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Motivation: Distributed computations using equilibria in
games

From the beginning, game theory has been concerned with
equilibria in distributed systems.

Computational issues were often ignored up to the point that a
“new” field has emerged: algorithmic game theory.

The same kind of questions are now arising in population games
where it may not be enough to provide a dynamical system
converging to equilibria.

In this talk, I will present an effective distributed algorithm for a
class of games solving an optimal allocation problems in wifi
networks.

B. G. (inria) Algorithms for population games 2 / 30



Motivation: Distributed computations using equilibria in
games

From the beginning, game theory has been concerned with
equilibria in distributed systems.

Computational issues were often ignored up to the point that a
“new” field has emerged: algorithmic game theory.

The same kind of questions are now arising in population games
where it may not be enough to provide a dynamical system
converging to equilibria.

In this talk, I will present an effective distributed algorithm for a
class of games solving an optimal allocation problems in wifi
networks.

B. G. (inria) Algorithms for population games 2 / 30



Outline and Main Result

1: Model.

I Model an optimization problem as a potential game.

2: Algorithm.

We provide a distributed algorithm “following” the replicator
dynamics and show that:

I it converges to a pure strategy.

I converges to a local maximum of the objective function.

3: Experimental results and several extensions.

Simulation of the algorithm.
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Model with general throughput

We consider a set N of users that can connect to a fixed set of
base stations (BS), of various technologies (WiFi, WiMAX, UMTS,
LTE...).
The set of BSs that user n can connect to is denoted by In. An
allocation sn for user n is the choice of a BS i ∈ In. The state of
a BS (absence of presence of every user) is a binary vector `. The
thoughput of user n under allocation s is denoted un(`(s))
Only assumption:

∀` ∈ {0; 1}N , ∀n ∈ N , Umin ≤ un(`) ≤ Umax. (1)
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Global Objective

Objective

Find an allocation s of users to BSs that maximises the α fair
throughput.:

max
s

∑
n∈N

uαn(`(s))

The α-modified throughput is uαn(`) def= Gα(un(`)) with

Gα(x) def=
x1−α

1− α
.

The best allocation s must be computed by a fully distributed
algorithm where BSs don’t see each other and users can only
exchange information with their currently attached BS.

This rather general optimization problem can be solved using
potential games.
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Population Game

We model the user-network association problem by a game in
which each user is seen as a player.

For user n, the choice sn is the type of BS (or equivalently,
network) that user n chooses to connect to.
We denote by qn,i the probability for user n to choose network i:

qn,i = P (Sn = i).
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Population Game: repercussion payoffs

the set of repercussion payoffs is

rαn(`sn(s)) def= uαn(`sn(s))−∑
m6=n:sm=sn

(uαm(`sm(s)− en)− uαm(`sm(s))) ,

With no loss of generality, the repercussion payoffs are assumed to
be positive (by adding a constant Cα to all throughputs,
depending on the upper and lower bounds).
The game with mixed strategies has expected payoff of a packet

from user n and type i : fn,i(q)
def= E[rαn(`i(S))|Sn = i].

Mean Payoff over all BS fn(q) def=
∑
i∈In

qn,ifn,i(q).

( fn,i(q) only depends on (qm,i)m 6=n, multi-linear function of
(qm,i)m 6=n).
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Potential Game

Theorem 1.

The repercussion game is a potential game, i.e.

∀n,∀i, fn,i(q) =
∂F

∂qn,i
(q), where F is its associated potential

function, and:

F (q) =
∑
n∈N

∑
i∈In

qn,iE[uαn(`i(S))|Sn = i].

This implies that every local maximizer of the potential is an ESS
[Sandholm 2001].
Also, since the potential is multilinear over a convex set, at least
one local optimum is pure.
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Dynamics

Equilibrium points of potential games have been shown to be rest
points of dynamical systems [Sandholm 01]:

q̇ = G(q).

I Replicator: q̇i = qi(fi − f)
I Projection: q̇i = Proj∆(f)i
I Best Response: q̇i = BRi(q)− qi

I Loggit: q̇i =
efi/K∑
j e

fj/K
− qi
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Dynamics II

The rest points of these dynamics - if they exist - are (perturbed)
equilibria of the game. From [Sandhlom, 2001],
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Computation Issues

This is not the end of the story: how do you come up with an
algorithm to compute the equilibria?
A numerical integration of the differential equation is not always
good enough.

One may want:

I Select Lyapounov stable points.

I Select good points.

I Resilience to small errors and/or to a small number of
malicious individuals.

I A distributed computation done by the users (synchronized or
not).

I An incentive for each user to execute the algorithm.
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Replicator Dynamics

Recall that the replicator dynamics [weibull 97, hofbauer 03] is

∀n ∈ N , i ∈ I, dqn,i
dt

= qn,i
(
fn,i(q)− fn(q)

)
.

Intuitively, this dynamics can be understood as an update
mechanism where the masses associated to networks whose
expected payoff are more than the average payoff will increase in
time, while non profitable networks will gradually be abandoned.
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Properties of the Replicator Dynamics

Theorem 2.

