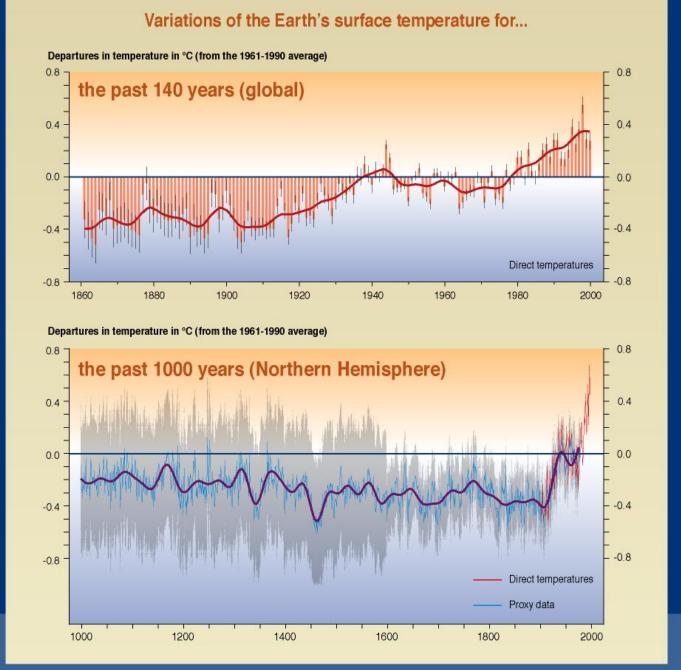
Integrated Assessment Modeling and Climate Agreements

Thierry Bréchet

CORE & Chair Lhoist Berghmans in Environmental Economics and Management, Université catholique de Louvain

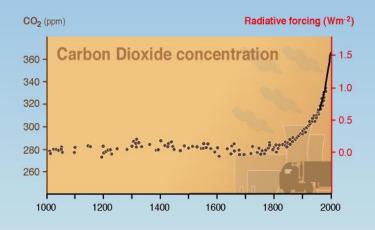

• • Outline

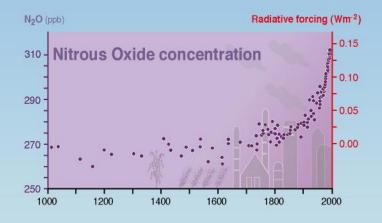
- 1. Introduction: the climate issue (in short)
- The ClimNeg World Simulation (CWS) model
- 3. Three benchmark scenarios
- 4. Some cooperative and non cooperative game theory concepts
- 5. Analysis of potential climate agreements

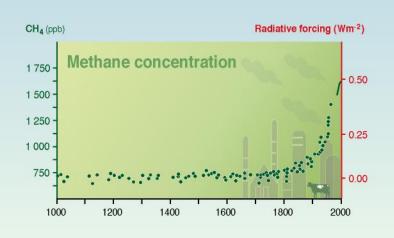
• • 1. The climate, in short

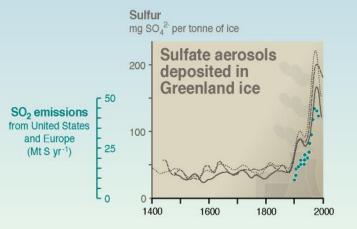
As an economic problem, climate change has the following characteristics:

- Climate is a global public good
- Impacts (damages) are local
- Both emissions and impacts involve all agents and sectors
- Impacts will appear in the long term
- Abatement costs are borne in the short-medium term.
- There is no supranational authority able to implement a global policy
- Climate agreements must be based on self-enforcement

