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Abstract

Under some assumptions on the speed of convergence of a sequence, the significant
digits of one of its iterates in common with the exact limit can be determined
by comparing this iterate with the next one. Using a finite precision arithmetic,
if computations are performed until the difference between two successive iterates
is insignificant, the global error on the last iterate is minimal. Furthermore, for
sequences converging at least linearly, we can determine in the result obtained which
exact significant digits, i.e. not affected by round-off errors, are in common with
the exact limit. This strategy can be used for the computation of integrals with
the trapezoidal or Simpson’s rule. A sequence is then generated by halving the step
value at each iteration, while the difference between two successive iterates is a
significant value. The exact significant digits of the last iterate are in common with
the exact value of the integral, up to one bit. This kind of strategy is then extended
to numerical algorithms involving several sequences, such as the approximation of
integrals on an infinite interval.

Key words: converging sequences, numerical validation, quadrature methods,
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1 Introduction

In a numerical method which involves the computation of a converging se-
quence, the limit is approximated by one of the iterates. It may be difficult
to estimate in the chosen iterate the global error, consisting of the truncation
error and the round-off error. The optimal iterate, i.e. the approximation for
which the global error is minimal, can be computed dynamically [14]. In this
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paper, we show that we can determine the significant digits of this optimal
iterate, which are affected neither by the truncation error, nor by the round-off
error. In section 2, we present theorems established from the truncation error
which enable one to determine the significant digits of an iterate in common
with the exact limit. As round-off errors must also be taken into account, in
section 3, we briefly review methods and concepts which enable one to esti-
mate round-off error propagation with a probabilistic approach: the CESTAC
method, the principles of stochastic arithmetic and the implementation pro-
vided by Discrete Stochastic Arithmetic (DSA). We also present theoretical
results established in stochastic arithmetic for the control of arithmetical op-
erations. In section 4, we describe a strategy to control both the truncation
and the round-off error during the computation of a converging sequence.
More precisely, under some assumptions on the speed of convergence of the
sequence, we can determine in the optimal approximation the exact signifi-
cant digits, i.e. not affected by round-off errors, which are in common with
the exact limit. In section 5, we show how the theorems established in the
previous sections can be combined to control sequences in which each term
is the limit of another sequence. We describe a strategy which can be used
for the computation of improper integrals. The last section presents numerical
experiments carried out using DSA.

2 Theoretical results on converging sequences

2.1 Preliminary definitions

The theorems presented here have been established for sequences having a
linear or an exponential convergence speed. Therefore we recall properties
which characterize these two types of convergence speed.

Definition 1 A sequence (I,,) converges to I with a linear speed if

I, — I =Ka" +o(a"), where K € R and 0 < |a| < 1.

With a sequence having a linear convergence, the number of iterations required
to obtain an approximation of the limit with one more exact digit is quasi-
constant.

Definition 2 A sequence (I,,) converges to I with an exponential speed if

I,—I1=Ka" +o(a?"), where K €R, 0< |a|<1andp> 1.



With a sequence having an exponential convergence, at each iteration, the
number of exact digits is quasi-multiplied by p.

The theoretical results presented in this section require the notion of significant
digits common to two real numbers. Therefore we need the following definition.

Definition 3 Let a and b be two real numbers, the number of significant digits
that are common to a and b can be defined in R by

a+b

(1) for a #b, Cop =log, Na=0)

(2) Ya e R, C,, = +00.

Y

Then |a —b| =
between a et b is of the order of 10™2 which means that a and b have three
significant digits in common.

“TH‘ 10=%». For instance, if C,; = 3, the relative difference

Remark 4 The value of C, can seem surprising if we consider the decimal
notations of a and b. For example, if a = 2.4599976 and b = 2.4600012, then
Cop =~ 5.8. The difference due to the sequences of “0” or “9” is illusive. The
significant decimal digits of a and b are really different from the sixth position.

2.2 On sequences with a linear convergence

Let us consider a sequence (I,,) converging linearly to I. From the number of
significant digits common to two successive iterates, I,, and I, 1, the following
theorem enables one to determine the number of significant digits common
to I,, and the exact limit 7.

