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Introduction

Context

Analysis of harvesting behavior in renewable resource economics
(“Mathematical BioEconomics”).

Different types of mathematical models are used to describe the
harvesting process, emphasizing different aspects of harvesting
behavior and resulting in different harvesting policies.
Modeling : optimal control problems

@ stochastic or deterministic

@ finite or infinite horizon

@ discrete or continuous time

discrete — cycles (1)

continuous — continuous extraction, or cycles (concavity, several
dimensions, ...)

Related to the “discrete-continuous” interface.
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Continuous-time control models

A singular control model : Clark's model.

Continuous time, infinite horizon control problem

max [ e o~ clx(o)] A(e)oe

x(t) = F(x(t)) = h(t) x(0) = x0, 0 < h(t) < hmax

@ x(t) is the level of the resource stock at time t, F(x) is the
natural growth function,

@ p represents the resource price,

@ c(x) the unit harvest costs and r the discount rate.
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Continuous-time control models

A singular control model : Results

The solution is found as follows :

@ The profit maximizing stock level leads to a steady state x*
solution of :

F,(X*) . C;)()f)clz)(::;) — r.

o If xo < x*, the optimal control is h(t) = 0 as long as
x(t) < x*.

@ If xo > x*, the optimal control is h(t) = hmax as long as
x(t) > x*.

o If x(t) = x*, the optimal control keeps x(t) constant.

= A turnpike trajectory
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The impulse control model

Dynamics, profits, policies

The model dynamics

We consider a renewable resource, the dynamics of which, absent
any harvest is given by : x(t) = F(x(t)), t=>0,

x(t) is the size of the population at any time ¢

F, stationary through time, is the growth rate function.

@ I Xsup and xps, 0 < Xps < Xgyp < +00.

o F:(0,xsp) — R is of class C2

@ positive over the interval (0, x,s) and negative over the interval
(anaxsup).

@ F(0) = F(xns) =0, where lim,|o F(x) = F(0), and
“mxszu,, F(x) = —oc.
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The impulse control model

Dynamics, profits, policies

Impulse policies

An impulse policy IP := {(t;,l;),i =1,2,...} as a sequence of
harvesting dates t; and instantaneous harvests /;, one for each date.
@ 0<t,andtj<tjyq foreachi=12 ...

o if the sequence is finite with n > 0 values, then t; = +oo for
all i > n.

@ ;<0 and x;—1; >0, where x; is the size of the
population just before the harvesting date ¢;.
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The impulse control model

Dynamics, profits, policies

The model : The profit function

We assume that the profit function is stationary through time so
that whatever t;, /; and x;, the current profits at time t; amount to
m(xi, I;).

@ the domain is D := {(x,1),x € (0, xsup), | €[0,x)}.

@ It is of class C2 and bounded above by T < +o0,

® 7(x,0) =0, Vx € (0, Xsyp)-

o (0m/0l)(x,!) admits a limit when / | 0 for all x € (0, xsyp)-
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The impulse control model

Dynamics, profits, policies

An impulse optimal control problem

(P) : Maximize over t;, l; for i = 1...00

o0

G({ti, 11721, x0) = D e (i, )

i=1

s.t.
x(t)=F(x(t)) ift>0, t&ti, i=1,2,.. x(0)=x

lim X(t,') = lim X(t,')—/,', x; = lim X(t,'),

t—t t—t; t—t;

i < xj, X(t) S [O,Xsup].
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The impulse control model

Dynamics, profits, policies

Boundedness of the profit

Does the objective function have a finite supremum ?

Denote 7t (x, 1) = max(7(x, /),0).

Property

Assume that for all x and some constant .
at(x, 1) < 4.
Then for any At < (Fmax) ™,

Xps + FmaxAt

M —_——
1 —exp(—rAt)
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The impulse control model

Dynamics, profits, policies

Dynamic optimization from the book

Usual approach : Maximum Principle + Lagrangian/Hamiltonian.
See Termansen, Léonard and van Long, Seierstad and Sydsaeter.
The Hamiltonian :

H(x, A) = A(t)F(x(1)),

rt

the discounted instantaneous cost m(x,/,t) = e " g(x,x — /).

