipner A offshore platform Ariane flight V88
(USA, 1980s) (Iraq, 1991) (Norway, 1991) (France, 1996)
[ » Verification is needed to ensure the absence of bugs ]
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Context: Side-channel attacks

Side-channel attacks

Threats to a system using non-algorithmic weaknesses
J > e.g., power consumption, electromagnetic radiation, cache usage, timing, accoustic emissions,
temperature variations, etc.

'home.xnet.com/~warinner/pizzacites.html (1990s)
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Context: Side-channel attacks

Side-channel attacks

Threats to a system using non-algorithmic weaknesses
J > e.g., power consumption, electromagnetic radiation, cache usage, timing, accoustic emissions,
temperature variations, etc.

Example

Fo Number of pizzas (and order time) ordered by the white house prior to major war
¢

C
< ¢ announcements®

'home.xnet.com/~warinner/pizzacites.html (1990s)
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Context: Side-channel attacks
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Context: Timing attacks over programs

1
2
3
4
5
6
7
8

pwd L M A S TY

// input pwd : Real password
// input attempt: Tentative password
for (1 = 0; 1 < min(len(pwd), len(attempt)); i++) {
if(pwd[i] !'= attempt[i]){
return false

}

return true

&) Execution time (ET):
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Context: Timing attacks over programs

1
2
3
4
5
6
7
8

// input pwd : Real password
// input attempt: Tentative password
for (1 = 0; 1 < min(len(pwd), len(attempt)); i++) {
if(pwd[i] !'= attempt[i]){
return false

}

return true

ENE S - ¢
RN -

&) Execution time (ET): ¢ = 3¢ = 2 correct characters

Problem: The ET is proportional to the number of consecutive correct characters
from the beginning of attempt
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Context: The use of formal methods

[ Need to detect timing-leak vulnerabilities

» We want formal guarantees — formal methods

» Various methods:
» Abstract interpretation
» Static analysis

» Model checking
» Theorem proving
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Context: Model checking overview

System

Specification
“The system must be

safe”
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Context: Model checking overview

System

Formal model Yes
=5 Model checking 1 N\t
7
) Specification Prpay 7
The system must be — AC o
safe”
Question: does the model of the system satisfy the property? ]
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Timed automaton (TA)

» Finite-state automaton (sets of locations, )

[AD94] Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, 1994.
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Timed automaton (TA)

» Finite-state automaton (sets of locations, transitions, and ) augmented with a set X of clocks
» Real-valued variables evolving linearly at the same rate

» Features:

» Location invariant: property to be verified to stay at a location
» Transition guard: property to be verified to enable a transition

» Clock reset: some of the clocks can be set to 0 along transitions
y=38

<+ 0
y+0

y<9d
r>1

z<+0

[AD94] Rajeev Alur and David L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, 1994.
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The most critical system: The coftee machine

y<+<0

» Coftee with two doses of sugar
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y=28

coffee

r <+ 0 @S0 cup
y<+<0

» Coftee with two doses of sugar

.press. 1.5 . press . 2.7 . press . 0.8 . cup . 3 .Coffee.

= 0 0 1.5 0 2ol 0 0.8 0.8 3.8 3.8
y= 0 0 1.5 1.5 4.2 4.2 5 5 8 8

8/ 36



Timed opacity




The attacker model

Attacker capabilities

» Has access to the model (white box)

» Can observe an execution
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The attacker model

Attacker capabilities

» Has access to the model (white box)
» Can observe an execution

Attacker goal

» Deduce secret information from these observations

— visit of a private location
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Attacker setting

r<l1
<0 <l
&)
w0 @ Observed trace:
0.7)(b,1.3
_____________ . - (4,0.7)(b, 1.3
<9 T < 2,
Question: Can the attacker infer if 7 ; has been visited? ]
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Opacity in timed automata
Definition 1 (Opacity) \

A TA is opaque iff all observable traces can be obtained both

> by runs visiting £ .