Theorem 5 Let (I,) be a sequence converging linearly to I, i.e. which satisfies
I, — I = Ka" + o(a™) where K € R and 0 < |a| < 1, then

1
CInyIn+1 = CInyI + ]'Oglo <m> + 0 (]‘) °

PROOF.
I, — I =Ka" +o(a") (1)

By using the same formula for [,, ., one obtains

I, — I, = Ka"(1 — a) 4+ o(a™) (2)



From equation (1), we deduce

I, I,
— 1
T 1 Ka"( +0o(1))
Therefore
I, h_+<1>
I —1 Ko °\an
Then
Ll _ Lo 1 L (1
I, —1) I,-1 2 Koo \an

Similarly, from equation (2), we deduce

Iy —In) =l 2 Kanl—a '’

From definition 3 and equation (6) we deduce

21+ (1)

Cr,,1 = logg

I,
| 1oy 1+ 0(1)

Cr,,r = logy,

Therefore

I,
— 1
Ka"‘—'—o( )

Cr,.,r = logy,

Similarly, from definition 3 and equation (7) we deduce

I, 1

Ko 1 -«

Cln,In+1 = log, ‘ +o (1)

Finally

1
Crotasr = Cr,yr + 1081 <E> +0(1)

(11)

(12)



If the convergence zone is reached, o (1) < 1: the last term in equation (12)
becomes negligible. In this case, from the significant digits in common between
I, and I, 1, we can deduce the significant digits in common between I,, and
the exact limit 1.

If -1 <a<0,then —log,,2 < log, (ﬁ) < 0. In this case, if the conver-
gence zone is reached, the significant digits in common between I, and I,
are also in common with 1.

Va €]0,1[, 3k 0 < o < 1 —107% and therefore 0 < log,, (ﬁ) < k. If the
convergence zone is reached, the significant digits in common between [,, and
I, are also in common with I, up to k digits. The lower « is, the faster the
convergence of the sequence is and the lower £ is.

Remark 6 If 0 < a < %, then 0 < log, (ﬁ) < 1. In this case, if the
convergence zone is reached, the significant bits in common between I, and

I, 1 are also in common with I, up to one.

2.8  On the trapezoidal and Simpson’s rules

Theorem 5 can be used for the evaluation of integrals with the trapezoidal or
Simpson’s rule. Indeed a sequence which converges linearly can be generated
by halving the step value at each iteration.

Let f be a real function which is C* over [a,b] where k > 3. Let I, be the
approximation of [ = fé’ f(z)dz computed using the trapezoidal rule with
step h = 22 If f'(a) # f'(b), the development of the error up to order 4
is [1,8,9]:

L =T =25 [f'(b) = f(a)] + O(KY) (13)

As the sequence (I,,) satisfies I, — I = Ka"+O(a®"), with K = % [f'(b) —

f'(a)] and o = i theorem 5 could apply. However the following property has
been established in [5]:
4 1
Crotn = Cr,r + 1081 (g) +0 <E> : (14)

Let f be a real function which is C* over [a,b] where k > 5. Let I, be the
approximation of I = f;f(:c)d:c computed using Simpson’s rule with step
h =22 If fG(a) # f®(b), the development of the error up to order 6



is [1,8,9]:
I =TI = [fP0) - fPa)] + O0°). (15)

4

The sequence (I,,) satisfies I, — I = Ko™+ O(a5™), with K = % [f®)(b) —
f®(a)] and o = . Therefore, as for the trapezoidal rule, theorem 5 could
apply. The following property has actually been established in [5]:

16 1
Croto = Cr,.1 +logyg <1—5> + 0O <4—n> : (16)

If the convergence zone is reached, O (4%) < 1. Furthermore log;, (%) and

log, (i—g) represent at most one bit. Indeed, for both rules, a < % Therefore,
if the convergence zone is reached, the significant digits common to I, and
I, are also common to I, the exact value of the integral, up to one bit.

2.4 On sequences with an exponential convergence

Theoretical results similar to theorem 5 may be established for sequences with
an exponential convergence.

Theorem 7 Let (I,,) be a sequence converging to I with an exponential speed,
i.e. which satisfies I, — I = K of" + o(a?") where K € R, 0 < |a| < 1 and
p > 1, then

1
Cro oy = Cr,1 + 108 (m) +o(1).

PROOF.
I, — I =Koa" +o(a?") (17)

By using the same formula for [,,,, one obtains

I,—I, 1=K (o/’n — apn+l) + o(a?") (18)

From equation (17), we deduce

I,—1 Ko (1+0(1)) (19)
= i (L o(1) (20)



Therefore

Lo _ Lo (1)
I.—1 Ka @ ’\om

Then

2Ih—1) I—1 2 Ko ' °

I, +1 I, 1 I, ( 1 )

aP”

Similarly, from equation (18), we deduce

In In
I — T K (o —a?"™) (1+0(1))

Therefore

1, 1, n ( >
— 0
I,—I,,1 K (a" —ar"*) aP"

