Calcul des équilibres de Nash pour un jeu stratégique à 2 joueurs

Basé sur chapitre 3:

Equilibrium Computation for two-player Games in strategic and extensive form de B. von Stengel

du livre Algorithmic Game Theory

E. Hyon

Groupe de travail Eco-Opti octobre 2010

Octobre 2010

Jeu sous forme stratégique

Jeu stratégique (Bimatrix game)

- 2 joueurs jouent simultanément.
- Deux matrices de revenus (ou payoff) de taille $m \times n$.
 - A revenus du joueur 1
 - B revenus du joueur 2

Hypothèses : Pas d'entrées négatives ; pas de lignes (A) ou de colonnes (B) nulles.

- Stratégie Pure :
 - ▶ Joueur 1 : $m \in M = \{1, ..., M\}$ actions possibles
 - Joueur 2 : $n \in N = \{m+1, \dots, M+N\}$ actions possibles

Définition (Stratégie Mixte)

Une stratégie mixte est un vecteur de probabilités dont chaque coordonnée décrit la probabilité de jouer une stratégie pure.

Définition (Support d'une stratégie mixte)

Le support est l'ensemble des stratégies pures de probabilité strictement positive.

Meilleure réponse et Equilibre de Nash

Définition (Meilleure réponse)

L'ensemble des meilleures réponses du joueur i aux stratégies des autres joueurs a_{-i} est

$$\mathcal{B}(a_i) = \{a_i \in A_i \mid (a_{-i}, a_i) \succcurlyeq (a_{-i}, a_i') \forall a_i' \in A_i\}$$

Avec deux joueurs:

- La meilleure réponse du joueur 1 à la stratégie y est la stratégie x qui maximise le payoff : x^tAy.
- La meilleure réponse du joueur 2 à la stratégie x est la stratégie y qui maximise le payoff : x^tBy.

Définition (Équilibre de Nash)

Un équilibre de Nash est une paire de stratégie mixtes (x, y) qui sont meilleures réponses l'une de l'autre.

Condition de meilleure réponse

Proposition (Condition de meilleure réponse)

Soit x et y deux stratégies mixtes des joueurs 1 et 2. La stratégie x est une meilleure réponse à la stratégie y si et seulement si \forall $i \in M$,

$$x_i > 0 \implies (Ay)_i = u = \max\{(Ay)_k | k \in M\}. \tag{1}$$

Rappel : La ligne $(Ay)_k$ est le revenu de l'action k du joueur 1 quand le joueur 2 joue y.

Intuitivement cela veut dire que font partie du support les seules stratégies pures qui sont des meilleures réponses.

(GdT Eco Opti) Calcul E.N. Octobre 2010

Exemple : I Définition des matrices

Matrice du joueur 1 (joue les lignes)

$$A = \begin{bmatrix} 3 & 3 \\ 2 & 5 \\ 0 & 6 \end{bmatrix}$$

Matrice du joueur 2 (joue les colonnes)

$$B = \begin{bmatrix} 3 & 2 \\ 2 & 6 \\ 3 & 1 \end{bmatrix}$$

Ce jeu comporte un seul équilibre pur (obtenu par le *maximin*). Il s'agit de ((1,0,0), (1,0)).

Exemple : Il Calcul d'une stratégie mixte

On cherche à savoir si à un support de la forme $x = (x_1, x_2, 0)$ et $y = (y_4, y_5)$ correspond une stratégie mixte.

$$x = (x_1, x_2, 0)$$
 implique
 $(xB)_1$ et $(xB)_1$ même valeur

$$\begin{cases} 3x_1 + 2x_2 = v \\ 2x_1 + 6x_2 = v \\ x_1 + x_2 = 1 \end{cases}$$

 $y = (y_4, y_5)$ implique $(Ay)_1$ et $(Ay)_2$ même valeur

$$\begin{cases} 3y_4 + 3y_5 = u \\ 2y_4 + 5y_5 = u \\ y_4 + y_5 = 1 \end{cases}$$

Ce qui donne

$$\begin{cases} x_1 = 4x_2 \\ x_1 + x_2 = 1 \end{cases}$$

Stratégie mixte : $x = (\frac{4}{5}, \frac{1}{5}, 0)$ Vecteur de payoff Ay : (3, 3, 2)Payoff total : $x^t Ay = 3$: Ce qui donne

$$\begin{cases} y_4 = 2y_5 \\ y_4 + y_5 = 1 \end{cases}$$

Stratégie mixte : $y = (\frac{2}{3}, \frac{1}{3})$ Vecteur de payoff x^tB : (14/5, 14/5)Payoff total : $x^tBy = 14/5$