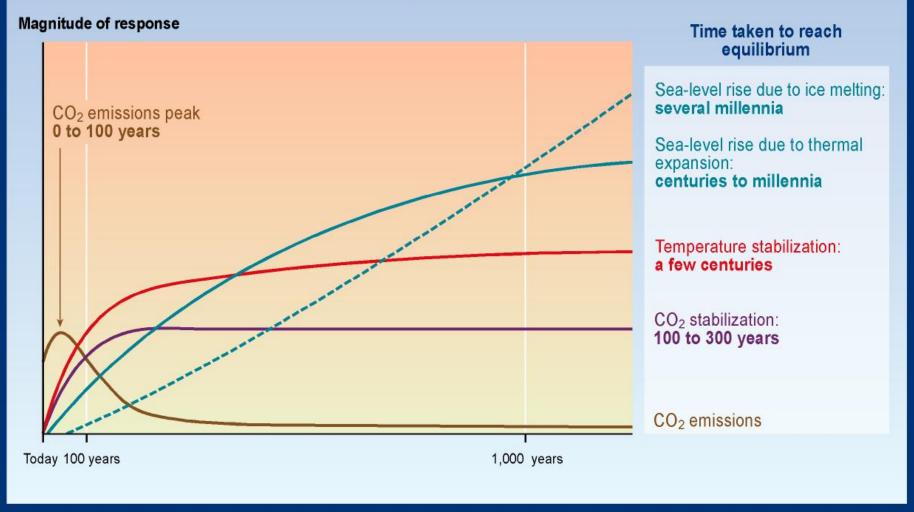



SYR - FIGURE 2-3





Indicators of the human influence on the atmosphere during the Industrial era



SYR - FIGU WG1 FIGU

CO₂ concentration, temperature, and sea level continue to rise long after emissions are reduced

SYR - FIGURE 5-2

An effective climate policy thus requires...

To curb adequately worldwide GHG emissions, for a long time period:

BUT WHICH ABATEMENT?

For this to be effective, all countries should participate to the abatement effort:

BUT WHICH PARTICIPATION?

The two questions are handled by using computational integrated assessment models (IAMs) and game theory.

2. The ClimNeg World Simulation model (CWS)

The CWS model is an Integrated Assessment Model (IAM). An IAM is a combination of...

- Damage functions
 monetarized environmental impacts
- 2. Abatement cost functions economic costs of pollution
- 3. Intertemporal optimization objective function

It thus interlinks...

- the economy (Ramsey-type model of economic growth)
- the climate (carbon cycle and temperature rise)
- impacts of climate change and pollution abatement

Countries/regions in the CWS model

Country / region	CWS code
------------------	----------

USA USA

European Union (EU-15) EU

Japan JPN

China CHN

Former Russian Union FSU

Rest of the world ROW

The economic model for country/region *i*

$$Y_{i,t} = Z_{i,t} + I_{i,t} + C_i \left(\mu_{i,t}\right) + D_i \left(\Delta T_t\right)$$

$$Y_{i,t} = A_{i,t} K_{i,t}^{\gamma} L_{i,t}^{\gamma - \gamma}$$

$$K_{i,t+1} = \begin{bmatrix} 1 - \delta_K \end{bmatrix}^{1} K_{i,t} + 1 \cdot I_{i,t} \qquad K_{i,t} \quad \text{donné}$$

$$E_{i,t} = \sigma_{i,t} - \mu_{i,t} Y_{i,t}$$

$$C_i \left(\mu_{i,t}\right) = Y_{i,t} b_{i,1} \mu_{i,t}^{b_{i,2}}$$

$$D_i \left(\Delta T_t\right) = Y_{i,t} \theta_{i,1} Y_{i,t}^{b_{i,2}}$$

• • Climate part

$$\begin{split} M_{t+1} &= \overline{M} + \beta \prod_{i=1}^{n} E_{i,t} + (1 - \delta_{M}) \, \text{m}_{t} - \overline{M} \, \text{m}_{t} \\ F_{t} &= \frac{4.1 \, \ln \left(M_{t} / M_{0} \right)}{\ln \left(2 \right)} \end{split}$$