> by runs not visiting £,

[Cas09] Franck Cassez, “The Dark Side of Timed Opacity,” in ISA, 2009.
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Opacity in timed automata
Definition 1 (Opacity) \

A TA is opaque iff all observable traces can be obtained both

> by runs visiting £ .

» by runs not visiting 7......

g

So... is it the end? \

[ Opacity decision pr
l Is the given timed automaton opaque?

Franck Cassez, The Dark Side of Timed Opacity (2009)

— Opacity is undecidable for timed automata!

[Cas09] Franck Cassez, “The Dark Side of Timed Opacity,” in ISA, 2009.
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Solutions




Proposed solutions

Change the system — Subclasses of TA

» restriction on the number of actions
» restriction on the number of clocks
» discrete time
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Execution-time opacity



Hypothesis

» A start location and an end location

> A special private location £ ;,

Definition 1 (Execution-time opacity) -

The system is ET-opaque for a duration d if there exist two runs of duration d

1. visiting /

priv

2. one not visiting £ ;.

[And+22] Etienne André, Didier Lime, Dylan Marinho, and Jun Sun, “Guaranteeing Timed Opacity using Parametric Timed Model
Checking,” TOSEM, 2022.
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» There exist (at least) two runs of duration d = 2:

17/ 36



r <3

» There exist (at least) two runs of duration d = 2:

17/ 36



r <3

» There exist (at least) two runs of duration d = 2:

17/ 36



Example

17/ 36



r <3

» There exist (at least) two runs of duration d = 2:

17/ 36



Example

17/ 36



17/ 36



r <3

» There exist (at least) two runs of duration d = 2:

17/ 36



r <3

» There exist (at least) two runs of duration d = 2:

17/ 36



r <3

» There exist (at least) two runs of duration d = 2:

17/ 36



17/ 36



» ET-opaque for d = 2
, @ @ » 3-ET-opaque
-------- @ GS0
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1 » ET-opaque for d = 2
@ @ @ @ » 3-ET-opaque

» D, =[1,25]%D_, =]0,3] » Not full-ET-opaque
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ET-opacity in timed automata

[ ET-opacity decision problem

l Is the given timed automaton ET-opaque?

[And+22] Etienne André, Didier Lime, Dylan Marinho, and Jun Sun, “Guaranteeing Timed Opacity using Parametric Timed Model
Checking,” TOSEM, 2022.
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ET-opacity in timed automata

[ ET-opacity decision problem

l Is the given timed automaton ET-opaque?

— ET-opacity is decidable for timed automata!

[And+22] Etienne André, Didier Lime, Dylan Marinho, and Jun Sun, “Guaranteeing Timed Opacity using Parametric Timed Model
Checking,” TOSEM, 2022.
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Analyzing timing behaviors of
programs




Timing analysis of programs is hard: it depends not just on code, but also on low-level
details of execution

Impact of hardware Q\ Limitations of existing
techniques _l
» ET is heavily influenced by the .
: : » Most abstract time away or focus on
micro-architecture i
» Especially: pipelines, caches, memory coarse properties
hierarchy » e.g., schedulability analysis, worst-case
execution time (WCET)

» Insufficient for fine-grained timing

behaviors
» e.g., detecting or mitigating timed side-
channels
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Model checking

System .

Formal model

— = P

S L&

=7

7
) Specification Prpay 7
The system must be — AC o
safe”
Question: does the model of the system satisfy the property? ]
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Our contributions in a nutshell

¢ A modular and automated approach to build formal models to analyze timing

behaviors
» binary code with the hardware

[And+25] Etienne André et al., “Verifying Timed Properties of Programs in IoT nodes using Parametric Time Petri Nets,” in SAC 2025,
2025.
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Our contributions in a nutshell

¢ A modular and automated approach to build formal models to analyze timing

behaviors
» binary code with the hardware

B An implementation
» targeting a realistic micro-architecture of a simple micro-controller
» producing time Petri nets models

<% An application to timing attacks in C programs using the Roméo model checker

[And+25] Etienne André et al., “Verifying Timed Properties of Programs in IoT nodes using Parametric Time Petri Nets,” in SAC 2025,
2025.
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Modeling hardware