Then

I, + I I, 1 I,
= n n+1 +
2(In — In+1) In - In+1 2 K (Otp — P )

Therefore s
Cr,,r = logy ﬁnpn + 0(1)

Similarly, from definition 3 and equation (25) we deduce

CInaIn+1 = logy

Therefore

CInyIn+1 = loglo

K aP" (]_ — ap"(p—l))

Finally

1
Cro g = Cr,r + 108y (m) +o(1)

(21)

(22)

(23)

(24)

(25)

(26)

(28)

(29)

(30)



If the convergence zone is reached, the decimal significant digits in common be-
tween [, and I,,;1 are also common to the exact limit I, up to log;, (m)

If 0 < |a| < M,, with M, = ()75, then 0 < logyy (1=t ) < 1. The
significant digits common to I, and I,,,; are also common to I, up to one. As
the number n of iterations increases, M, also increases and the condition that
a must satisfy in order to have log, (Wl(p_l)) < 1 becomes less and less
strict. For example, if the sequence (I,,) has a quadratic convergence, which
is characterized by p = 2, then M; > 0.94 and M5 > 0.99. Similarly, as p

increases, the speed of convergence increases and M,, also increases.

Remark 8 If the convergence zone is reached, the significant bits in common
between I, and I,, 1 are also common to the exact limit I, up to log, (m)

If0 < Jof < 2(17"(11—17)), then 0 < log, (1_%) < 1. This condition on « is

apn(Pfl)
easily satisfied. Indeed in the case of a quadratic convergence (i.e. for p=2)

ifn=>5, 270 > 0.97.

The theoretical results presented in this section have been established by tak-
ing into account only the truncation error on two successive iterates of a
sequence. However computed results are also affected by round-off error prop-
agation. The next section describes how round-off errors can be estimated with
a probabilistic approach in order to determine the exact significant digits of
any computed result.

3 Stochastic approach of round-off errors
3.1 The CESTAC method

The CESTAC (Controle et Estimation Stochastique des Arrondis de Calculs)
method, which has been developed by La Porte and Vignes [10,12,13], enables
one to estimate the number of exact significant digits of any computed result.
This method is based on a probabilistic approach of round-off errors using a
random rounding mode defined below.

Definition 9 Fach real number x, which is not a floating-point number, is
bounded by two consecutive floating-point numbers: X~ (rounded down) and
X" (rounded up). The random rounding mode defines the floating-point num-
ber X representing x as being one of the two values X~ or Xt with the prob-
ability 1/2.



With this random rounding mode, the same program run several times pro-
vides different results, due to different round-off errors.

It has been proved [2] that a computed result R is modelled to the first order
in 277 as:

n

ReZ=r+)Y g(d2 "z (31)

i=1
where r is the exact result, g;(d) are coefficients depending exclusively on the
data and on the code, p is the number of bits in the mantissa and z; are
independent uniformly distributed random variables on [—1,1].

From equation (31), we deduce that:

(1) the mean value of the random variable Z is the exact result r,
(2) under some assumptions, the distribution of Z is a quasi-Gaussian dis-
tribution.

Then by identifying R and Z, i.e. by neglecting all the second order terms,
Student’s test can be used to determine the accuracy of R. Thus from N
samples R;, i = 1,2,..., N, the number of decimal significant digits common
to R and r can be estimated with the following equation.

S AL 3
= = 10819 o7 ) ( )
where
—~ 1 > 1 & 2

75 is the value of Student’s distribution for N — 1 degrees of freedom and a
probability level 1 — f3.

Thus the implementation of the CESTAC method in a code providing a result
R consists in:

e performing N times this code with the random rounding mode, which is
obtained by using randomly the rounding mode towards —oc or 400; we
then obtain N samples R; of R

e choosing as the computed result the mean value R of R;, i =1,..., N

e estimating with equation (32) the number of exact decimal significant digits
of R.

In practice N = 2 or N = 3 and § = 0.05. Note that for N = 2, then
75 = 12.706 and for N = 3, then 73 = 4.4303.



Equations (31) and (32) hold if two main hypotheses are verified. These hy-
potheses are:

(1) the round-off errors «; are independent, centered uniformly distributed
random variables,
(2) the approximation to the first order in 277 is legitimate.

Concerning the first hypothesis, with the use of the random arithmetic, round-
off errors «; are random variables, however, in practice, they are not rigorously
centered and in this case Student’s test gives a biased estimation of the com-
puted result. It has been proved [6] that, with a bias of a few o, the error on
the estimation of the number of exact significant digits of R is less than one
decimal digit. Therefore even if the first hypothesis is not rigorously satisfied,
the reliability of the estimation obtained with equation (32) is not altered if
it is considered as exact up to one digit.