$$T_{t}^{o} = T_{t-1}^{o} + \tau_{3} + \tau_{3} T_{t-1} - T_{t-1}^{o}$$

$$T_{0}^{o} donn\acute{e}$$

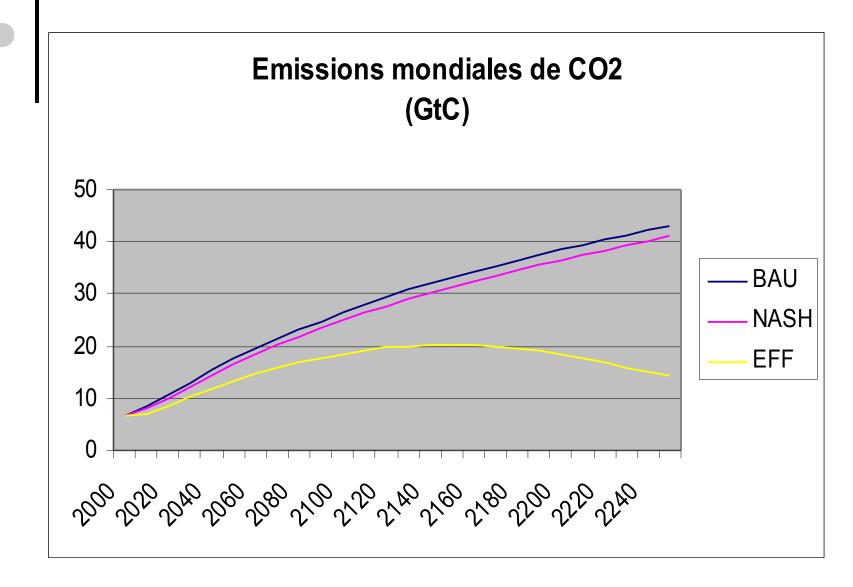
$$\Delta T_{t} = \Delta T_{t-1} + \tau_{1} \left[F_{t} - \lambda \Delta T_{t-1} \right] - \tau_{2} T_{t-1} - T_{t-1}^{o} \Delta T_{0} donn\acute{e}$$

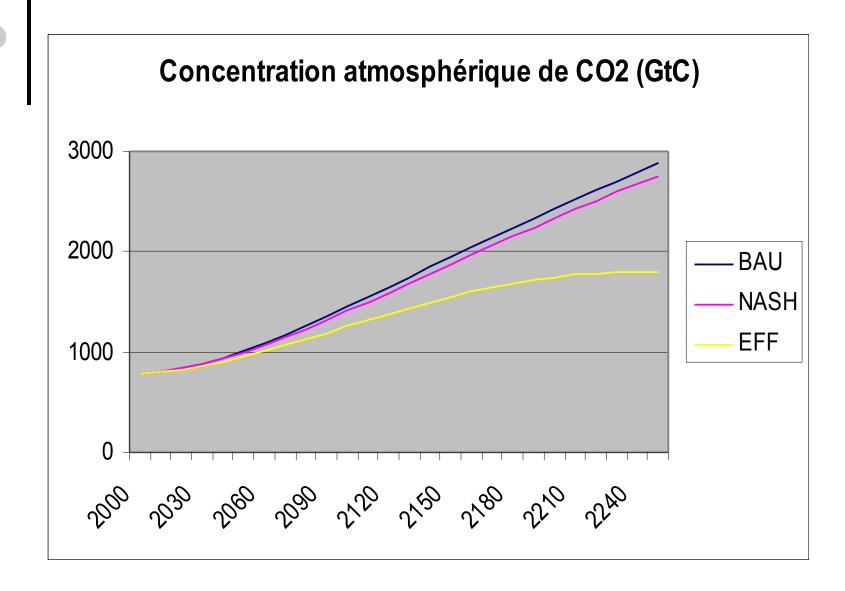
$\delta_{\scriptscriptstyle K}$	Taux de dépréciation du capital					
γ	Elasticité de la production au capital					
β	Part aérienne des émissions de CO ₂					
$\delta_{_M}$	Taux d'absorption naturel du carbone					
$ au_I$	Coefficient de transfert de l'équation de température	0.226				
$ au_2$	Coefficient de transfert de l'équation de température	0.44				
$ au_3$	Coefficient de transfert de l'équation de température	0.02				
<u>λ</u>	Paramètre de <i>feedback</i>	1.41				
M	Concentration atmosphérique préindustrielle de CO ₂	590				
M_{o}	Concentration atmosphérique initiale de CO ₂	783				
ΔT_0	Variation initiale de la température à la surface du globe	0.622				
$T_0^{\ o}$	Variation initiale de la température du fond des océans	0.108				

