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learning
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The idea (Jean-Marie, Tidball, JEBO, 2006)

Ingredients

• Dynamic conjectures
• Limited rationality
• Updating of conjectures

Conjecture adjustment process

ṙij(t) = µi(r
′
ij(t) − rij(t)), rij(t+ 1) = (1 − µi)rij(t) + µir

′
ij(t)

µi −→ speed of adjustment.
rij(t) −→ conjecture of i about j.
r′ij(t) −→ conjecture to be used, based on observations.
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The learning model

• n players, ei strategy of i, e profile of strategies,

• eb a given benchmark strategy,

• V i instantaneous payoff of player i.

Player i makes a conjecture about j of the form

ej = eb
j + rij(ei − eb

i), rij ∈ R

and solves

max
ei

V i(ei, (e
b
j + rij(ei − eb

i))i 6=j) .

There exists a unique solution ei = φi(e
b; ri), (ri = (rij)i 6=j).
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Learning model (continued)

i observes that j has played ej and concludes that her
conjecture should have been r′ij /

ej = eb
j + r′ij (ei − eb

i), =⇒ r′ij =
ej − eb

j

ei − eb
i

Adjustment process of conjectures

rij(t+ 1) = (1 − µi)rij(t) + µi

ej(t) − eb
j

ei(t) − eb
i

with ei(t) = φi(e
b, ri(t)).
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Properties of fixed points

Proposition 1: If rij(t) → rij as t→ ∞, then

ri1i2ri2i3 ...ripi1 = 1 ∀i1...ip

in particular
rji = (rij)

−1

The vector (ri1...rii−1, 1, rii+1...rin) is the direction of the line
(passing through eb) of the space of strategy profiles, on
which player i chooses her own strategy.

ei = φi(e
b, ri) is the strategy played by i in the limit.
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Properties of fixed points (continued)

Proposition 2: Pareto optimality
If e is a limit point obtained by the convergence of the
adjustment recurrence then e is a candidate Pareto-optimal
solution.
candidate i.e. it verifies necessary optimal conditions.

Proposition 3: In the case of identical players:
φi(e

b, r) = φ(eb, r), eb
i = eb ∀i; the recurrence converges to 1

for any 0 < µ < 1 and any (common) initial condition.
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Example in a dynamic setting

xt, the stock of natural resource at time t,
ei,t, extraction at time t,
the evolution rule is:

xt+1 = [xt − e1,t − e2,t]
α, x(0) = x0, α ∈ (0, 1).

The utility function for each player is:

Vi(ei, ej, x) = log(ei) + βlog[1/2(x− ei − ej)
α],

β ∈ (0, 1) is the players’ discount factor.
Learning process
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The benchmark case, Lehvari and Mirman (1980)

Find the feedback Nash equilibrium of

max
eit

∞
∑

t=0

log(eit)+ dyn,

compare this solution to the cooperative outcome:

max
e1t,e2t

∞
∑

t=0

(log(e1t) + log(e2t))+ dyn.

Result:

xnashdyn
∞ =

(

αβ

2 − αβ

)α/(1−α)

< (αβ)α/(1−α) = xcoopdyn
∞ .
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The one-shot game

Consider the static game where

Vi(ei, ej, x) = log(ei) + βlog[1/2(x− ei − ej)
α],

Results:
ecoop =

x

2(1 + αβ)
< eN =

x

2 + αβ
,

xN < x∞.
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Return to the learning process. Results

Assuptions: ē1 = ē2 = ē, µ1 = µ2 = µ.

The consumption plan {ec
i,t}t when agent i learns

according to the process defined previously, is, for all t:

ec
i,t =

xt − (1 − ri
t)ē

(1 + ri
t)(1 + αβ)

.

and

lim
t→∞

ri
t = 1, lim

t→∞
ec

i,t = ecoop
∞ , lim

t→∞
xc

t = x∞
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Return to the learning process. Results

x∞ < xcoopdyn
∞ ,∀α, β.

• If αβ < 1/2 then xnashdyn
∞ < x∞

• If αβ = 1/2, then xnashdyn
∞ = x∞

• If αβ > 1/2, then xnashdyn
∞ > x∞
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Return to the learning process. Results

• If 1−αβ
1+αβ

< r0 < 1, then for all t, ec
t > 0 and xc

t > 0.

• If ē > 1
2+β

[

αβ
1+αβ

]
α

1−α

, then the process is locally stable

for all µ.
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Conclusion

• We study a problem of resource management under
incomplete information with conjectures, in a
symmetric setting

• The steady state induced by the procedure leads to a
(static) cooperative management of the resource once
the stock has stabilized.