Exemple : Il Calcul d'une stratégie mixte (2)

Similairement:

Si on suppose un support de la forme $x = (0, x_2, x_3)$ et $y = (y_4, y_5)$, alors en résolvant le Programme Linéaire :

```
Stratégie mixte : x = (0, \frac{1}{3}, \frac{2}{3}) Stratégie mixte : y = (\frac{1}{3}, \frac{2}{3}) Vecteur de payoff Ay : (3, 4, 4) Vecteur de payoff x^tB : (8/3, 8/3) Payoff total : x^tAy = 4: Payoff total : x^tBy = 8/3
```

Mais Ne Marche Pas avec un support de la forme $x = (x_1, 0, x_3)$ et $y = (y_4, y_5)$.

Parce que :

- Pour rendre les 1ère et 3ème lignes de Ay indifférentes on obtiendrait y = (1/2, 1/2) et (Ay) = (3, 7/2, 3). \Rightarrow Pas vérification de (1).
- Pour rendre les lignes de xB indifférentes on obtient $x_1 = 2$ et $x_3 = -1$. \implies pas une probabilité.

Équilibre par énumération du support

Définition (Jeu non dégénéré)

Un jeu est appelé jeu non dégénéré si il n'y a pas de stratégie mixte de support de taille k qui a plus de k meilleures réponses pures.

Corollaire (Égalité des tailles des supports à l'équilibre)

Dans un jeu bimatriciel non dégénéré, les stratégies mixtes (x, y) de tout équilibre de Nash ont des supports de tailles égales.

Équilibre par énumération du support (suite)

Algorithme

```
ENTREE un jeu non degenere
for k \in \{1, ..., \min(m, n)\} do
  for all (1, J) deux sous ensembles de taille k do
      Resoudre les systèmes
     \sum_{i \in I} x_i b_{i,j} = v, \sum_{i \in I} x_i = 1
     \sum_{i} a_{i,i} y_i = u, \sum_{i} y_i = 1
      Vérifier que
      a) 0 \leqslant x \leqslant 1
      b) 0 \leqslant y \leqslant 1
      c) Condition (1)
  end for
end for
SORTIE tous les équilibres du jeu
```

Complexité : 4^n .

Définition d'un polyèdre

Définition (Polyèdres)

On appelle polyèdre l'ensemble définit par

$$\{z \in \mathbb{R}^{\ell} \mid Mz \leqslant q\},$$

pour une matrice M donnée et pour un vecteur q donné.

Trois éléments importants d'un polyèdre : les face, sommet et arête :

- Une face est un sous ensemble du polyèdre tel que au moins une inégalité sature.
- Un sommet est une face de dimension 0,
- une arête une face de dimension 1.

Polyèdres associés au jeu

Définition (Polyèdres de meilleure réponse)

Les polyèdres associés au jeu bimatriciel sont :

$$\bar{P} = \{ (x, v) \in \mathbb{R}^M \times \mathbb{R} \mid \mathbf{x} \geqslant 0, \mathbf{1}^t x = 1, B^t x \leqslant \mathbf{1} v \}
\bar{Q} = \{ (y, u) \in \mathbb{R}^N \times \mathbb{R} \mid \mathbf{y} \geqslant 0, \mathbf{1}^t y = 1, Ay \leqslant \mathbf{1} u \}$$

Ainsi, \bar{Q} est le polyèdre de meilleure réponse du joueur 2 Ainsi, \bar{P} est le polyèdre de meilleure réponse du joueur 1.

Polyèdre de meilleure réponse est l'ensemble des gains de l'autre joueur (u ou v) délimités par les stratégies mixtes du joueur.

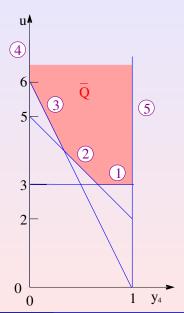
Exemple : III Polyèdres associés

Le polyèdre $ar{Q}$ correspond au système

$$\begin{cases} 3y_4 + 3y_5 \leqslant u & (1) \\ 2y_4 + 5y_5 \leqslant u & (2) \\ 6y_5 \leqslant u & (3) \\ y_4 \geqslant 0 & (4) \\ y_5 \geqslant 0 & (5) \\ y_4 + y_5 = 1 \end{cases}$$

Ce qui donne avec $y_5 = 1 - y_4$

$$\begin{cases} 3 \leqslant u & (1) \\ 5 - 3y_4 \leqslant u & (2) \\ 6 - 6y_4 \leqslant u & (3) \\ \vdots & \vdots & \vdots \end{cases}$$



Labels (étiquettes)

Définition (Étiquette)

On dit qu'un point (z,t) d'un polyèdre de meilleure réponse a une étiquette $k \in M \cup N$ si la kème inégalité du polyèdre sature.

