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eAbstra
tUnder some assumptions on the speed of 
onvergen
e of a sequen
e, the signi�
antdigits of one of its iterates in 
ommon with the exa
t limit 
an be determinedby 
omparing this iterate with the next one. Using a �nite pre
ision arithmeti
,if 
omputations are performed until the di�eren
e between two su

essive iteratesis insigni�
ant, the global error on the last iterate is minimal. Furthermore, forsequen
es 
onverging at least linearly, we 
an determine in the result obtained whi
hexa
t signi�
ant digits, i.e. not a�e
ted by round-o� errors, are in 
ommon withthe exa
t limit. This strategy 
an be used for the 
omputation of integrals withthe trapezoidal or Simpson's rule. A sequen
e is then generated by halving the stepvalue at ea
h iteration, while the di�eren
e between two su

essive iterates is asigni�
ant value. The exa
t signi�
ant digits of the last iterate are in 
ommon withthe exa
t value of the integral, up to one bit. This kind of strategy is then extendedto numeri
al algorithms involving several sequen
es, su
h as the approximation ofintegrals on an in�nite interval.Key words: 
onverging sequen
es, numeri
al validation, quadrature methods,trapezoidal rule, Simpson's rule, CESTAC method, Dis
rete Sto
hasti
 Arithmeti

1 Introdu
tionIn a numeri
al method whi
h involves the 
omputation of a 
onverging se-quen
e, the limit is approximated by one of the iterates. It may be diÆ
ultto estimate in the 
hosen iterate the global error, 
onsisting of the trun
ationerror and the round-o� error. The optimal iterate, i.e. the approximation forwhi
h the global error is minimal, 
an be 
omputed dynami
ally [14℄. In thisEmail address: Fabienne.Jezequel�lip6.fr (Fabienne J�ez�equel).Preprint submitted to Elsevier S
ien
e



paper, we show that we 
an determine the signi�
ant digits of this optimaliterate, whi
h are a�e
ted neither by the trun
ation error, nor by the round-o�error. In se
tion 2, we present theorems established from the trun
ation errorwhi
h enable one to determine the signi�
ant digits of an iterate in 
ommonwith the exa
t limit. As round-o� errors must also be taken into a

ount, inse
tion 3, we brie
y review methods and 
on
epts whi
h enable one to esti-mate round-o� error propagation with a probabilisti
 approa
h: the CESTACmethod, the prin
iples of sto
hasti
 arithmeti
 and the implementation pro-vided by Dis
rete Sto
hasti
 Arithmeti
 (DSA). We also present theoreti
alresults established in sto
hasti
 arithmeti
 for the 
ontrol of arithmeti
al op-erations. In se
tion 4, we des
ribe a strategy to 
ontrol both the trun
ationand the round-o� error during the 
omputation of a 
onverging sequen
e.More pre
isely, under some assumptions on the speed of 
onvergen
e of thesequen
e, we 
an determine in the optimal approximation the exa
t signi�-
ant digits, i.e. not a�e
ted by round-o� errors, whi
h are in 
ommon withthe exa
t limit. In se
tion 5, we show how the theorems established in theprevious se
tions 
an be 
ombined to 
ontrol sequen
es in whi
h ea
h termis the limit of another sequen
e. We des
ribe a strategy whi
h 
an be usedfor the 
omputation of improper integrals. The last se
tion presents numeri
alexperiments 
arried out using DSA.2 Theoreti
al results on 
onverging sequen
es2.1 Preliminary de�nitionsThe theorems presented here have been established for sequen
es having alinear or an exponential 
onvergen
e speed. Therefore we re
all propertieswhi
h 
hara
terize these two types of 
onvergen
e speed.De�nition 1 A sequen
e (In) 
onverges to I with a linear speed ifIn � I = K�n + o(�n); where K 2 R and 0 < j�j < 1:With a sequen
e having a linear 
onvergen
e, the number of iterations requiredto obtain an approximation of the limit with one more exa
t digit is quasi-
onstant.De�nition 2 A sequen
e (In) 
onverges to I with an exponential speed ifIn � I = K �pn + o(�pn); where K 2 R; 0 < j�j < 1 and p > 1:2