At the points without jumps (t # t;) :

A(t) = —A(t)g—i(x(t)), At) > W



Optimal Impulse Control of Renewable Resources
The impulse control model

Dynamics, profits, policies

Dynamic optimization from the book (ctd.)

At the jump points :

+_
A= ol ’
N _67r(xj_, 17, t;)
J j Ox ’
o 67T(X-_,/-*,tj)
H(G™ X)) = HOx A7) — faitf = 0.
Notation : x;” = IimX_>ti_ x(t;), and ijr = Iimx_)ti+ x(t;). Likewise,

for )‘j_ and )\;r.
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The impulse control model

Dynamics, profits, policies

The dynamic programming principle

Value function approach (original in this context).

Theorem

The value function

v(x) = sup M(IP)
IPEF

is the unique solution of the following variational equation :

v(x) = sup e " [m(g(t,x), ¢(t, x) —y) +v(¥)] ,

Y €[0,xsup)
t>0

where ¢(t, x) is the trajectory of the system at time t, solution of
the dynamics with x(0) = x.
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The impulse control model

The auxiliary problems

Cyclical policies

Consider xg < X and the family of policies

Cyclical Policy

A cyclical policy consists in :
@ let the resource x; grow until X,
@ harvest until x

and repeat.

Define 7(x, y) as the time necessary for the dynamics to go from

(x,y) = /Xy F(lu)du.

Special cases : x =0 and y = xps.

value x to y :
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The impulse control model

The auxiliary problems

Value of cyclical policies

Consider xg < X. A cyclical policy has two parameters, x and X,
| = x — x. Define :

_ o e—I’T(Xo,)_()
G(x,%, %) = 7(x, % —x)7——rsy

G corresponds to G valued at : t; = 7(xp, X),
ti=t1+(—1)7(x,%x), i=2..., xi=x,x; — li=x, i =1....

Limiting case : x = x. Then :
F(X)

—rT(Xo,x)

Gy(x) = G(x,x,x0) = m(x,0)
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The impulse control model

The auxiliary problems

Auxiliary problems

We define now :

Auxiliary problem (AP)

(AP) : max _G(x, X, xp)-

X, X; x<X

Under the assumption that (AP) has a unique solution (x*,x*) :

Auxiliary problem (TP)

(TP): max e TN [r(x, x — y) + G(x*,X*,y)] -

0<y <x<xns
xg<x; y<x*
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The impulse control model

The auxiliary problems

Relations between problems (P), (AP) and (TP

Characterization of the solution to (P) :

Theorem

Under the assumptions on F(-) and 7(-, "), if :
o foreverya>b>c>d,

m(a,a—c)+m(b,b—d) < 7w(a,a—d)+m(b,b—c)

@ Problem (AP) has a unique solution, x*, x*,

let (x*(xa),y*(x0)) solve the maximization problem (TP). Then the
value function of (P) is: v(xg) =

G(x*, X", x0) if xo <X*

e—rr(x(],x*(xo)) [W(X*(XO), X*(Xg) . y*(XO))
+ G(x*, X", y*(x0))] it Xps > x0 > X*.
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The impulse control model

The auxiliary problems

Optimal trajectories
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The impulse control model

The auxiliary problems

Submodularity (1)

For every solution to problem (P) which is not cyclical, there exists
a cyclical solution with the same value.

a
b
C
d
t tj tﬁ_ P
tA tA
i J
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The impulse control model

The auxiliary problems

Submodularity (2)

The assumption
m(a,a—c)+m(b,b—d) < m(a,a—d)+n(b,b—c)

is, with g(x,y) = m(x,x — y),

Submodularity

Foralla>b>c>d

g(avc)+g(bzd) < g(a>d)+g(b>c)

A particular case, since g(x,x) =0 :

Triangular constraint

g(a,c) +g(c,d) < g(a,d)
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The impulse control model

The auxiliary problems

Existence of solutions to Problem (P)

Existence of solutions to (P) = location of solutions to (AP).