• For a large set of cases the steady state level of the
resource lies in between the non cooperative and
cooperative outcomes derived by Levahri and Mirman
(1980).
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Consistent conjectures in a dynamic setting
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Consistent conjectures in a dynamic setting

Ingredients

• Dynamic game.

• Conjectures on how the other players react

• Consistency: conjectures of each player ≡ best
response reactions of the others players
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Principle. Jean-Marie, Tidball, Dyn. Games, 2005.

• n players, time horizon T
• x(t) = (x1(t), ...xn(t)) ∈ R

m state variable

• ei(t) control variable of i in [t, t+ 1], e(t)

Dynamics

x(t+ 1) = f(x(t), e(t)), x(0) = x0

Payoff

V i(x0, e(0), ...e(T − 1)) =
∑T

t=1 θ
t−1Πi(x(t), e(t))
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Principle (continued)

Conjecture of i

ec
j(t) = φij

t (x(t)) → x(t+ 1) = f̃i(x(t), ei(t)) .

optimal control problem
optimal policy ei∗

i (t) that we suppose unique. Player i can
compute ei∗

j (t) and xi∗(t) via φij
t .

Call xa(t) the actual trajectory (replacing ei∗
i in the

dynamics).
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Different definitions of consistency

Definition 1: φ1
t , ...φ

n
t is a state-consistent conjectural

equilibrium ⇐⇒

xi∗(t) = xa(t), ∀i, t, x(0) = x0

Definition 2: φ1
t , ...φ

n
t is a (weak) control-consistent

conjectural equilibrium ⇐⇒

ei∗(t) = ej∗(t), ∀i 6= j, t, x(0) = x0 (x(0) given)

control-consistent c.e. =⇒ state-consistent c.e.
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Different definitions of consistency (continued)

Optimization problem: → ei∗
i (t) = ψi

t(x(t))

Definition 3: φ1
t , ...φ

n
t is a feedback-consistent conjectural

equilibrium ⇐⇒

ψi
t = φji

t , ∀i 6= j, t, x(0) = x0

as a consequence

φji
t = φki

t , ∀i 6= j 6= k, t.
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Consistency in differential games

Fershman and Kamien (1985) define consistent
conjectures in differential games.

• Open-loop Nash equilibria are weak control-consistent
conjectural equilibria

• Control-consistent conjectural equilibria and feedback
Nash equilibria coincide
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Different definitions of consistency (continued)

What happens when
Optimization problem: with ei

i(t) = φi
t(x(t), e

j
j(t− 1)) +

consistency
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Non-renewable natural resource management model

The benchmark: The cooperative case

max
{e1,t;e2,t}

∞
∑

t=0

βt
[

log(e1,t)+log(e2,t)
]

, xt+1 = xt−e1,t−e2,t, x0 given.

The Nash equilibrium

max
{ei,t}

∞
∑

t=0

βtlog(ei,t), xt+1 = xt − e1,t − e2,t, x0 given.

Result

xcoop
t = βtx0 >

( β

2 − β

)t
x0 = xN

t , ∀t.
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State and strategy based beliefs

Consider that agent 1’s beliefs regarding the behavior of
agent 2 is:

e2,t = a2xt + b2e1,t−1.

The problem is:

max
{ei,t}

∞
∑

t=0

βtlog(ei,t),

subject to the following constraints (x0, y0 given):

xt+1 = xt − ajxt − bjyt − ei,t yt+1 = ei,t.

and to impose consistency!
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State and strategy based beliefs. Results

If e0 = 1−β
2
x0, then: efc

t = βefc
t−1, xfc

t = βtx0, xfc
t = xcoop

t .

If e0 6=
1−β

2
x0 then : et = [1 − 2 c0

x0

]te0, xt = [1 − 2 c0
x0

]tx0.

• if e0 <
1−β

2
x0 then a < 0 and b > 0 and xfc

t > xcoop
t > xN

t ;

• if 1−β
2
x0 < e0 <

1−β
2−β

x0 then a > 0, b > 0 and

xN
t < xfc

t < xcoop
t ;

• if 1−β
2−β

x0 < e0 <
1
2
x0 then a > 0 and b < 0 and

xfc
t < xN

t < xcoop
t .
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Conclusions

The state and strategy consistent solution gives
• better outcomes regarding the resource management

in the long run compared to joint management if initial
consumption is sufficiently low,

• or a more aggressive pattern than the non-cooperative
benchmark if initial consumption is too high.

• For intermediate values of initial consumption, the
optimal path lies in between the non-cooperative and
cooperative benchmark cases.
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