With a sequen
e having an exponential 
onvergen
e, at ea
h iteration, thenumber of exa
t digits is quasi-multiplied by p.The theoreti
al results presented in this se
tion require the notion of signi�
antdigits 
ommon to two real numbers. Therefore we need the following de�nition.De�nition 3 Let a and b be two real numbers, the number of signi�
ant digitsthat are 
ommon to a and b 
an be de�ned in R by(1) for a 6= b, Ca;b = log10 ����� a+ b2(a� b) ����� ;(2) 8a 2 R; Ca;a = +1.Then ja� bj = ���a+b2 ��� 10�Ca;b. For instan
e, if Ca;b = 3, the relative di�eren
ebetween a et b is of the order of 10�3 whi
h means that a and b have threesigni�
ant digits in 
ommon.Remark 4 The value of Ca;b 
an seem surprising if we 
onsider the de
imalnotations of a and b. For example, if a = 2:4599976 and b = 2:4600012, thenCa;b � 5:8. The di�eren
e due to the sequen
es of \0" or \9" is illusive. Thesigni�
ant de
imal digits of a and b are really di�erent from the sixth position.2.2 On sequen
es with a linear 
onvergen
eLet us 
onsider a sequen
e (In) 
onverging linearly to I. From the number ofsigni�
ant digits 
ommon to two su

essive iterates, In and In+1, the followingtheorem enables one to determine the number of signi�
ant digits 
ommonto In and the exa
t limit I.Theorem 5 Let (In) be a sequen
e 
onverging linearly to I, i.e. whi
h satis�esIn � I = K�n + o(�n) where K 2 R and 0 < j�j < 1, thenCIn;In+1 = CIn;I + log10 � 11� �� + o (1) :PROOF. In � I = K�n + o(�n) (1)By using the same formula for In+1, one obtainsIn � In+1 = K�n(1� �) + o(�n) (2)3



From equation (1), we dedu
eInIn � I = InK�n (1 + o(1)) (3)InIn � I = InK�n (1 + o(1)) (4)Therefore InIn � I = InK�n + o� 1�n� (5)Then In + I2(In � I) = InIn � I � 12 = InK�n + o� 1�n� (6)Similarly, from equation (2), we dedu
eIn + In+12(In � In+1) = InIn � In+1 � 12 = InK�n 11� � + o� 1�n� (7)From de�nition 3 and equation (6) we dedu
eCIn;I = log10 ���� InK�n (1 + o(1))���� (8)CIn;I = log10 ���� InK�n ����+ log10 j1 + o(1)j (9)Therefore CIn;I = log10 ���� InK�n ����+ o(1) (10)Similarly, from de�nition 3 and equation (7) we dedu
eCIn;In+1 = log10 ���� InK�n 11� � ����+ o (1) (11)Finally CIn;In+1 = CIn;I + log10 � 11� ��+ o (1) (12)4