Considered hardware

Our hardware b Features 7

» Model of the processor architecture » Execution pipeline of the processor
» relatively simple micro-architecture similar to

» Unique memory space
ARM Cortex M0+ core, with a 2-stage pipeline

» (instructions and data)

(Fetch and Execute) » Bus between the processor and
» Model of the instruction set memory
architecture (ISA) » Direct-mapped instruction cache
> ARMv6-M ISA » with 16 lines of 32 bytes

» no actual instructions, but only information
about their presence

» No data cache

» Among the limitations: no switch/case, function pointers. . .

24/ 36



PTPN hardware model

» doFetch, isHit and accessCount: variables used to synchronize with the software

1, 1]
doFetch == doFetch == ascessCount ==
oFetch «+ 1 P2 A isHit == Ps

Fetch ‘{>\>ICacheHit ‘{P\ Exe ﬂ D7
o~ ﬂ% 1
IWaitBus » [CacheMiss D EndExe
0,0] [10, 10 1,1]
doFetch == 0
A isHit == Endl\/[eLQl7 0]
\ / T 0
DWaitBus Mem
0,0] i
accessCount > 0 ac >0
ac < accessCount ac — —

Mlemory access

25/ 36



Modeling programs



PTPN software model

Software

» Captures the binary code of the
program (ARMv6-M)
» Firing a transition corresponds to
executing the instruction
» Pipeline fetch: doFetch
» Memory access: accessCount and isHit

» Structurally identical to the control
flow graph

INSTS0BO (&)

0, 0]+
doFetch ==1

INST80B2 O

[0, 0]
doFetch ==1

INST80B4 C

[0,0]

!((proc.regs.sr Zmask) #r
Zmask)

A doFetch ==1

INST80B6 O

doFetch + 0
isHit < inst80b0(proc, mem)
accessCount + 1

doFetch «+ 0

isHit «
inst80b2(proc, mem)
accessCount < 0

0]
!((proc.regs.sr Zmask)
Zmask)
doFetch <+ 0 A doFetch ==1
isHit <
inst80b4 (proc, mem)
accessCount < 0

doFetch «+ 0

isHit «
inst80b4(proc, mem)
accessCount < 0

O INST8O9E
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A fully automated translation



A tfully automated translation

» Including the hardware and software models
~ * Writtenin @ and ©

n > All the way from the @ source code to the PTPN model
- © Entirely open source (github.com/DylanMarinho/codeToPN/)

Target model checker: RomEo

» Parametric timed model checker supporting
(extensions) of PTPNs

» Including C-like code to be executed during transitions

[Lim+09] Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie Traonouez, “Romeo: A Parametric Model-Checker for
Petri Nets with Stopwatches,” in TACAS 2009, 2009.
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Application to security
properties




Application to security properties

Timing attacks N Execution-time opacity L
» Attacker can infer information
about the secret key by measuring the Can the attacker deduce internal
execution time of the program behavior by only observing the execution
> e.g., password checking program time?”

[And+23] Etienne André, Engel Lefaucheux, Didier Lime, Dylan Marinho, and Jun Sun, “Configuring Timing Parameters to Ensure
Execution-Time Opacity in Timed Automata,” in TiCSA@ETAPS 2023, 2023.
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Application to security properties

Timing attacks N Execution-time opacity L
» Attacker can infer information
about the secret key by measuring the Can the attacker deduce internal
execution time of the program behavior by only observing the execution
> e.g., password checking program time?”
» Use of : to measure execution times

[And+23] Etienne André, Engel Lefaucheux, Didier Lime, Dylan Marinho, and Jun Sun, “Configuring Timing Parameters to Ensure
Execution-Time Opacity in Timed Automata,” in TiCSA@ETAPS 2023, 2023.
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Which of the following two programs is not secure?