All the asymptotically stable sets of the replicator dynamics are
faces of the domain ∆. These faces are sets of equilibrium points
for the replicator dynamics.

This is because the replicator dynamics preserves a certain form of
volume [Akin 83] so that no interior set can be an attractor.

Theorem 3.

[Coucheney, Gaujal, Touati, 2008] If an asymptotically stable face
of the replicator dynamics is reduced to a single point, then it is an
ESS, a Wardrop and a Nash equilibrium of the game.
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Distributed Algorithm

Algorithm:

For all n ∈ N :

I Choose initial strategy qn(0). repercussion utility

I At each time epoch t:
I Choose sn according to qn(t).

I Update: qn,i(t+ 1) = qn,i(t) + ε rn(`sn)
(

1sn=i − qn,i(t)
)
.

constant step size

{
1 if sn = i
0 otherwise

Simple computation for the mobile.
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Properties of the Algorithm

1) The algorithm is a stochastic approximation of the replicator
dynamic differential equation with constant step size:
qn,i(t+ 1) = qn,i(t) + ε b(qn,i(t), Sn(t)).
E[b(qn,i, Sn)] = qn,i(fn,i(q)− f(q)).

2) It is fully distributed.
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Properties of the algorithm

Theorem 4.

[Coucheney, Gaujal, Touati, 2008] The values of q computed by
our algorithm weakly converge to a set of pure Nash equilibria of
the allocation game with repercussion utilities, that locally
maximize the global α-fair throughput.

The proof uses the fact that q is a martingale over stable faces
converging to pure points. Out of stable faces, the behavior of q is
close to the behavior of the martingale with a high probability
(using a coupling argument).
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Distributed algorithms for other dynamics

Consider a dynamics of type q̇ = G(q).
To construct a distributed stochastic approximation, one has to
find a function H such that
qn,i(t+ 1) = qn,i(t) + εH(qn,i(t), Sn(t))
such that
E[H(qn,i, Sn)] = Gi(q).

When G is linear (as with replicator) this is an easy task. For
non-linear dynamics (such as Proj, BR, Logit) , this can be very
difficult or even impossible to get in closed form.
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Convergence to Fixed Association for User n
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Is the local optimum a global one?

Suppose we initialize the algorithm with

∀n ∈ N , i ∈ In, qn,i(0) =
1
|In|

.

In the case of multiple local equilibria, will the algorithm converge
to the global maximum?
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Two player, two action game

Theorem

In a two player, two action allocation game with repercussion
utilities, the initial point of the algorithm is in the basin of
attraction of the global maximum.

proof

V (x, y) = |1− x|+ |1− y| is a Lyapunov function on the upper
right triangle

S(
1

2
)

D

(
∂V

∂x
,
∂V

∂y
)

E
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Two player, two action game (contd.)
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Extension to more than two players

 0

 0.5

 1
 0

 0.5

 1

 0

 0.5

 1

z

y

x

3 players, with 2 choices each. The dynamics converges to the
point (1, 1, 1) whereas the global maximum is (0, 0, 0).
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Extension to more than two choices
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Example with 2 players, one has 3 choices and the other has 2.
The dynamics starting in (1/2, 1/3, 1/3) converges to (1, 1, 0)

whereas the global maximum is (0, 0, 0).
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Convergence Speed: Adapt Step Size ε

6 heuristics for the choice of εn(t)

qn,i(t+ 1) = qn,i(t) + εn(t) rn(`sn) (1sn=i − qn,i(t)).
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(with 5% confidence intervals).
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Number of changes

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80

Number of handovers

Number of mobiles

Mean number of handovers for a user as a function of the total
number of users.
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Improvement over naive allocations

Percentage of efficiency gain
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Percentage of efficiency gain by using our algorithm in comparison
to the fixed choice of the best cell BS for each user.
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Extension 1: Mobility of users

When the set of users is not static but undergoes arrivals,
departures and mobility, the association algorithm has to be run at
every arrival or departure of a user.
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Adaptation to arrivals and departures: the algorithm smoothly and
quickly reconverges after changes.

Typical time scales compare nicely: while arrivals or departures of
users in WiMAX or WiFi BSs occur every minute or so, the
association algorithm converges in less than a second in most cases.
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Extension 2: White Noise on the Measurements
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Stability with respect to measurement errors: behavior of the
algorithm when the throughput of all cells has a white Gaussian

noise.
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Extension 3: Mice and Elephant Traffic
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Percentage of gain by running the algorithm for mice and
elephants instead of running it only for elephants. The percentage

of mice traffic vary, but the global traffic average is constant.
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Conclusion

Conclusion

I Distributed algorithm.

I Convergence to a locally optimal fixed association.

I Very simple computation needed.

I Fast convergence (a few tens) with simple heuristics for the
choice of step size ε.

Future works

I Analytically study convergence speed.

I Discuss the relevance of the throughput as a utility function
for different kinds of applications (e.g. latency).

I Investigate links with optimal control under mobility
conditions.
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