Pour \bar{Q} , (y, u) a une étiquette k si

- soit $k = i \in M$ avec ième équation saturée i.e. : $\sum_i a_{i,j} y_j = u$.
- soit $k = j \in N$ avec jème équation qui sature i.e. : $y_j = 0$.

Définition (Noeud Complètement étiqueté)

Une paire ((x,v),(y,u)) est complètement étiquetée si tout nombre $k \in M \cup N$ est une étiquette de (x,u) ou de (y,v)

Cette condition d'étiquetage complet correspond à la condition (1).

Proposition (Équilibre de Nash)

Un équilibre est une paire (x,y) de stratégies mixtes telles que ((x,v),(y,u)) soit complètement étiquetée.

Polytopes

Un polytope est un polyèdre (convexe) borné.

Les polytopes associés sont issus des polyèdres de meilleure réponse en

- divisant les équations par v ou u,
- changeant de variables,
- faisant sauter la condition de normalisation.

Définition (Polytopes associés au jeu)

Les polytopes associés au jeu bimatriciel sont

$$P = \{ x \in \mathbb{R}^M \mid \mathbf{x} \geqslant 0, B^t x \leqslant \mathbf{1} \}$$
 (2)

$$Q = \{ y \in \mathbb{R}^N \mid Ay \leqslant \mathbf{1}, \mathbf{y} \geqslant 0 \}$$
 (3)

Le passage du polyèdre au polytope conserve les étiquettes.

Proposition (Équilibre de Nash)

Un équilibre de Nash est une paire $(x,y) \in P \times Q - \{(\mathbf{0},\mathbf{0})\}$ complètement étiquetée. **N.B.** il faut normaliser les stratégies mixtes.

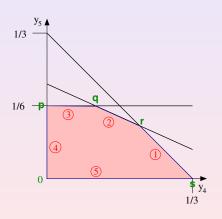
Exemple: IV polytopes associés (1) Polytope Q

Le polyèdre Q correspond au système

$$\begin{cases} 3y_4 + 3y_5 \leqslant 1 & (1) \\ 2y_4 + 5y_5 \leqslant 1 & (2) \\ 6y_5 \leqslant 1 & (3) \\ y_4 \geqslant 0 & (4) \\ y_5 \geqslant 0 & (5) \end{cases}$$

Ce qui donne avec

$$\begin{cases} y_5 \leqslant \frac{1}{3} - y_4 & (1) \\ y_5 \leqslant \frac{1}{5} - \frac{2}{5}y_4 & (2) \\ y_5 \leqslant \frac{1}{6} & (3) \\ \vdots \end{cases}$$

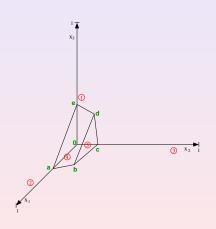


Exemple : IV polytopes associés (2) Polytope *P*

Le polyèdre P correspond au système

$$\begin{cases} x_1 \geqslant 0 & (1) \\ x_2 \geqslant 0 & (2) \\ x_3 \geqslant 0 & (3) \\ 3x_1 + 2x_2 + 3x_3 \leqslant 1 & (4) \\ 2x_1 + 6x_2 + x_3 \leqslant 1 & (5) \end{cases}$$

Sur face $x_2 = 0$ une des deux équations est redondante.