Program 1 Program 2
1 int main() { 1 int main() {
2 int i; int length = 10; 2 int i; int length = 10;
3 char ca[ll] = "patehenaff"; 3 char ca[ll] = "patehenaff";
4 char cb[11] = "pasta"; 4 char cb[11] = "pasta";
5 5
6 for (1 = 0; i < length; i++){ 6 int result = 1; // true
7 if (cal[i] != cb[il) {) 7
8 for (i = 0; i < length; i++){

8 return 0; // false
o ) 9 | result & (cal[il == cb[i]); ]
10 } 10 }
11 N Y e 11 return result;
12 } 12 }

.
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Which of the following two programs is not secure?

Program 1 Program 2
1 int main() { 1 int main() {
2 int i; int length = 10; 2 int i; int length = 10;
3 char ca[ll] = "patehenaff"; 3 char ca[ll] = "patehenaff";
4 char cb[11] = "pasta"; 4 char cb[11] = "pasta";
5 5
6 for (1 = 0; i < length; i++){ 6 int result = 1; // true
7 if (cal[i] != cb[il) {) 7
8 for (i = 0; i < length; i++){
8 return 0; // false
. ) 9 | result & (cal[il == cb[i]); ]
10 } 10 }
11 P Py 11 return result;
12 } 12 }
\.
Unsecure Secure
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Which of the following two programs is not secure?

Program 1 Program 2
1 int main() { 1 int main() {
2 int i; int length = 10; 2 int i; int length = 10;
3 char ca[ll] = "patehenaff"; 3 char ca[ll] = "patehenaff";
4 char cb[11] = "pasta"; 4 char cb[11] = "pasta";
5 5
6 for (i = 0; i < length; i++){ 6 int result = 1; // true
7 if (ca[i] '= cb[i]) {] J
8 for (1 = 0; i1 < length; i++){

8 return 0; // false
o ) 9 | result & (cal[il == cb[il);
10 } 10 }
11 return 1; // true 11 return result;
12 3 12 }

Unsecure - ET sensitive Secure - Constant ET: 876

» 758 for the secret password
» {362, 404, 446, 488, 530, 572, 614, 656, 698, 740} for any
other password
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Is this third program secure?

Program 3

1 int main () {
2 int i ;

3 int length = 10; // length of the strings
4 char ca[ll] = " patehenaff " ;

5 char cb[11l] = " pasta " ;

6

7 int result = 1; // true

8 (for (i=@; i<length ; i++) {]

9 if (cal[i] == cb[i]) {

10 result &= 1;

11 } else {

12 result &= 0;

13 }

14 }

15 return result ;

16 }
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Is this third program secure?

r

Program 3 ) » It seems so: very close to the former secure

rogram
int main () { p g

int i ;
int length = 10; // length of the strings
char ca[11]

1

; » But it is not due to the instruction cache
4

5 char cb[11]

6

7

8

9

" patehenaff " ; » 876 for the secret password
" pasta " ; » {816, 822, 828, 834, 840, 846, 852, 858, 864, 870} for
any other password

int result = 1; // true

(for (i=@; i<length ; i++) {]

if (ca[i] == cb[1i]) {

10 result &= 1;
11 } else {

12 result &= 0;
13 }

14 }

15 return result ;
16 }
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Is this third program secure?

r

Program 3 ) » It seems so: very close to the former secure

rogram
int main () { p g

int 1 ;

| | » But it is not due to the instruction cache
int length = 10; // length of the strings

1
2
3
4 char ca[ll] = " patehenaff " » 876 for the secret password

5 char cb[11] = " pasta " ; » {816, 822, 828, 834, 840, 846, 852, 858, 864, 870} for
6

7

8

9

any other password
int result = 1; // true

(for (i=@; i<length ; i++) {]

if (ca[i] == cb[i]) {

10 result &= 1;
11 1

} else { We can reconfigure the
12 result &= 0;

13 ) program, by making it opaque
14 3} g # » adding 6 nop instructions at the end of
15 return result ;

16 } > (see paper)

B =)

one branch
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Conclusion and perspectives



Conclusion

End-to-end approach on binary code timing analysis, subject to micro-
architectural constraints