Concerning the second hypothesis, the approximation to the first order only
concerns multiplications and divisions. Indeed the round-off error generated
by an addition or a subtraction does not contain any term of higher order. It
has been shown [2,4] that, if a computed result becomes insignificant, i.e. if
the round-off error it contains is of the same order of magnitude as the result
itself, then the first order approximation may be not legitimate. In practice
the validation of the CESTAC method requires a dynamic control of multi-
plications and divisions, during the execution of the code. This leads to the
synchronous implementation of the method, i.e. to the parallel computation of
the N samples R;, and also to the concept of computational zero, also named
informatical zero [11].

Definition 10 During the run of a code using the CESTAC method, an in-
termediate or a final result R is a computational zero, denoted by Q.0, if one
of the two following conditions holds:

L4 VZ,RZ:(),
o (7<0.

Any computed result R is a computational zero if either R = 0, R being
significant, or R is insignificant. A computational zero is a value that cannot
be differentiated from the mathematical zero because of its round-off error.

From the synchronous implementation of the CESTAC method and the con-
cept of computational zero, stochastic arithmetic [4,7,13] has been defined.
Two types of stochastic arithmetic actually exist: it can be either continuous
or discrete.

10



3.2 Principles of stochastic arithmetics

3.2.1 Continuous stochastic arithmetic

Continuous stochastic arithmetic is a modelling of the synchronous implemen-
tation of the CESTAC method. By using this implementation, so that the N
runs of a code take place in parallel, the N results of each arithmetical opera-
tion can be considered as realizations of a Gaussian random variable centered
on the exact result. One can therefore define a new number, called stochastic
number, and a new arithmetic, called (continuous) stochastic arithmetic, ap-
plied to these numbers. An equality concept and order relations, which take
into account the number of exact significant digits of stochastic operands, have
also been defined.

A stochastic number X is denoted by (m,0?), where m is the mean value of
X and o its standard deviation. Stochastic arithmetical operations (s+, s—,
sx, s/) correspond to terms to the first order in Z of operations between two
independent Gaussian random variables.

Definition 11 Let X; = (my,0%) and Xy = (my, 03). Stochastic arithmetical
operations on X; and X, are defined as:

Xy s+ Xy = (m1 +may O'%-FO’%) (34)
X1 S— X2 = (ml — my , O'%+0'§) (35)
X; sx Xy = (ml X My, Mio? +m?a§) (36)

X s/ Xy = (ml/mg , 2>2+ (m1(272> ) with my # 0. (37)

ma

An accuracy can be associated to any stochastic number. If X = (m, 0?), \s
exists (depending only on () such that

P(XE [m—)\ga,m—i—)\ga]):l—ﬁ, (38)
I3 x = [m — A\go,m + Ago] is the confidence interval of m at 1—/. The number

of decimal significant digits common to all the elements of I3 x and to m is
lower bounded by

m
Cpx = logy (%) : (39)

The following definition is the modelling of the concept of computational zero,
previously introduced.

11



Definition 12 A stochastic number X is a stochastic zero, denoted by 0, if
and only if

Csx <0 or X =(0,0).

In accordance with the concept of stochastic zero, a new equality concept and
new order relations have been defined.

Definition 13 Let X| = (my,0?) and Xy = (my, 02) be two stochastic num-
bers.

e Stochastic equality, denoted by s=, is defined as:
Xi1s= Xy ifand only if X;s— X5 =0.

e Stochastic inequalities, denoted by s> and s> are defined as:
X1 s> Xy if and only if my > ms and Xy s# X,
X1s> Xy if and only if my > mo or Xy s= Xo.

Continuous stochastic arithmetic is a modelling of the computer arithmetic,
which takes into account round-off errors. The properties of continuous stochas-
tic arithmetic [3,4] have pointed out the theoretical differences between the
approximative arithmetic of a computer and exact arithmetic.

3.2.2 Discrete Stochastic Arithmetic

Discrete Stochastic Arithmetic (DSA) has been defined from the synchronous
implementation of the CESTAC method. With DSA, a real number becomes
an N-dimensional set and any operation on these N-dimensional sets is per-
formed element per element using the random rounding mode. The number
of exact significant digits of such an /N-dimensional set can be estimated from
equation (32). From the concept of computational zero previously introduced,
an equality concept and order relations have been defined for DSA.

