Conjectural Variations Equilibria

Learning and Dynamic Equilibria. Applications to natural resource management

Mabel Tidball Nicolas Quérou

INRA/LAMETA Montpellier
University of Belfast

Contents

Dynamic conjectures, bounded rationality and learning

- The principle.
- A learning model.
- A natural resource management problem.

Consistent conjectures in a dynamic setting

- The principle.
- Consistent conjectures in differential games.
- A model of non-renewable natural resource management.

References

N. Quérou, M. Tidball «Incomplete information, learning and natural resource management» To appear in European Journal of Operational Research.

N. Quérou, M. Tidball « Consistent conjectures in a dynamic model of non-renewable resource management» Manuscript.

Dynamic conjectures, bounded rationality and learning

The idea (Jean-Marie, Tidball, JEBO, 2006)

Ingredients

- Dynamic conjectures
- Limited rationality
- Updating of conjectures

Conjecture adjustment process

$$\dot{r}_{ij}(t) = \mu_i(r'_{ij}(t) - r_{ij}(t)), \quad r_{ij}(t+1) = (1 - \mu_i)r_{ij}(t) + \mu_i r'_{ij}(t)$$

 $\mu_i \longrightarrow \text{speed of adjustment.}$

 $r_{ij}(t) \longrightarrow \text{conjecture of } i \text{ about } j.$

 $r'_{ij}(t) \longrightarrow$ conjecture to be used, based on observations.

The learning model

- n players, e_i strategy of i, e profile of strategies,
- e^b a given benchmark strategy,
- V^i instantaneous payoff of player i.

Player *i* makes a conjecture about *j* of the form

$$e_j = e_j^b + r_{ij}(e_i - e_i^b), \quad r_{ij} \in \mathbb{R}$$

and solves

$$\max_{e_i} V^i(e_i, (e_j^b + r_{ij}(e_i - e_i^b))_{i \neq j}) .$$

There exists a unique solution $e_i = \phi_i(e^b; r_i)$, $(r_i = (r_{ij})_{i \neq j})$.

Learning model (continued)

i observes that j has played e_j and concludes that her conjecture should have been r'_{ij} /

$$e_j = e_j^b + r'_{ij} (e_i - e_i^b), \implies r'_{ij} = \frac{e_j - e_j^b}{e_i - e_i^b}$$

Adjustment process of conjectures

$$r_{ij}(t+1) = (1-\mu_i)r_{ij}(t) + \mu_i \frac{e_j(t) - e_j^b}{e_i(t) - e_i^b}$$

with
$$e_i(t) = \phi_i(e^b, r_i(t))$$
.

Properties of fixed points

Proposition 1: If $r_{ij}(t) \to r_{ij}$ as $t \to \infty$, then

$$r_{i_1 i_2} r_{i_2 i_3} \dots r_{i_p i_1} = 1 \quad \forall i_1 \dots i_p$$

in particular

$$r_{ji} = (r_{ij})^{-1}$$

The vector $(r_{i1}...r_{ii-1}, 1, r_{ii+1}...r_{in})$ is the direction of the line (passing through e^b) of the space of strategy profiles, on which player i chooses her own strategy.

 $e_i = \phi_i(e^b, r_i)$ is the strategy played by i in the limit.

Properties of fixed points (continued)

Proposition 2: Pareto optimality

If e is a limit point obtained by the convergence of the adjustment recurrence then e is a candidate Pareto-optimal solution.

candidate i.e. it verifies necessary optimal conditions.

Proposition 3: In the case of identical players:

 $\phi_i(e^b,r) = \phi(e^b,r)$, $e^b_i = e^b \ \forall i$; the recurrence converges to 1 for any $0 < \mu < 1$ and any (common) initial condition.

Example in a dynamic setting

 x_t , the stock of natural resource at time t, $e_{i,t}$, extraction at time t, the evolution rule is:

$$x_{t+1} = [x_t - e_{1,t} - e_{2,t}]^{\alpha}, \quad x(0) = x_0, \quad \alpha \in (0,1).$$

The utility function for each player is:

$$V_i(e_i, e_j, x) = log(e_i) + \beta log[1/2(x - e_i - e_j)^{\alpha}],$$

 $\beta \in (0,1)$ is the players' discount factor.