Exemple : IV polytopes associés (3) les sommets

Sommets du polytope P

Sommets du polytope Q

Sommet	Coordonnees	Label
0	(0,0,0)	1, 2, 3
a	(1/3,0,0)	2, 3, 4
Ь	(2/7, 1/14, 0)	3, 4, 5
С	(0, 1/6, 0)	1, 3, 5
d	(0, 1/8, 1/4)	1, 4, 5
e	(0,0,1/3)	1, 2, 4

Sommet	Coordonnees	Label
0	(0,0)	4, 5
p	(0, 1/6)	3, 4
q	(1/12, 1/6)	2, 3
r	(2/9, 1/9)	1, 2
S	(1/3,0)	1, 5

Les sommets complètements étiquetés sont $(\mathbf{0},\mathbf{0})$, (a,s), (b,r) et (d,q) avec

- (a, s): Équilibre avec stratégie pure (1, 0, 0) et (1, 0). Payoffs: 3 et 3
- (b,r): Équilibre avec stratégie mixte $(\frac{4}{5},\frac{1}{5},0)$ et $(\frac{2}{3},\frac{1}{3})$. Payoffs: 4 et $\frac{8}{3}$
- (d,q) : Équilibre avec stratégie mixte $(0,\frac{1}{3},\frac{2}{3})$ et $(\frac{1}{3},\frac{2}{3})$. Payoffs : 3 et $\frac{14}{5}$

Équilibre par énumération des sommets

Algorithme

```
ENTREE un jeu non degenere

for all x sommet de P-0 do

for all y sommet de Q-0 do

if (x,y) est complètement étiquetée then

(x/(1x),y/(1y)) est un équilibre

end if

end for

SORTIE tous les équilibres du jeu
```

Complexité : $(2.6)^n$

Algorithme de Lemke Howson

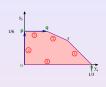
Définition (Chemin presque étiquetté)

- Un sommet k presque complètement étiquetté est un sommet tel que seule l'étiquette k manque pour que le sommet soit complètement étiquetté.
- Une arète k presque complètement étiquettée est l'arête qui relie deux sommets k presque complètement étiquettés.
- Un chemin k presque complètement étiquetté est l'ensemble d'arètes et de sommets qui sont tous k presque complètement étiquettés.

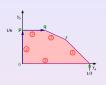
Lemke-Howson : trouve un équilibre de Nash du jeu.

C'est un parcours alterné (une fois dans P une fois dans Q) d'un chemin k presque totalement étiquetté.

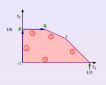
3 types de manipulations : Ajout d'un label, identifier un label dupliqué et retirer un label.



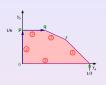
- Départ (0,0).
- ② Label 2 enlevé dans $P \Rightarrow$ prochain sommet c avec labels $\{1,3,5\}$ Paire (c,0) labels : $\{1,3,5,4,5\} \Rightarrow$ label 5 dupliqué.
- **○** Label 5 enlevé dans $Q \Rightarrow$ prochain sommet p avec labels $\{3,4\}$ Paire (c,p) labels : $\{1,3,5,3,4\} \Rightarrow$ label 3 dupliqué.
- Label 3 enlevé dans $P \Rightarrow$ prochain sommet d avec labels $\{1,4,5\}$ Paire (d,p) labels : $\{1,4,5,3,4\} \Rightarrow$ label 4 dupliqué.
- Label 4 enlevé dans $Q \Rightarrow$ prochain sommet q avec labels $\{2,3\}$ Paire (d,q) labels : $\{1,4,5,2,3\} \Rightarrow$ aucun label dupliqué.
- (d, q) est un équilibre.



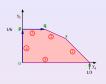
- Départ (0,0).
- ② Label 2 enlevé dans $P \Rightarrow$ prochain sommet c avec labels $\{1,3,5\}$ Paire (c,0) labels : $\{1,3,5,4,5\} \Rightarrow$ label 5 dupliqué.
- ② Label 5 enlevé dans $Q \Rightarrow$ prochain sommet p avec labels $\{3,4\}$ Paire (c,p) labels : $\{1,3,5,3,4\} \Rightarrow$ label 3 dupliqué.
- ② Label 3 enlevé dans $P \Rightarrow$ prochain sommet d avec labels $\{1, 4, 5\}$ Paire (d, p) labels : $\{1, 4, 5, 3, 4\} \Rightarrow$ label 4 dupliqué.
- **○** Label 4 enlevé dans $Q \Rightarrow$ prochain sommet q avec labels $\{2,3\}$ Paire (d,q) labels : $\{1,4,5,2,3\} \Rightarrow$ aucun label dupliqué.
- \bigcirc (d,q) est un équilibre.