Definition 14 Let X andY be N-samples provided by the CESTAC method.

e Discrete stochastic equality denoted by ds= is defined as:
Xds=Y ifandonlyif X —Y =@Q.0.

e Discrete stochastic inequalities denoted by ds> and ds> are defined as:
Xds>Y ifand only if X >Y and Xds#Y,
Xds>Y ifand only if X >Y or Xds=Y.

Order relations in DSA are essential to control branching statements. Because
of round-off errors, if A and B are two floating-point numbers and a and b the

corresponding exact values,

a>b#HA>B and A>B % a>0b.

12



Many problems in scientific computing are due to this dis-correlation: for
example, unsatisfied stopping criteria or infinite loops in algorithmic geometry.
Taking into account the numerical quality of the operands in order relations
enables to partially solve these problems [3].

Therefore DSA enables to estimate the impact of round-off errors on any result
of a scientific code and also to check that no anomaly occurred during the
run, especially in branching statements. DSA is implemented in the CADNA
library ! .

The accuracy of a stochastic number can be related to the number of exact sig-
nificant digits of an N-sample provided by the CESTAC method. Indeed, when
N is a small value (2 or 3), which is the case in practice, the values obtained
with equations (32) and (39) are very close. They represent in a computed
result the number of significant digits which are not affected by round-off
errors. So the two types of stochastic arithmetics are coherent. Properties es-
tablished in the theoretical framework of continuous stochastic arithmetic can
be applied on a computer via the practical use of DSA.

3.8 Theoretical results on stochastic operations

The theoretical results presented here have been established in continuous sto-
chastic arithmetic. They enable one to compare results of arithmetical stochas-
tic operations with those provided by the corresponding classical operations
performed on exact values.

Let us consider a numerical method which aims to approximate an exact
value x;. This method may consist for example in computing an iterate of
a sequence (uy) such that lim, ,, u, = ;. Even using an arithmetic with
infinite precision, the value obtained is not x;, but an approximation which
is affected by a truncation error. We compare here the results obtained using
such numerical methods in stochastic arithmetic with the exact values they
approximate.

Theorem 15 Let X| = (my,0}) be the approzimation of an exact value T, in
stochastic arithmetic. Let us assume that the exact significant bits of X1, i.e.
not affected by round-off errors, are in common with x1, up to p: the number

of significant bits of X1 in common with x1 s lower bounded by log, (/'{:;D —p.

Similarly let Xo = (mg,03) be an approzimation obtained in stochastic arith-
metic of an exact value x5, such that its exact significant bits are in common

! URL address: http://www.lip6.fr/cadna/
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with x4, up to q.

Let O be an exact arithmetical operator: O) € {+,—, %, /} and sO the corre-
sponding stochastic operator sCO) € {s+,s— ,sx,s/}.

Then the exact significant bits of X1 s () Xy are in common with the exact
value x1 O x9, up to max(p,q).

PROOF. From equation (39), the number of exact significant bits of X7,
i.e. not affected by round-off errors, is lower bounded by log, (‘"“') As the

number of significant bits of X; in common with the exact value z; is lower

bounded by log, (‘ml‘) p = logs (ZJ,TIJT ) to take into account both the

truncation error and the round-off error on X, one has to consider not the
variance o}, but (2°o;)>%.

Similarly the number of significant bits of X, in common with the exact

value x5 is lower bounded by log (%) —q = logsy (%)

From equations (34) and (39), the number of exact significant bits of X s+ X5
is lower bounded by log, (M> To take into account both the trun-

Ag\/o7+03

cation error and the round-off error on X;s+ X5, one has to consider not
the variance o} + 03, but (2P0,)? + (290,)%. Therefore a lower bound for
the number of significant bits of X;s4+ X5 in common with the exact value

|m1+m2|

T + o is logy (A T 2), which can be itself lower bounded by
B 0’1 0'2

|m1+meo| _ Th h ionifi i f X X
logo (/W\/W) max(p, q). en the exact significant bits of X;s+ X, are

in common with x; + x2, up to max(p, q).

As X1s5— Xy = (my — mg, o} + 03), the proof for the subtraction is similar as
the one for the addition.

From equations (36) and (39), the number of exact significant bits of X;sx X5

. |mima| ; _
is lower bounded by log, —Aﬁ\/nm) To take into account both the trun

cation error and the round-off error on X;sx X5, one has to consider not the
variance myoi + myos, but 2%*myo? + 22¢my03. Therefore a lower bound for
the number of significant bits of X;sx X5 in common with the exact value

Ty X Ty iS logy <)\ \/22p|mm;z| _ 2), which can be itself lower bounded by
8 maoy +2 Imi0oy

_ mame] ) S .
logo (MJW) max(p,q). Then the exact significant bits of X;sx X,

are in common with z; X x2, up to max(p, q).