If the 
onvergen
e zone is rea
hed, o (1) � 1: the last term in equation (12)be
omes negligible. In this 
ase, from the signi�
ant digits in 
ommon betweenIn and In+1, we 
an dedu
e the signi�
ant digits in 
ommon between In andthe exa
t limit I.If �1 < � < 0, then � log10 2 < log10 � 11��� < 0. In this 
ase, if the 
onver-gen
e zone is rea
hed, the signi�
ant digits in 
ommon between In and In+1are also in 
ommon with I.8� 2℄0; 1[, 9k 0 < � � 1 � 10�k and therefore 0 < log10 � 11��� � k. If the
onvergen
e zone is rea
hed, the signi�
ant digits in 
ommon between In andIn+1 are also in 
ommon with I, up to k digits. The lower � is, the faster the
onvergen
e of the sequen
e is and the lower k is.Remark 6 If 0 < � � 12 , then 0 < log2 � 11��� � 1. In this 
ase, if the
onvergen
e zone is rea
hed, the signi�
ant bits in 
ommon between In andIn+1 are also in 
ommon with I, up to one.2.3 On the trapezoidal and Simpson's rulesTheorem 5 
an be used for the evaluation of integrals with the trapezoidal orSimpson's rule. Indeed a sequen
e whi
h 
onverges linearly 
an be generatedby halving the step value at ea
h iteration.Let f be a real fun
tion whi
h is Ck over [a; b℄ where k � 3. Let In be theapproximation of I = R ba f(x)dx 
omputed using the trapezoidal rule withstep h = b�a2n . If f 0(a) 6= f 0(b), the development of the error up to order 4is [1,8,9℄: In � I = h212 [f 0(b)� f 0(a)℄ +O(h4) (13)As the sequen
e (In) satis�es In�I = K�n+O(�2n), with K = (b�a)212 [f 0(b)�f 0(a)℄ and � = 14 , theorem 5 
ould apply. However the following property hasbeen established in [5℄:CIn;In+1 = CIn;I + log10 �43�+O � 14n� : (14)Let f be a real fun
tion whi
h is Ck over [a; b℄ where k � 5. Let In be theapproximation of I = R ba f(x)dx 
omputed using Simpson's rule with steph = b�a2n . If f (3)(a) 6= f (3)(b), the development of the error up to order 65



is [1,8,9℄: In � I = h4180 [f (3)(b)� f (3)(a)℄ +O(h6): (15)The sequen
e (In) satis�es In� I = K�n+O(� 32n), with K = (b�a)4180 [f (3)(b)�f (3)(a)℄ and � = 116 . Therefore, as for the trapezoidal rule, theorem 5 
ouldapply. The following property has a
tually been established in [5℄:CIn;In+1 = CIn;I + log10 �1615� +O � 14n� : (16)If the 
onvergen
e zone is rea
hed, O � 14n � � 1. Furthermore log10 �43� andlog10 �1615� represent at most one bit. Indeed, for both rules, � < 12 . Therefore,if the 
onvergen
e zone is rea
hed, the signi�
ant digits 
ommon to In andIn+1 are also 
ommon to I, the exa
t value of the integral, up to one bit.2.4 On sequen
es with an exponential 
onvergen
eTheoreti
al results similar to theorem 5 may be established for sequen
es withan exponential 
onvergen
e.Theorem 7 Let (In) be a sequen
e 
onverging to I with an exponential speed,i.e. whi
h satis�es In � I = K �pn + o(�pn) where K 2 R, 0 < j�j < 1 andp > 1, then CIn;In+1 = CIn;I + log10 � 11� �pn(p�1)�+ o (1) :PROOF. In � I = K �pn + o(�pn) (17)By using the same formula for In+1, one obtainsIn � In+1 = K ��pn � �pn+1�+ o(�pn) (18)From equation (17), we dedu
eInIn � I = InK�pn (1 + o(1)) (19)InIn � I = InK�pn (1 + o(1)) (20)6



Therefore InIn � I = InK�pn + o� 1�pn� (21)Then In + I2(In � I) = InIn � I � 12 = InK�pn + o� 1�pn� (22)Similarly, from equation (18), we dedu
eInIn � In+1 = InK (�pn � �pn+1) (1 + o(1)) (23)Therefore InIn � In+1 = InK (�pn � �pn+1) + o� 1�pn� (24)Then In + In+12(In � In+1) = InIn � In+1 � 12 = InK (�pn � �pn+1) + o� 1�pn� (25)From de�nition 3 and equation (22) we dedu
eCIn;I = log10 ���� InK�pn (1 + o(1))���� (26)Therefore CIn;I = log10 ���� InK�pn ����+ o(1) (27)Similarly, from de�nition 3 and equation (25) we dedu
eCIn;In+1 = log10 ����� InK (�pn � �pn+1) (1 + o(1))����� (28)Therefore CIn;In+1 = log10 ����� InK �pn (1� �pn(p�1)) �����+ o(1) (29)Finally CIn;In+1 = CIn;I + log10 � 11� �pn(p�1)�+ o(1) (30)7