)= » automated production of timed formal models of both the program and the
hardware architecture

» using (parametric) time Petri nets

Ilustrative case-study: detection of timing leaks in @ programs
/ » via parameter synthesis techniques using Roméo

» (manual) reconfiguration of the program to make it opaque
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Perspectives

wddah » Modeling and analysis of programs on multicore architectures
» Automatic modification of a program to make it opaque

» Handling more complex attacks
» Fault-injection

¢ » Cache side-channels
‘>\ & » flush and reload, prime and probe

» Energy-based attacks

E » Formal proof of our translation?
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Additional information



Explanation of the pictures

» Therac-25 bug
» Computer bug, race condition
» Consequences: multiple fatalities

» Allusion to the MIM-104 Patriot Missile Failure (Iraq, 1991)

» 28 fatalities, hundreds of injured

» Computer bug: software error (clock drift)

» (Picture of an actual MIM-104 Patriot Missile, though not the one of 1991)

» Allusion to the sinking of the Sleipner A offshore platform (Norway, 1991)
» No fatalities
» Computer bug: inaccurate finite element analysis modeling

» (Picture actually from the Deepwater Horizon Offshore Drilling Platform)
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Explanation of the pictures

Ariane flight V88 (France, 1996)
Computer bug (notably integer overflow)

v

v

v

Consequences: US$370 million

Papa Johns Pizza < X
- » USA, June 2025
» Empty bars during Iran’s riposte against US military bases.

.

b 1o it o

.ollllll-"l..
WS

(Dr. Dominic Ng)
Papa Johns Pizza < X
nlvmw . Menu  Reviews  Photos  Updat > USA’ 24 June 2025

» After the Israel-Iran ceasefire

0000000000¢0..
o e

. (Dr. Dominic Ng)
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Explanation of the pictures

v

Prefecture de Police, Paris (France, 17th July 2024 at 10:10 PM)
Delivers in front of the Prefecture de Police, Paris

v

v

The day before closing the center of Paris to prepare the 2024 Olympic Games

v

Paris Metro map, Madeleine station (Paris, France)
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Licensing



Sources of the graphics

» Title : Explosion of first Ariane 5 flight, June 4, 1996

» Author : ESA

» Source : https://www.esa.int/ESA_Multimedia/Images/2009/09/Explosion_of_first_Ariane_5_flight_
» License : ESA Standard Licence

» Title : Deepwater Horizon Offshore Drilling Platform on Fire
» Author : ideum

» Source : https://secure.flickr.com/photos/ideum/4711481781/
» License : Creative Commons cc-by-sa

- + Title : DA-SC-88-01663
'\,* » Author : imcomkorea
Ei » Source : https://secure.flickr.com/photos/imcomkorea/3017886760

» License : Creative Commons cc-by-nc-nd
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https://secure.flickr.com/photos/imcomkorea/3017886760

Sources of the graphics

i

.g(‘@

(=

Title : Therac-25

Author : ?

Source : https://arquivonuclear.blogspot.com/2011/03/therac-25.html
License : unknown

Title : Autonomous robot vehicle or ADV typically used for food or grocery delivery

Author : Rlistmedia

Source : https://commons.wikimedia.org/wiki/File:Autonomous_delivery_robot_vehicles_ ADV.png
License : Creative Commons cc-by

Title : Smiley green alien big eyes (aaah)

Author : LadyofHats

Source : https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg
License : Public domain
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Sources of the graphics

» Title : Smiley green alien big eyes (cry)
» Author : LadyofHats
» Source : https://commons.wikimedia.org/wiki/File:Smiley_green_alien_big_eyes.svg

» License : Public domain
» Title : Smiley green alien exterminate

» Author : LadyofHats
» Source : https://commons.wikimedia.org/wiki/File:Smiley_green_alien_exterminate.svg
» License : Public domain

E » Source: Flaticon.com

» Source: Flaticon.com
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This presentation can be published, reused and modified under the terms of the license
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BY-NC-SA 4.0)
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