14



From equations (37) and (39), the number of exact significant bits of X;s/X5

—22___ |. To take into account both the
(ag) (532"

is lower bounded by lo
Yy g2 )\B\/

truncation error and the round-off error on X;s/ X5, one has to consider not
the variance (;,’1—12)2 + (™192)2 but (2:1—"21)2 + (%—%"2)2 Therefore a lower bound

m3
for the number of significant bits of X;s/X, in common with the exact value

x1/xo is logy , which can be itself lower bounded by

2P01\2 | 28myioo
/\B\/( To1)” 4 (2mge2 )2

™3
my
my ) —maz(p, q). Then the exact significant bits of X;s/ X5

lo
9 (Ag\/(;—g)ﬂ(m;—g%?

are in common with z /x5, up to maz(p, q).

Theorem 15 enables one to control arithmetical operations performed on com-
puted results of numerical methods. This theorem has been proved for stochas-
tic arithmetical operations, which are a modelling of the operations performed
in the synchronous implementation of the CESTAC method. In practice, the-
orem 15 is used, according to 3.2.2, for results obtained in DSA. In the next
section, we present, in accordance with theorem 15 and the theoretical results
presented in section 2, a strategy to dynamically control converging sequences
computed in DSA.

4 A strategy for a dynamical control of converging sequences

When a numerical algorithm requires the evaluation of the limit of a sequence,
this limit is approximated by one of the iterates. As the number of iterations
increases, the truncation error usually decreases, but the round-off error in-
creases. Therefore the choice of the optimal iterate may be problematic.

DSA enables one to estimate the number of exact significant digits of any
computed result, i.e. its significant digits which are not affected by round-
off error propagation. Let us consider the computation of a sequence (I,,)
in DSA and let us assume that the convergence zone is reached. If discrete
stochastic equality is achieved for two successive iterates, i.e. I, — I,,; 1 = @Q.0,
the difference between I,, and I, is only due to round-off errors and further
iterations are useless. The optimal iterate I,,,; can therefore be dynamically
determined at run time. Furthermore, if the sequence (I,,) converges at least
linearly to I, from section 2, the exact significant digits of I,,; are in common
with I, up to k digits. The value k, which depends on the convergence speed
of (I,), can be determined from theorem 5 or 7.

15



Let us consider a sequence generated using the trapezoidal or Simpson’s rule
with the technique of step halving previously described. If the convergence
zone is reached and computations are performed until the difference between
two successive iterates is insignificant, then, from section 2, the exact signifi-
cant bits of the last iterate are in common with the exact value of the integral,
up to one.

More generally, if a sequence (I,,) converging at least linearly to I is computed
using DSA, the optimal iterate can be dynamically determined and the number
of significant digits it has in common with the exact limit I can be evaluated.
If operations on limits of sequences are required in a numerical algorithm, a
similar strategy, based on the following theorem, can be used.

Theorem 16 Let us consider the computation in DSA of two sequences (Ij)
and (Jx) converging at least linearly to I and J respectively.

Let I, (respectively J,,) be an iterate such that its exact significant bits are in
common with I up to p (respectively J up to q).

If we denote by (O an exact arithmetical operator, then the exact significant
bits of I, O J, are in common with the exact value I O J, up to max(p,q).

PROOF. From section 2, as the sequence ([) converges at least linearly
to I, if it is computed until the difference between two successive iterates is
insignificant, i.e. I,,_y —I,, = @.0, then we can determine the value p such that
the exact significant bits of [, are in common with I, up to p. Similarly if the
sequence (.J) is computed until .J,, 1 — J,,, = @Q.0, then we can determine the
value ¢ such that the exact significant bits of .J,,, are in common with .J, up
to g. According to the application of theorem 15 in DSA, if an arithmetical
operation is performed on I, and .J,,, the exact significant bits of the result
are those obtained with the same operation performed on I and J, up to

maz(p, q).

Remark 17 According to section 2, if the convergence of the sequences (Iy,)
and (Jx) is sufficiently fast, then p = q = 1. In this case, the exact significant
bits of the result obtained are those provided by the same operation on the
lvmits, up to one.

More generally, in a numerical algorithm involving the computation of sev-
eral sequences, if each sequence is computed until the difference between two
successive iterates is insignificant, each limit is approximated by the optimal
iterate. According to section 2, if each sequence converges at least linearly, we
can evaluate the number of significant digits common between the limit and
its approximation. If arithmetical operations are performed on these approxi-
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mations, we can determine the significant digits of the result obtained which
are common with the result of the same operations performed on the limits.