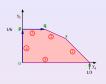
- Départ (0,0).
- ② Label 2 enlevé dans $P \Rightarrow$ prochain sommet c avec labels $\{1,3,5\}$ Paire (c,0) labels : $\{1,3,5,4,5\} \Rightarrow$ label 5 dupliqué.
- **②** Label 5 enlevé dans $Q \Rightarrow$ prochain sommet p avec labels $\{3,4\}$ Paire (c,p) labels : $\{1,3,5,3,4\} \Rightarrow$ label 3 dupliqué.
- **○** Label 3 enlevé dans $P \Rightarrow$ prochain sommet d avec labels $\{1,4,5\}$ Paire (d,p) labels : $\{1,4,5,3,4\} \Rightarrow$ label 4 dupliqué.
- **○** Label 4 enlevé dans $Q \Rightarrow$ prochain sommet q avec labels $\{2,3\}$ Paire (d,q) labels : $\{1,4,5,2,3\} \Rightarrow$ aucun label dupliqué.
- (d,q) est un équilibre.



- Départ (0,0).
- ② Label 2 enlevé dans $P \Rightarrow$ prochain sommet c avec labels $\{1,3,5\}$ Paire (c,0) labels : $\{1,3,5,4,5\} \Rightarrow$ label 5 dupliqué.
- **②** Label 5 enlevé dans $Q \Rightarrow$ prochain sommet p avec labels $\{3,4\}$ Paire (c,p) labels : $\{1,3,5,3,4\} \Rightarrow$ label 3 dupliqué.
- **1** Label 3 enlevé dans P ⇒ prochain sommet d avec labels $\{1,4,5\}$ Paire (d,p) labels : $\{1,4,5,3,4\}$ ⇒ label 4 dupliqué.
- **③** Label 4 enlevé dans $Q \Rightarrow$ prochain sommet q avec labels $\{2,3\}$ Paire (d,q) labels : $\{1,4,5,2,3\} \Rightarrow$ aucun label dupliqué.
- $oldsymbol{0}\;(d,q)$ est un équilibre



- Départ (0,0).
- ② Label 2 enlevé dans $P \Rightarrow$ prochain sommet c avec labels $\{1,3,5\}$ Paire (c,0) labels : $\{1,3,5,4,5\} \Rightarrow$ label 5 dupliqué.
- **②** Label 5 enlevé dans $Q \Rightarrow$ prochain sommet p avec labels $\{3,4\}$ Paire (c,p) labels : $\{1,3,5,3,4\} \Rightarrow$ label 3 dupliqué.
- **1** Label 3 enlevé dans P ⇒ prochain sommet d avec labels $\{1,4,5\}$ Paire (d,p) labels : $\{1,4,5,3,4\}$ ⇒ label 4 dupliqué.
- **3** Label 4 enlevé dans $Q \Rightarrow$ prochain sommet q avec labels $\{2,3\}$ Paire (d,q) labels : $\{1,4,5,2,3\} \Rightarrow$ aucun label dupliqué.



- Départ (0,0).
- 2 Label 2 enlevé dans $P \Rightarrow$ prochain sommet c avec labels $\{1,3,5\}$ Paire (c,0) labels : $\{1,3,5,4,5\} \Rightarrow$ label 5 dupliqué.
- **1** Label 5 enlevé dans $Q \Rightarrow$ prochain sommet p avec labels $\{3,4\}$ Paire (c, p) labels : $\{1, 3, 5, 3, 4\} \Rightarrow$ label 3 dupliqué.
- **⑤** Label 3 enlevé dans $P \Rightarrow$ prochain sommet d avec labels $\{1,4,5\}$ Paire (d, p) labels : $\{1, 4, 5, 3, 4\} \Rightarrow$ label 4 dupliqué.
- **5** Label 4 enlevé dans $Q \Rightarrow$ prochain sommet q avec labels $\{2,3\}$ Paire (d, q) labels : $\{1, 4, 5, 2, 3\} \Rightarrow$ aucun label dupliqué.
- \bigcirc (d,q) est un équilibre.

Algorithme de Lemke Howson

Algorithme

```
ENTREE un jeu non degenere
Prendre un équilibre (x, y) = (0, 0) \in P \times Q
Prendre un label k \in M \cup N et supprimer label k du sommet (x, y)
repeat
  soit | etiquette supprimee
  soit (x, y) la paire de sommets consideree
  on cherche paire (x', y') t.q.
     x' ou y' est extremite arete l-presque etiquettee partant de x ou y.
  dans (x', y') etiquette i est dupliquee
  if i = k then
    (x', y') est un équilibre
  else
     Supprimer etiquette i
  end if
until k = i
SORTIE UN equilibre du jeu
```

Lemke Howson et l'ensemble des solutions

Lemme

Dans le polytope $P \times Q$ l'ensemble des sommets et arètes k presque complètement étiquettés forment un graphe de degré au plus 2.