If the 
onvergen
e zone is rea
hed, the de
imal signi�
ant digits in 
ommon be-tween In and In+1 are also 
ommon to the exa
t limit I, up to log10 � 11��pn(p�1)�.If 0 < j�j �Mn, with Mn = ( 910)( 1pn(p�1) ), then 0 < log10 � 11��pn(p�1) � � 1. Thesigni�
ant digits 
ommon to In and In+1 are also 
ommon to I, up to one. Asthe number n of iterations in
reases, Mn also in
reases and the 
ondition that� must satisfy in order to have log10 � 11��pn(p�1)� � 1 be
omes less and lessstri
t. For example, if the sequen
e (In) has a quadrati
 
onvergen
e, whi
his 
hara
terized by p = 2, then M1 > 0:94 and M5 > 0:99. Similarly, as pin
reases, the speed of 
onvergen
e in
reases and Mn also in
reases.Remark 8 If the 
onvergen
e zone is rea
hed, the signi�
ant bits in 
ommonbetween In and In+1 are also 
ommon to the exa
t limit I, up to log2 � 11��pn(p�1)�.If 0 < j�j � 2( 1pn(1�p) ), then 0 < log2 � 11��pn(p�1) � � 1. This 
ondition on � iseasily satis�ed. Indeed in the 
ase of a quadrati
 
onvergen
e (i.e. for p = 2)if n = 5, 2( 1pn(1�p) ) > 0:97.The theoreti
al results presented in this se
tion have been established by tak-ing into a

ount only the trun
ation error on two su

essive iterates of asequen
e. However 
omputed results are also a�e
ted by round-o� error prop-agation. The next se
tion des
ribes how round-o� errors 
an be estimated witha probabilisti
 approa
h in order to determine the exa
t signi�
ant digits ofany 
omputed result.
3 Sto
hasti
 approa
h of round-o� errors3.1 The CESTAC methodThe CESTAC (Contrôle et Estimation Sto
hastique des Arrondis de Cal
uls)method, whi
h has been developed by La Porte and Vignes [10,12,13℄, enablesone to estimate the number of exa
t signi�
ant digits of any 
omputed result.This method is based on a probabilisti
 approa
h of round-o� errors using arandom rounding mode de�ned below.De�nition 9 Ea
h real number x, whi
h is not a 
oating-point number, isbounded by two 
onse
utive 
oating-point numbers: X� (rounded down) andX+ (rounded up). The random rounding mode de�nes the 
oating-point num-ber X representing x as being one of the two values X� or X+ with the prob-ability 1=2. 8



With this random rounding mode, the same program run several times pro-vides di�erent results, due to di�erent round-o� errors.It has been proved [2℄ that a 
omputed result R is modelled to the �rst orderin 2�p as: R � Z = r + nXi=1 gi(d)2�pzi (31)where r is the exa
t result, gi(d) are 
oeÆ
ients depending ex
lusively on thedata and on the 
ode, p is the number of bits in the mantissa and zi areindependent uniformly distributed random variables on [�1; 1℄.From equation (31), we dedu
e that:(1) the mean value of the random variable Z is the exa
t result r,(2) under some assumptions, the distribution of Z is a quasi-Gaussian dis-tribution.Then by identifying R and Z, i.e. by negle
ting all the se
ond order terms,Student's test 
an be used to determine the a