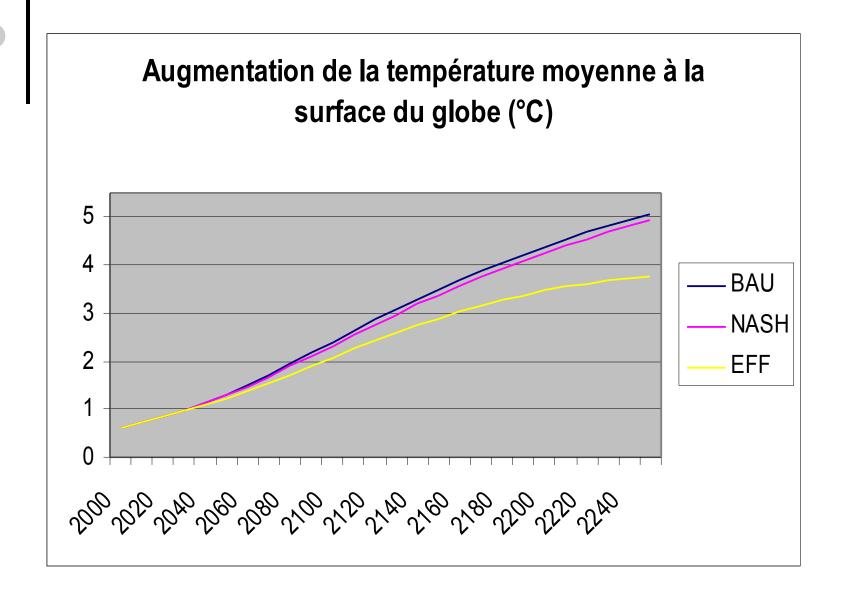
• • Calibration (con't)

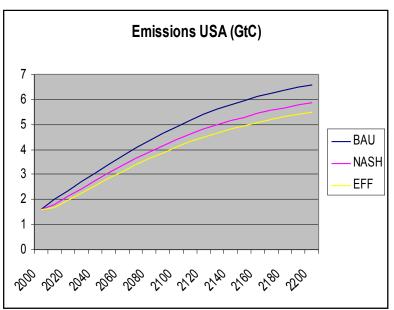
- Base year is 2000
- Assumptions, for each country/region, on the evolution of:
 - total factor productivity (based on past evolutions)
 - carbon intensity (based on past evolutions)
 - population level (based on UN forecasts)
- Simulation timespan: 2000 to 2250
- Step: 10 years