5 Dynamical control of combined sequences

This section shows how to approximate the limit of a sequence by its optimal
iterate, this iterate being itself the limit of another sequence. The theorems
presented in sections 2 and 3 can be combined to determine the number of
digits of the approximation obtained which are in common with the exact
result. In the strategies described in this section, small letters denote exact

values and capital letters the corresponding approximations computed using
DSA.

5.1 A strategy to compute combined sequences

We consider a sequence in which each term u,, is the limit of another sequence.
More precisely, let (u,,,) be a sequence converging at least linearly to u and,
for all m, let (umn) be a sequence converging at least linearly to w,.

For all m, let U,, be the approximation of u,, computed using DSA. U, is
obtained by computing the sequence () until, in the convergence zone, the
difference between two successive iterates is insignificant.

As for all m, the sequence (uy,,) converges at least linearly to w,,, according
to section 2, one can determine the value ¢ such that the exact significant bits
of U,, are common to u,,, up to q.

Figure 1 represents the significant bits of U,, and U,,,; if the difference
Umn — Uy is insignificant. In this case, the exact significant bits of U,y
are common to U, and are also common to u,, and u,,{, up to q.

As the sequence (u,,) converges at least linearly to u, one can determine the
value p such that the bits common to u,, and u,,;; are common with u, up

to p.

Consequently if the difference U, — U1 is insignificant, the exact significant
bits of U,, 1 are common with u, up to p + gq.
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significant bits not affected by round-off errors

Un

bits common with wu,, q bits

significant bits not affected by round-off errors

Um+1 .

bits common with w,, 1 q bits

bits common with u p bits

E significant bits not affected by round-off errors and common to U, and U,

Fig. 1. Significant bits of U, and Up,11

5.2 Dynamical control of integrals on an infinite domain

Let us consider the computation of an improper integral g = [;° ¢(z)dz. The
infinite interval of integration is partitioned into finite intervals of length L.

Let f; = fj(éH)L ¢(v)dr and gn = Y7Ly fj, liMy 00 Gm = g-

g can be numerically approximated by an iterate g,,, m being sufficiently high.
The optimal number of iterates to compute can be determined dynamically
using DSA.

Let F}, be the approximation of f; computed using the trapezoidal or Simp-
son’s rule with step 2% For all j, the sequence (F},) is computed until the
difference between two successive iterates is insignificant. This is not achieved
at the same iteration of all values of j. Let n; be the iteration at which

Flj,nj_l - Fj,nj = @0

According to section 2, for all j, the exact significant bits of Fj,. are in
common with f;, up to one. Let G, = 37" F}j;;. According to theorem 16,
the exact significant bits of G,,, are in common with g,,, up to one.

Figure 2 represents the significant bits of G,, and G,,; if the difference
G — G,y is insignificant. In this case, the exact significant bits of G,
are common to GG, and are also common to g, and g,,.1, up to one.

We assume that the sequence (g,,,) converges at least linearly to g. According
to section 2, if the convergence zone is reached, C,,, o ., = Cy,. o+ v where
v represents p bits. Therefore the bits common to g, and g, are common
with ¢, up to p.
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significant bits not affected by round-off errors

Gm

bits common with g,,

significant bits not affected by round-off errors

Gm+1

bits common with g, 1

bits common with g p bits

E significant bits not affected by round-off errors and common to G,, and G411

Fig. 2. Significant bits of G, and G, 41

Consequently if the difference G,,, — G+ is insignificant, the exact significant
bits of G}, 11 are common with ¢, up to p + 1.

6 Numerical experiments

Numerical experiments have been carried out using DSA implemented in the
CADNA library. Two examples are presented: the computation of a definite
integral and the computation of an integral on an infinite interval.

6.1 Computation of a definite integral

163 — 1522 — 282 + 22
Let ider the int 11:/ dr = 1.
el us consider e 1mn egra 0 93}2 + 12;1;‘ + 4 X

I has been estimated with the trapezoidal and Simpson’s rules using the
strategy described in section 2. Approximations I,, have been computed with
step 2% until the difference I, — I, is insignificant. From section 2, we can
guarantee that the exact significant bits of the last iterate Iy are in common

with the exact value of I, up to one.

Table 1 presents for both rules the approximations of I obtained in single
and double precision. The number of exact significant digits of each result has
been estimated using DSA. For each sequence, the exact significant digits of
the last iterate are reported in table 1.