ura
y of R. Thus from Nsamples Ri; i = 1; 2; :::; N , the number of de
imal signi�
ant digits 
ommonto R and r 
an be estimated with the following equation.CR = log100�pN ���R������ 1A ; (32)where R = 1N NXi=1Ri and �2 = 1N � 1 NXi=1 �Ri � R�2 : (33)�� is the value of Student's distribution for N � 1 degrees of freedom and aprobability level 1� �.Thus the implementation of the CESTAC method in a 
ode providing a resultR 
onsists in:� performing N times this 
ode with the random rounding mode, whi
h isobtained by using randomly the rounding mode towards �1 or +1; wethen obtain N samples Ri of R� 
hoosing as the 
omputed result the mean value R of Ri, i = 1; :::; N� estimating with equation (32) the number of exa
t de
imal signi�
ant digitsof R.In pra
ti
e N = 2 or N = 3 and � = 0:05: Note that for N = 2, then�� = 12:706 and for N = 3, then �� = 4:4303:9



Equations (31) and (32) hold if two main hypotheses are veri�ed. These hy-potheses are:(1) the round-o� errors �i are independent, 
entered uniformly distributedrandom variables,(2) the approximation to the �rst order in 2�p is legitimate.Con
erning the �rst hypothesis, with the use of the random arithmeti
, round-o� errors �i are random variables, however, in pra
ti
e, they are not rigorously
entered and in this 
ase Student's test gives a biased estimation of the 
om-puted result. It has been proved [6℄ that, with a bias of a few �, the error onthe estimation of the number of exa
t signi�
ant digits of R is less than onede
imal digit. Therefore even if the �rst hypothesis is not rigorously satis�ed,the reliability of the estimation obtained with equation (32) is not altered ifit is 
onsidered as exa
t up to one digit.Con
erning the se
ond hypothesis, the approximation to the �rst order only
on
erns multipli
ations and divisions. Indeed the round-o� error generatedby an addition or a subtra
tion does not 
ontain any term of higher order. Ithas been shown [2,4℄ that, if a 
omputed result be
omes insigni�
ant, i.e. ifthe round-o� error it 
ontains is of the same order of magnitude as the resultitself, then the �rst order approximation may be not legitimate. In pra
ti
ethe validation of the CESTAC method requires a dynami
 
ontrol of multi-pli
ations and divisions, during the exe
ution of the 
ode. This leads to thesyn
hronous implementation of the method, i.e. to the parallel 
omputation ofthe N samples Ri, and also to the 
on
ept of 
omputational zero, also namedinformati
al zero [11℄.De�nition 10 During the run of a 
ode using the CESTAC method, an in-termediate or a �nal result R is a 
omputational zero, denoted by �:0, if oneof the two following 
onditions holds:� 8i; Ri = 0,� CR � 0.Any 
omputed result R is a 
omputational zero if either R = 0, R beingsigni�
ant, or R is insigni�
ant. A 
omputational zero is a value that 
annotbe di�erentiated from the mathemati
al zero be
ause of its round-o� error.From the syn
hronous implementation of the CESTAC method and the 
on-
ept of 
omputational zero, sto
hasti
 arithmeti
 [4,7,13℄ has been de�ned.Two types of sto
hasti
 arithmeti
 a
tually exist: it 
an be either 
ontinuousor dis
rete. 10