Under the submodularity assumption, if the solution to (AP) is :

@ in the interior x < X, there exists a solution to problem (P),
and the solution can be chosen as cyclical.

@ on the boundary x = X, there is no solution to (P), but
sequences of e-solutions corresponding to harvests [x, x + ¢].
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The impulse control model

Where is the solution to (AP)?

On the diagonal or not?

Back to the submodularity assumption.
m(a,a—c)+m(b,b—d) < 7w(a,a—d)+n(b,b—c)

If equality holds : there exists some integrable function ~(-) :

(%X — x) = /:(’y(x) dx

Assume that the function Gy4(-) is of class Cl, and is /, then \_,
with an unique maximum at Xp,.
If the function 7 satisfies the submodularity assumption

@ in the strict sense, then all solutions to Problem (AP) are
non-diagonal.
@ with equality, then the solution of Problem (AP) is unique and

given by x = X = xp,.
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The impulse control model

Where is the solution to (AP)?

Exhausting the resource?

We note “ELB" (Exhaustion locally better). According to the form
of the growth function F(x) as x — 0, we have :

x = 0 optimal ?

i) If F(x) ~ ax? with o > 0 and 3 > 1, then the ELB property
holds.

i) If F(x) = ax+ O(x?), and if a = r/a, then :
ii.1) if a> 1, then ELB holds.
ii.2) if a< 1, then ELB does not hold.

ii.3) if a=1... technical necessary condition for ELB involving F()
and 7().

i) If F(x) ~ ax® with @ > 0and 0 < 3 < 1, then ELB does not
hold.




Optimal Impulse Control of Renewable Resources

From discrete to continuous, and back

Link with continuous control problem

If the solution of (AP) is on the boundary (x* = x = X), there does
not exist a solution to (P).

However, there exists a sequence of cyclical impulse controls with

X — x = € (e-optimal solutions of (P)) approaching the value
G4(x*) == G(x*,x*, xp), V0.

We have :

om 0) F(X) e—rT(X(],X)
r

Gy4(x) = a7 (x,
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From discrete to continuous, and back

Maximizing Gg(x) :

F'(x) r

0 = ﬂ—’lx(x,o) T o)

This value is the value of the solution to continuous control problem

o on
—rt 77 v o— _
m;;ax/o e 5 (x,0) hdt, x=F(x)—h.

The turnpike x* solves G/(x) = 0.
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From discrete to continuous, and back

Continuous to impulse

In the other direction, the singular control model “tends” to a
mixed impulse/continuous control.
The turnpike :

o If xo < x*, the optimal control is h(t) = 0 as long as
x(t) < x*.

o If xo > x*, the optimal control is h(t) = hmax as long as
x(t) > x*.

o If x(t) = x*, the optimal control keeps x(t) constant.

becomes, when h 5 — 00 :

o If xo < x*, the optimal control is h(t) = 0 as long as
x(t) < x*.

o If xg > x*, harvest down to x*.

o If x(t) = x*, the optimal control keeps x(t) constant.
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From discrete to continuous, and back

Discrete dynamics, continuous dynamics

Another issue in model comparison : how to map the discrete
dynamics

Xn+1 = f(xn) J

to the continuous one

x(t) = F(x(1)) ]

Answer : through the “reaching time function” 7 :

fx) 1 y
At = /X —F(u) u

and the functional equation :

F(x)F(x) = Fof(x). |
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Conclusion

Conclusion

@ Difficult to find conditions on F, m which ensure the existence
of a solution to (P).

@ Find instead conditions on F, 7 (cost) for the (AP) to have a
solution with x < x... or with x = X.

o Find a framework to handle at the same time continuous and
impulse control.

@ Go to higher dimension (discussions COMORE).
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Conclusion
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Conclusion
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