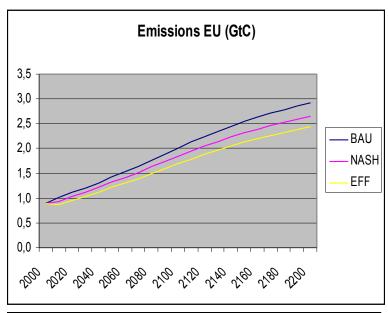
3. Three benchmark scenarios

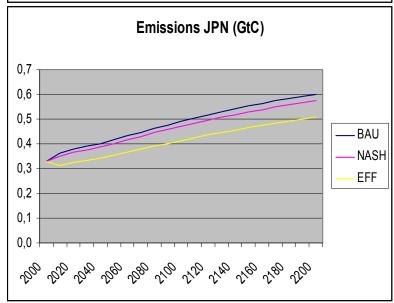

- Laisser-faire (BAU, business-as-usual)
 no climate policies (non-rational, yet)
- Non cooperative (NASH equilibrium)
 no international agreement
 but each country implements its optimal domestic climate
 policy, while considering the strategy of the others as
 given
- Pareto-efficient (EFF solution)
 global policy that maximizes global welfare
 behind:
 optimal allocation of abatement efforts across countries

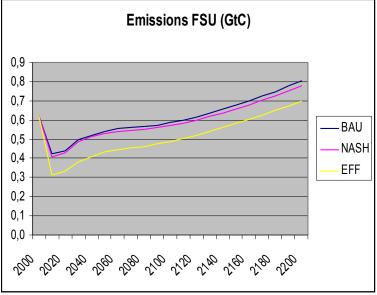

BAU: same as NASH, but with $\mu = 0$

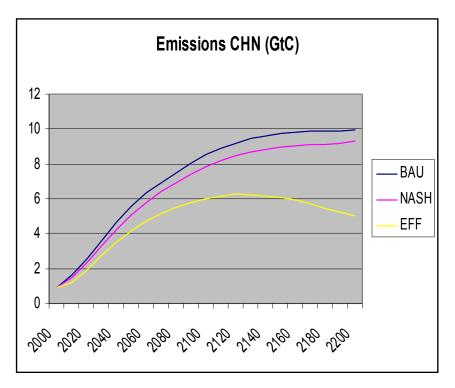

where Z is a 'green' consumption

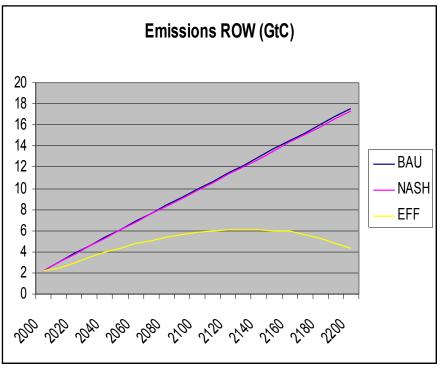

Discount rates (per year):


3.0% in CHN and ROW 1.5% in other (rich) countries









Comparison of welfare (*i.e.* discounted green consumption)

•	BAU	NASH	NASH/BAU	EFF	EFF/BAU	EFF/NASH
USA	148099,9	148240,9	0,10%	148924,5	0,56%	0,46%
JPN	30615,57	30641,26	0,08%	30751,82	0,45%	0,36%
EU	108290,9	108395,6	0,10%	108871,5	0,54%	0,44%
CHN	36121,31	36148,81	0,08%	36060,34	-0,17%	-0,24%
FSU	9733,248	9743,806	0,11%	9788,157	0,56%	0,46%
ROW	54053,59	54096,63	0,08%	53875,59	-0,33%	-0,41%
WORLD	386914,6	387267	0,09%	388271,9	0,35%	0,26%

4. Some cooperative and non cooperative game theory concepts

CWS has been used to study coalition formation in two ways:

- cooperative approach (Eyckmans and Tulkens, 2003)
- non-cooperative approach (Carraro, Eyckmans and Finus, 2006)

When a coalition is not **stable**, both approaches suggest **transfers schemes** to make it stable.