Learning process

The benchmark case, Lehvari and Mirman (1980)

Find the feedback Nash equilibrium of

$$\max_{e_{it}} \sum_{t=0}^{\infty} log(e_{it}) + dyn,$$

compare this solution to the cooperative outcome:

$$\max_{e_{1t},e_{2t}} \sum_{t=0}^{\infty} (log(e_{1t}) + log(e_{2t})) + dyn.$$

Result:

$$x_{\infty}^{nashdyn} = \left(\frac{\alpha\beta}{2 - \alpha\beta}\right)^{\alpha/(1 - \alpha)} < (\alpha\beta)^{\alpha/(1 - \alpha)} = x_{\infty}^{coopdyn}.$$

The one-shot game

Consider the static game where

$$V_i(e_i, e_j, x) = log(e_i) + \beta log[1/2(x - e_i - e_j)^{\alpha}],$$

Results:

$$e^{coop} = \frac{x}{2(1+\alpha\beta)} < e^{N} = \frac{x}{2+\alpha\beta},$$
$$x^{N} < x_{\infty}.$$

Return to the learning process. Results

Assuptions: $\bar{e}^1 = \bar{e}^2 = \bar{e}$, $\mu_1 = \mu_2 = \mu$.

The consumption plan $\{e_{i,t}^c\}_t$ when agent i learns according to the process defined previously, is, for all t:

$$e_{i,t}^c = \frac{x_t - (1 - r_t^i)\bar{e}}{(1 + r_t^i)(1 + \alpha\beta)}.$$

and

$$\lim_{t \to \infty} r_t^i = 1, \quad \lim_{t \to \infty} e_{i,t}^c = e_{\infty}^{coop}, \quad \lim_{t \to \infty} x_t^c = x_{\infty}$$

Return to the learning process. Results

$$x_{\infty} < x_{\infty}^{coopdyn}, \forall \alpha, \beta.$$

- If $\alpha\beta < 1/2$ then $x_{\infty}^{nashdyn} < x_{\infty}$
- If $\alpha\beta = 1/2$, then $x_{\infty}^{nashdyn} = x_{\infty}$
- If $\alpha\beta > 1/2$, then $x_{\infty}^{nashdyn} > x_{\infty}$

Return to the learning process. Results

- If $\frac{1-\alpha\beta}{1+\alpha\beta} < r_0 < 1$, then for all t, $e^c_t > 0$ and $x^c_t > 0$.
- If $\bar{e}>\frac{1}{2+\beta}\left[\frac{\alpha\beta}{1+\alpha\beta}\right]^{\frac{\alpha}{1-\alpha}}$, then the process is locally stable for all μ .

Conclusion

- We study a problem of resource management under incomplete information with conjectures, in a symmetric setting
- The steady state induced by the procedure leads to a (static) cooperative management of the resource once the stock has stabilized.
- For a large set of cases the steady state level of the resource lies in between the non cooperative and cooperative outcomes derived by Levahri and Mirman (1980).

Contents

Dynamic conjectures, bounded rationality and learning

- The principle.
- A learning model.
- A natural resource management problem.

Consistent conjectures in a dynamic setting

- The principle.
- Consistent conjectures in differential games.
- A model of non-renewable natural resource management.

Consistent conjectures in a dynamic setting

Ingredients

- Dynamic game.
- Conjectures on how the other players react
- Consistency: conjectures of each player = best response reactions of the others players

Principle. Jean-Marie, Tidball, Dyn. Games, 2005.

- n players, time horizon T
- $x(t) = (x_1(t), ...x_n(t)) \in \mathbb{R}^m$ state variable
- $e_i(t)$ control variable of i in [t, t+1], e(t)

Dynamics

$$x(t+1) = f(x(t), e(t)), \quad x(0) = x_0$$

Payoff

$$V^{i}(x_{0}, e(0), ...e(T-1)) = \sum_{t=1}^{T} \theta^{t-1} \Pi^{i}(x(t), e(t))$$

Principle (continued)

Conjecture of *i*

$$e_j^c(t) = \phi_t^{ij}(x(t)) \longrightarrow x(t+1) = \tilde{f}_i(x(t), e_i(t))$$
.

optimal control problem

optimal policy $e_i^{i*}(t)$ that we suppose unique. Player i can compute $e_j^{i*}(t)$ and $x^{i*}(t)$ via ϕ_t^{ij} .

Call $x^a(t)$ the actual trajectory (replacing e_i^{i*} in the dynamics).

Different definitions of consistency

Definition 1: $\phi_t^1,...\phi_t^n$ is a state-consistent conjectural equilibrium \iff

$$x^{i*}(t) = x^{a}(t), \quad \forall i, \ t, \ x(0) = x_0$$

Definition 2: $\phi_t^1,...\phi_t^n$ is a (weak) control-consistent conjectural equilibrium \iff

$$e^{i*}(t) = e^{j*}(t), \quad \forall i \neq j, \ t, \ x(0) = x_0 \ (x(0) \ given)$$

control-consistent c.e. \implies state-consistent c.e.