3.2 Prin
iples of sto
hasti
 arithmeti
s3.2.1 Continuous sto
hasti
 arithmeti
Continuous sto
hasti
 arithmeti
 is a modelling of the syn
hronous implemen-tation of the CESTAC method. By using this implementation, so that the Nruns of a 
ode take pla
e in parallel, the N results of ea
h arithmeti
al opera-tion 
an be 
onsidered as realizations of a Gaussian random variable 
enteredon the exa
t result. One 
an therefore de�ne a new number, 
alled sto
hasti
number, and a new arithmeti
, 
alled (
ontinuous) sto
hasti
 arithmeti
, ap-plied to these numbers. An equality 
on
ept and order relations, whi
h takeinto a

ount the number of exa
t signi�
ant digits of sto
hasti
 operands, havealso been de�ned.A sto
hasti
 number X is denoted by (m; �2), where m is the mean value ofX and � its standard deviation. Sto
hasti
 arithmeti
al operations (s+, s�,s�, s=) 
orrespond to terms to the �rst order in �m of operations between twoindependent Gaussian random variables.De�nition 11 Let X1 = (m1; �21) and X2 = (m2; �22). Sto
hasti
 arithmeti
aloperations on X1 and X2 are de�ned as:X1 s+ X2 = �m1 +m2 ; �21 + �22� (34)X1 s� X2 = �m1 �m2 ; �21 + �22� (35)X1 s� X2 = �m1 �m2 ; m22�21 +m21�22� (36)X1 s= X2 = 0�m1=m2 ; � �1m2�2 +  m1�2m22 !21Awith m2 6= 0: (37)An a

ura
y 
an be asso
iated to any sto
hasti
 number. If X = (m; �2), ��exists (depending only on �) su
h thatP (X 2 [m� ���;m+ ���℄) = 1� �; (38)I�;X = [m� ���;m+ ���℄ is the 
on�den
e interval ofm at 1��. The numberof de
imal signi�
ant digits 
ommon to all the elements of I�;X and to m islower bounded by C�;X = log10  jmj���! : (39)The following de�nition is the modelling of the 
on
ept of 
omputational zero,previously introdu
ed. 11



De�nition 12 A sto
hasti
 number X is a sto
hasti
 zero, denoted by 0, ifand only if C�;X � 0 or X = (0; 0):In a

ordan
e with the 
on
ept of sto
hasti
 zero, a new equality 
on
ept andnew order relations have been de�ned.De�nition 13 Let X1 = (m1; �21) and X2 = (m2; �22) be two sto
hasti
 num-bers.� Sto
hasti
 equality, denoted by s=, is de�ned as:X1 s= X2 if and only if X1 s� X2 = 0.� Sto
hasti
 inequalities, denoted by s> and s� are de�ned as:X1 s> X2 if and only if m1 > m2 and X1 s 6= X2,X1 s� X2 if and only if m1 � m2 or X1 s= X2.Continuous sto
hasti
 arithmeti
 is a modelling of the 
omputer arithmeti
,whi
h takes into a

ount round-o� errors. The properties of 
ontinuous sto
has-ti
 arithmeti
 [3,4℄ have pointed out the theoreti
al di�eren
es between theapproximative arithmeti
 of a 
omputer and exa
t arithmeti
.3.2.2 Dis
rete Sto
hasti
 Arithmeti
Dis
rete Sto
hasti
 Arithmeti
 (DSA) has been de�ned from the syn
hronousimplementation of the CESTAC method. With DSA, a real number be
omesan N -dimensional set and any operation on these N -dimensional sets is per-formed element per element using the random rounding mode. The numberof exa
t signi�
ant digits of su
h an N -dimensional set 
an be estimated fromequation (32). From the 
on
ept of 
omputational zero previously introdu
ed,an equality 
on
ept and order relations have been de�ned for DSA.De�nition 14 Let X and Y be N-samples provided by the CESTAC method.� Dis
rete sto
hasti
 equality denoted by ds= is de�ned as:Xds= Y if and only if X � Y = �:0.� Dis
rete sto
hasti
 inequalities denoted by ds> and ds� are de�ned as:Xds> Y if and only if X > Y and Xds 6= Y ,Xds� Y if and only if X � Y or Xds= Y .Order relations in DSA are essential to 
ontrol bran
hing statements. Be
auseof round-o� errors, if A and B are two 
oating-point numbers and a and b the
orresponding exa
t values,a > b; A > B and A > B ; a > b:12