We can notice that the exact significant digits of each approximation obtained
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Table 1
Approximations of T

rule in single precision in double precision

trapezoidal Iy = 0.10000E +01  I; = 0.100000000000E + 001
Simpson I3 = 0.100000E + 01  I;3 = 0.1000000000000F + 001

are in common with /. The number of iterations requested for the stopping
criterion to be satisfied depends of course on the precision chosen, but also
on the quadrature method used. Whatever the precision is, less iterations are
performed with Simpson’s rule than with the trapezoidal rule. This is due
to the different convergence speeds of the computed sequences. Indeed the
approximation of I is of order 2 with the trapezoidal rule and of order 4
with Simpson’s rule. For each rule, the error on the last iterate |Iy — I] is
insignificant. Because of round-off error propagation, the computer can not
distinguish Iy from [.

6.2 Computation of an improper integral

00 1
Let us consider the improper integral g = / e dr = —, where a > 0.
0 a

g has been estimated using the strategy described in 5.2. Using the same
notations as in 5.2, let g,, = 327", f;, where f; = fj(”l)L e~ dx. The approx-

imations of the integrals f; are computed with Simpson’s rule using DSA. For
every 7, a sequence is computed until the difference between two successive
iterates is insignificant.

As g — g = f(ﬁH)L e dr = O‘W;H, where o = e7%", the sequence (g,,)
converges linearly to g. Therefore theorem 5 can apply: if the convergence
zone is reached, the significant bits common to two successive iterates are also
common to ¢, up to logQ(ﬁ).

Let G, be the approximation of g,, computed using DSA. The sequence (G,,)
is computed until the difference between two successive iterates is insignificant.
We denote by M the iteration at which Gy;_; — Gy = @.0. According to
section 5.2, the exact significant bits of G, are in common with ¢, up to
logs(7=) + 1. Therefore the exact significant decimal digits of Gy, are in
common with g up to 4, where § = loglg(ﬁ).

Table 2 presents for a = 1 and different values of L the approximations G,
obtained in double precision. The number of exact significant digits of G'p; not
in common with ¢ is approximated by d. As the length L increases, the number
M of integrals f; to be approximated decreases. Only the exact significant
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digits of Gj; are reported: the other significant digits are affected by round-
off error propagation. We notice that the number of exact significant digits
obtained (from thirteen to fifteen) is satisfying for computations carried out in
double precision. The exact significant digits which are not in common with
the exact value ¢ = 1 can easily be identified. For example, if L = 107!,
among the fourteen exact significant digits of G5, the two last digits are not
in common with g. We notice that, for every approximation G,; reported in
table 2, its exact significant digits are in common with g up to [J].

Table 2
Results obtained with Simpson’s rule for a = 1

L o~ M Gum
1072 2.3 2335  0.9999999999276 E+000
1071 1.3 284 0.99999999999953E4000
1 0.5 33 0.999999999999996 E-+000
10 0.3 4 0.99999999999999E+000
50 0.3 2 0.10000000000004E+4001

Table 3 presents for a = 1075 and different values of L the exact significant
digits of the approximations GGj; obtained in double precision. As in table 2,
we notice that if the length L increases, the number A of integrals f; to be
approximated decreases. For each approximation GGj; obtained, we can easily
identify its exact significant digits which are in common with the exact value
g = 10°. As in table 2, we notice that the exact significant digits of G5; are in
common with g up to [4].

Table 3
Results obtained with Simpson’s rule for a = 10~

L = M Gum

102 3.3 19136 0.999999995109E+005
103 2.3 2346 0.9999999999352E+005
10 1.3 279 0.99999999999923E+005
10° 0.5 33 0.999999999999995E+005
105 0.3 5 0.99999999999999E+005

7 Conclusion

Discrete Stochastic Arithmetic can be used to dynamically determine the op-
timal iterate of a converging sequence. Furthermore, if the sequence converges
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at least linearly, the number of significant digits of this iterate common with
the limit can be estimated. This number depends on the speed of convergence
of the sequence.

If an arithmetical operation is performed on the optimal iterates of two se-
quences, we can determine the significant digits of the computed result com-
mon with the exact result of the same operation performed on the two limits.
This allows a dynamical control of numerical algorithms involving the com-
putation of several sequences. Integrals on an infinite interval can be approxi-
mated by computing several converging sequences. By controlling dynamically
each sequence, we can determine the significant digits of the approximation
common with the exact value of the integral.

The sequences examined in this paper all converge to a scalar value. A per-
spective to this work could be the numerical validation of sequences of vectors
involved for example in iterative methods for solving linear systems.
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