A few notations

N is the set of players (countries or regions) i refers to players (i = 1, ..., n) S is a coalition v(.) is the worth of a coalition

y is an imputation for the grand coalition $y = (y_1, ..., y_n, ..., y_n)$

Stability concepts under the cooperative approach

The cooperative approach focuses on strategies chosen by the 'grand coalition'. Such strategies are stable if:

- no player is better-off in the absence of cooperation
- no group of players can do better in smaller coalitions *i.e.*, the following two properties are satisfied:

Individual rationality:
$$\forall i \in N, \square \square \quad y_i \geq v([i])$$

Coalitional rationality:
$$\forall S \subset N, \quad \sum_{i \in S} y_i \ge v(S)$$

Stability concepts under the non-cooperative approach

The non-cooperative approach considers the individual payoffs assigned to every player, being inside or outside a coalition.

A coalition is stable if:

- no insider prefers to leave unilaterally, and
- no outsider prefers to join, rather than to stay aside

Let $v_i(S)$ be the individual payoff of player i when coalition S is formed.

Internal stability:
$$\forall i \in S, \quad v_i(S) \ge v_i(S \setminus \{i\})$$

External stability:
$$\forall i \notin S, \quad v_i(S) \ge v_i(S \cup \{i\})$$

• • Transfers schemes

If a coalition is not stable, some transfers schemes may induce stability.

Cooperative approach

the grand coalition can be stabilized by 'GTT transfers': the **surplus** of cooperation is divided among countries, and each region receives at least its consumption level when no cooperation.

Transfers are given by

$$\begin{split} \Psi_{i} &= - \Big(W_{i}^{\textit{eff}} - W_{i}^{\textit{nash}} \Big) + \pi_{i} \Big(\sum_{j \in N} W_{j}^{\textit{eff}} - \sum_{j \in N} W_{j}^{\textit{nash}} \Big) \\ \textit{with} \quad \pi_{i} \geq \cdot, \forall i, \quad \textit{and} \quad \sum_{i} \pi_{i} = \cdot \end{split}$$

Transfers schemes (con't)

Non-cooperative approach

No explicit rule, but uses the notion of *potential internal stability* (PIS):

A coalition is PIS if it guarantees to its members at least their free-rider payoff, that is,

$$v(S) \ge \sum_{i \in S} v_i(S \setminus \{i\})$$

Transfers schemes (end)

Difference between the two approaches

- The cooperative approach assumes that, if a country free-rides on the agreement, the whole coalition collapses.
- The non-cooperative approach assumes that, if a country free-rides, the other countries in the coalition stick together.

5. Analysis of climate coalitions

How do we proceed?

- We run the model under the NASH and EFF scenarios up to 2250
- We run the model for all the 63 possible coalitions (the 64th being 'all singletons')
- For each of these coalitions,
 - we compute its worth (sum of discounted consumption),
 - we check whether it is IS, ES, PIS,
 - we calculate the GTT transfers

• • Some results : stability

(1/3)

Cooperative approach

- The grand coalition (EFF) is not stable: 18 smaller coalitions can do better (and thus will block the grand coalition)
- 2. GTT transfers can make the grand coalition stable

Non-cooperative approach

- Only 7 coalitions are IS, all being small (2 or 3 countries); the grand coalition is not IS
- 2. Only one coalition is both IS and ES: {USA, EU}
- With transfers, all 2- and 3-country coalitions are PIS, while only one 5-country is : {USA, JPN, CHN, FSU, ROW}

Some results: 'homogeneity' (2/3)

Countries can be split into two categories:

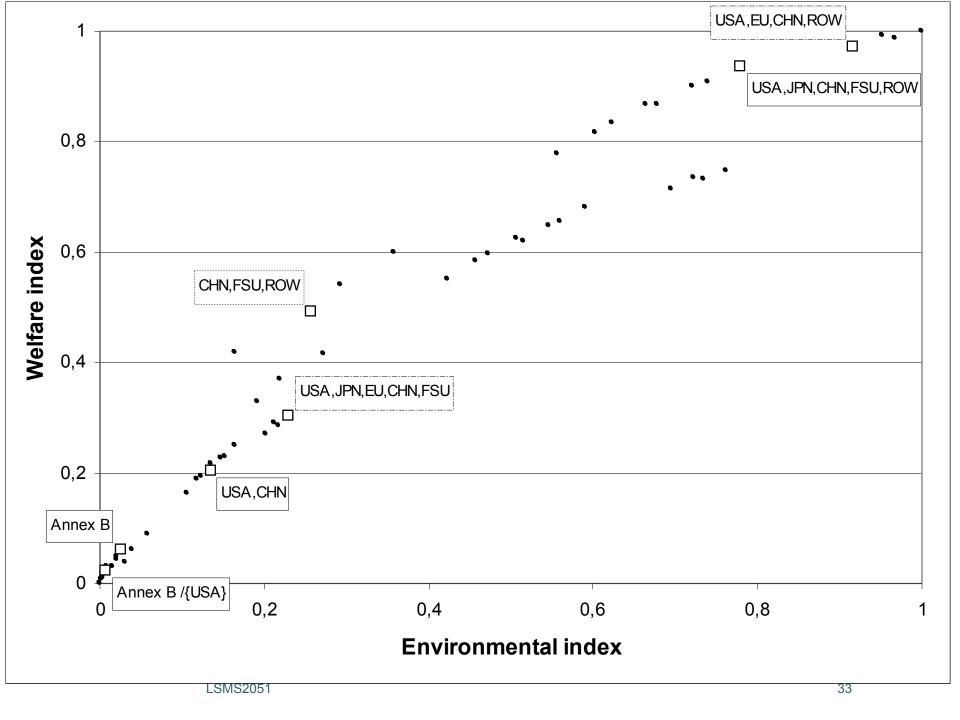
- developped countries: USA, JPN, EU
- developping ones: CHN, ROW
- ... and a 'free electron', FSU

An **homogeneous coalition** is a coalition formed by countries from a single categorie (+/- FSU)

- 1. Out of the 7 IS coalitions, 5 are homogeneous ones
- All these 5 IS-homogeneous involve FSU
- 3. Only 11 heterogeneous coalitions (out of 42) are PIS
- 4. Kyoto is ES and PIS, while Kyoto\{USA} is not ES: the USA would be better-off by joining back Annex B!

So: homogeneity seems to foster stability

Some results : global outcome (3/3)


What is an 'efficient' climate agreement?

- a large number of countries?
- a small number of countries?
- a split between rich and poor countries?

To assess the **efficiency** of coalitions we built up two indexes:

- the aggregate welfare level reached at the world level
- the environmental performance, expressed as carbon concentration in 2250.

These indexes are normalized so that 1 corresponds to the EFF solution and 0 corresponds to the NASH solution.

Conclusion (1/2)

- The computational CWS model allows to illustrate theoretical insights in terms of coalition formation
- Importance of sensitivity analyses to check the robustness of the results
- Normative exercise:
 - says what each country should do to maximise its own welfare
 - but: nothing on how such agreements could be reached
- Descriptive exercise:
 - exhibits the rational behind countries' strategies (cost-benefit analysis)

• • Conclusion (2/2)

- Is it a problem to assume that countries' strategy lies on cost-benefit analysis?
- Is it selfishness?
- What about national policies?
- What are these 'transfers' among countries?
- Main shortcomings of the methodology?

- Carraro, C., Eyckmans, J. and Finus, M. (2006). `Optimal transfers and participation decisions in international environmental agreements', <u>Review of International Organisations</u>, 1(4), 379-396.
- Eyckmans, J. and Tulkens, H. (2003). `Simulating coalitionally stable burden sharing agreements for the climate change problem', <u>Resource and Energy Economics</u>, 25, 299-327.
- Chander, P. and Tulkens, H. (1997). `The core of an economy with multilateral environmental externalities', International Journal of Game Theory, 26, 379-401.
- Bréchet, Th., Gerard, F. and Tulkens, H. (2007). 'Efficiency vs stability of climate coalitions: a conceptual and computational appraisal', CORE discussion paper 2007/3.