Different definitions of consistency (continued)

Optimization problem: $\rightarrow e_i^{i*}(t) = \psi_t^i(x(t))$

Definition 3: $\phi_t^1,...\phi_t^n$ is a feedback-consistent conjectural equilibrium \iff

$$\psi_t^i = \phi_t^{ji}, \quad \forall i \neq j, \ t, \ x(0) = x_0$$

as a consequence

$$\phi_t^{ji} = \phi_t^{ki}, \quad \forall i \neq j \neq k, \ t.$$

Consistency in differential games

Fershman and Kamien (1985) define consistent conjectures in differential games.

- Open-loop Nash equilibria are weak control-consistent conjectural equilibria
- Control-consistent conjectural equilibria and feedback Nash equilibria coincide

Different definitions of consistency (continued)

What happens when Optimization problem: with $e^i_i(t)=\phi^i_t(x(t),e^j_j(t-1))$ + consistency

Non-renewable natural resource management model

The benchmark: The cooperative case

$$\max_{\{e_{1,t};e_{2,t}\}} \sum_{t=0}^{\infty} \beta^t [log(e_{1,t}) + log(e_{2,t})], \quad x_{t+1} = x_t - e_{1,t} - e_{2,t}, x_0 \text{ given}$$

The Nash equilibrium

$$\max_{\{e_{i,t}\}} \sum_{t=0}^{\infty} \beta^t log(e_{i,t}), \quad x_{t+1} = x_t - e_{1,t} - e_{2,t}, \quad x_0 \text{ given.}$$

Result

$$x_t^{coop} = \beta^t x_0 > \left(\frac{\beta}{2-\beta}\right)^t x_0 = x_t^N, \quad \forall t.$$

Workshop Alge(Co)Fail, Nanterre, 2009 - p. 26/3

State and strategy based beliefs

Consider that agent 1's beliefs regarding the behavior of agent 2 is:

$$e_{2,t} = a_2 x_t + b_2 e_{1,t-1}.$$

The problem is:

$$\max_{\{e_{i,t}\}} \sum_{t=0}^{\infty} \beta^t log(e_{i,t}),$$

subject to the following constraints (x_0 , y_0 given):

$$x_{t+1} = x_t - a_j x_t - b_j y_t - e_{i,t}$$
 $y_{t+1} = e_{i,t}$.

and to impose consistency!

State and strategy based beliefs. Results

If
$$e_0 = \frac{1-\beta}{2}x_0$$
, then: $e_t^{fc} = \beta e_{t-1}^{fc}$, $x_t^{fc} = \beta^t x_0$, $x_t^{fc} = x_t^{coop}$.

If
$$e_0 \neq \frac{1-\beta}{2}x_0$$
 then : $e_t = [1 - 2\frac{c_0}{x_0}]^t e_0$, $x_t = [1 - 2\frac{c_0}{x_0}]^t x_0$.

- if $e_0 < \frac{1-\beta}{2}x_0$ then a < 0 and b > 0 and $x_t^{fc} > x_t^{coop} > x_t^N$;
- if $\frac{1-\beta}{2}x_0 < e_0 < \frac{1-\beta}{2-\beta}x_0$ then a>0, b>0 and $x_t^N < x_t^{fc} < x_t^{coop}$;
- if $\frac{1-\beta}{2-\beta}x_0 < e_0 < \frac{1}{2}x_0$ then a>0 and b<0 and $x_t^{fc} < x_t^N < x_t^{coop}$.

Conclusions

The state and strategy consistent solution gives

- better outcomes regarding the resource management in the long run compared to joint management if initial consumption is sufficiently low,
- or a more aggressive pattern than the non-cooperative benchmark if initial consumption is too high.
- For intermediate values of initial consumption, the optimal path lies in between the non-cooperative and cooperative benchmark cases.

Bibliography

C. Figuières, A. Jean-Marie, N. Quérou and M. Tidball, *Theory of Conjectural Variations*, World Scientific Computing, 2004.

A. Jean-Marie and M. Tidball (2006), "Adapting behaviors in a learning model", *J. Economic Behavior and Organization*, 60, 399-422.

A. Jean-Marie, M. Tidball (2005), "Consistent conjectures, equilibria and dynamic games", in Dynamic Games: Theory and Applications. Editors: A. Haurie & G. Zaccour, Springer, 93-109.

- Dixon, H. and Somma, E. (2001), "The Evolution of Consistent Conjectures", Discussion Papers in Economics, No 2001/16, University of York, Journal of Economic Behavior and Organization.
- Fershtman, C. and Kamien, M.I. (1985), "Conjectural Equilibrium and Strategy Spaces in Differential Games", *Opt. Control Theory and Economic Analysis*, Vol. 2, pp. 569–579.
- Friedman, J.W. and Mezzetti, C. (2002), "Bounded Rationality, Dynamic Oligopoly, and Conjectural Variations", *Journal of Economic Behavior and Organization*, Vol. 49, pp. 287–306.