Many problems in s
ienti�
 
omputing are due to this dis-
orrelation: forexample, unsatis�ed stopping 
riteria or in�nite loops in algorithmi
 geometry.Taking into a

ount the numeri
al quality of the operands in order relationsenables to partially solve these problems [3℄.Therefore DSA enables to estimate the impa
t of round-o� errors on any resultof a s
ienti�
 
ode and also to 
he
k that no anomaly o

urred during therun, espe
ially in bran
hing statements. DSA is implemented in the CADNAlibrary 1 .The a

ura
y of a sto
hasti
 number 
an be related to the number of exa
t sig-ni�
ant digits of an N -sample provided by the CESTAC method. Indeed, whenN is a small value (2 or 3), whi
h is the 
ase in pra
ti
e, the values obtainedwith equations (32) and (39) are very 
lose. They represent in a 
omputedresult the number of signi�
ant digits whi
h are not a�e
ted by round-o�errors. So the two types of sto
hasti
 arithmeti
s are 
oherent. Properties es-tablished in the theoreti
al framework of 
ontinuous sto
hasti
 arithmeti
 
anbe applied on a 
omputer via the pra
ti
al use of DSA.3.3 Theoreti
al results on sto
hasti
 operationsThe theoreti
al results presented here have been established in 
ontinuous sto-
hasti
 arithmeti
. They enable one to 
ompare results of arithmeti
al sto
has-ti
 operations with those provided by the 
orresponding 
lassi
al operationsperformed on exa
t values.Let us 
onsider a numeri
al method whi
h aims to approximate an exa
tvalue x1. This method may 
onsist for example in 
omputing an iterate ofa sequen
e (un) su
h that limn!1 un = x1. Even using an arithmeti
 within�nite pre
ision, the value obtained is not x1, but an approximation whi
his a�e
ted by a trun
ation error. We 
ompare here the results obtained usingsu
h numeri
al methods in sto
hasti
 arithmeti
 with the exa
t values theyapproximate.Theorem 15 Let X1 = (m1; �21) be the approximation of an exa
t value x1 insto
hasti
 arithmeti
. Let us assume that the exa
t signi�
ant bits of X1, i.e.not a�e
ted by round-o� errors, are in 
ommon with x1, up to p: the numberof signi�
ant bits of X1 in 
ommon with x1 is lower bounded by log2 � jm1j���1��p.Similarly let X2 = (m2; �22) be an approximation obtained in sto
hasti
 arith-meti
 of an exa
t value x2, su
h that its exa
t signi�
ant bits are in 
ommon1 URL address: http://www.lip6.fr/
adna/13



with x2, up to q.Let 
 be an exa
t arithmeti
al operator: 
 2 f+;�;�; =g and s
 the 
orre-sponding sto
hasti
 operator s
 2 fs+ ; s� ; s� ; s=g.Then the exa
t signi�
ant bits of X1 s
 X2 are in 
ommon with the exa
tvalue x1 
 x2, up to max(p; q).PROOF. From equation (39), the number of exa
t signi�
ant bits of X1,i.e. not a�e
ted by round-o� errors, is lower bounded by log2 � jm1j���1�. As thenumber of signi�
ant bits of X1 in 
ommon with the exa
t value x1 is lowerbounded by log2 � jm1j���1� � p = log2 � jm1j2p���1�, to take into a

ount both thetrun
ation error and the round-o� error on X1, one has to 
onsider not thevarian
e �21 , but (2p�1)2.Similarly the number of signi�
ant bits of X2 in 
ommon with the exa
tvalue x2 is lower bounded by log2 � jm2j���2�� q = log2 � jm2j2q���2�.From equations (34) and (39), the number of exa
t signi�
ant bits of X1s+X2is lower bounded by log2 � jm1+m2j��p�21+�22�. To take into a