Preuve issue du theoreme de Sperner

Corollaire:

- Nombre équilibres est impair ((0,0)) est un pseudo équilibre
- Partant d'un équilibre on arrive forcément à un autre équilibre.

Mais

- Partant de (0,0) en enlevant des étiquettes différentes au début on arrive à des équilibres différents. est-ce sûr?.
- Certains equilibres peuvent rester cachés (jeu symétriques par ex.), donc on ne peut obtenir tous les équilibres par Lemke-Howson

Algorithme de Lemke Howson sous la forme de systèmes linéaires

Point de vue pratique

On peut travailler sur des matrices avec des méthodes utilisées pour le simplexe. C'est la méthode des tableaux

On rajoute des variables d'écart s et r, les équations deviennent

$$B^t x + s = \mathbf{1}, \qquad r + Ay = \mathbf{1} \tag{4}$$

avec

$$x \geqslant \mathbf{0}, \quad y \geqslant \mathbf{0}, \quad r \geqslant \mathbf{0}, \quad s \geqslant \mathbf{0}$$

Proposition (Expression de la condition (1))

Une paire de stratégies mixtes vérifie la condition (1) ssi

$$\forall i \in M, \ x_i r_i = 0 \quad \text{et} \quad \forall j \in N, \ s_j y_j = 0. \tag{5}$$

(GdT Eco Opti) Calcul E.N. Octobre 2010 23 / 27

Algorithme de Lemke Howson sous la forme de systèmes linéaires II : Caractérisation de la solution

Une solution basique de (4) est un ensemble de :

- *n* vecteurs colonnes linéairement indépendants de $B^t x + s = 1$
- m vecteurs colonnes linéairement indépendants de r + Ay = 1
- Les indices des variables hors base donnent les étiquettes.

Algorithme de Lemke Howson sous la forme de systèmes linéaires III : Algorithme du pivot

- Selection colonne dans $B^t x + s = 1$ (au hasard) i.e. selection variable qui va entrer dans la base (étiquette qui sort).
- 2 Selection de la ligne par la méthode du ratio minimum *i.e.* selection variable qui va entrer de la base.
- **1.** L'élément pivot est déterminé. Application du pivotage. *i.e.* Changement de base effectué.
- Selection colonne dans r + Ay = 1 la colonne sélectionnée correspondant à la ligne qui vient de sortir.
- Selection de la ligne par la méthode du ratio minimum i.e. selection variable qui va entrer de la base.
- **1** L'élément pivot est déterminé. Application du pivotage.
- ② Selection colonne dans $B^tx + s = u$ la colonne sélectionnée correspondant à la ligne qui vient de sortir.
- 8
- Jusqu'à ce que la variable à faire sortir soit la variable initiale

Algorithme de Lemke Problème de Complémentarité linéaire

On suppose que A' et B' sont des matrices de pertes (≥ 0).

LCP

Un LCP consiste à trouver u, v, x et y tel que

$$u = A'y - \mathbf{1}_m \quad u \geqslant 0, \quad y \geqslant 0$$

$$v = B'^t x - \mathbf{1}_n \quad v \geqslant 0, \quad x \geqslant 0$$

$$x^t u + y^t v = 0$$

Equilibre est obtenu en normalisant x et y. LCP résolu par l'algo Lemke-Howson

LCP (linear complentary problem) cas particulier de FLCP (Fundamental Linear Complementary Problem)

Algorithme de Lemke Problème de Complémentarité linéaire II

FCLP

On cherche w et z tel que

$$w = q + Mz \quad w \geqslant 0, z \geqslant 0$$
$$w^{t}z = 0$$

On obtient le FCLP par

$$w = \begin{bmatrix} u \\ v \end{bmatrix}, \ z = \begin{bmatrix} x \\ y \end{bmatrix}, \ q = \begin{bmatrix} -\mathbf{1}_m \\ -\mathbf{1}_n \end{bmatrix}, \ M = \begin{bmatrix} 0 & A' \\ B'^t & 0 \end{bmatrix}$$

FLCP résolu par algo Lemke (Lemke seul est une généralisation de Lemke Howson : la différence est principalement dans la phase d'init)

(GdT Eco Opti) Calcul E.N. Octobre 2010