ount both the trun-
ation error and the round-o� error on X1s+ X2, one has to 
onsider notthe varian
e �21 + �22 , but (2p�1)2 + (2q�2)2. Therefore a lower bound forthe number of signi�
ant bits of X1s+ X2 in 
ommon with the exa
t valuex1 + x2 is log2 � jm1+m2j��p(2p�1)2+(2q�2)2�, whi
h 
an be itself lower bounded bylog2 � jm1+m2j��p�21+�22��max(p; q). Then the exa
t signi�
ant bits of X1s+X2 arein 
ommon with x1 + x2, up to max(p; q).As X1s�X2 = (m1 �m2; �21 + �22), the proof for the subtra
tion is similar asthe one for the addition.From equations (36) and (39), the number of exa
t signi�
ant bits of X1s�X2is lower bounded by log2 � jm1m2j��pm2�21+m1�22�. To take into a

ount both the trun-
ation error and the round-o� error on X1s�X2, one has to 
onsider not thevarian
e m2�21 +m1�22, but 22pm2�21 + 22qm1�22. Therefore a lower bound forthe number of signi�
ant bits of X1s� X2 in 
ommon with the exa
t valuex1 � x2 is log2 � jm1m2j��p22pm2�21+22qm1�22�, whi
h 
an be itself lower bounded bylog2 � jm1m2j��pm2�21+m1�22��max(p; q). Then the exa
t signi�
ant bits of X1s�X2are in 
ommon with x1 � x2, up to max(p; q).14



From equations (37) and (39), the number of exa
t signi�
ant bits of X1s=X2is lower bounded by log20� jm1m2 j��q( �1m2 )2+(m1�2m22 )21A. To take into a

ount both thetrun
ation error and the round-o� error on X1s=X2, one has to 
onsider notthe varian
e ( �1m2 )2+(m1�2m22 )2, but (2p�1m2 )2+(2qm1�2m22 )2. Therefore a lower boundfor the number of signi�
ant bits of X1s=X2 in 
ommon with the exa
t valuex1=x2 is log20BB� jm1m2 j��r( 2p�1m2 )2+( 2qm1�2m22 )21CCA, whi
h 
an be itself lower bounded bylog20� jm1m2 j��q( �1m2 )2+(m1�2m22 )21A�max(p; q). Then the exa
t signi�
ant bits ofX1s=X2are in 
ommon with x1=x2, up to max(p; q).Theorem 15 enables one to 
ontrol arithmeti
al operations performed on 
om-puted results of numeri
al methods. This theorem has been proved for sto
has-ti
 arithmeti
al operations, whi
h are a modelling of the operations performedin the syn
hronous implementation of the CESTAC method. In pra
ti
e, the-orem 15 is used, a

ording to 3.2.2, for results obtained in DSA. In the nextse
tion, we present, in a

ordan
e with theorem 15 and the theoreti
al resultspresented in se
tion 2, a strategy to dynami
ally 
ontrol 
onverging sequen
es
omputed in DSA.4 A strategy for a dynami
al 
ontrol of 
onverging sequen
esWhen a numeri
al algorithm requires the evaluation of the limit of a sequen
e,this limit is approximated by one of the iterates. As the number of iterationsin
reases, the trun
ation error usually de
reases, but the round-o� error in-
reases. Therefore the 
hoi
e of the optimal iterate may be problemati
.DSA enables one to estimate the number of exa
t signi�
ant digits of any
omputed result, i.e. its signi�
ant digits whi
h are not a�e
ted by round-o� error propagation. Let us 
onsider the 
omputation of a sequen
e (In)in DSA and let us assume that the 
onvergen
e zone is rea
hed. If dis
retesto
hasti
 equality is a
hieved for two su

essive iterates, i.e. In� In+1 = �:0,the di�eren
e between In and In+1 is only due to round-o� errors and furtheriterations are useless. The optimal iterate In+1 
an therefore be dynami
allydetermined at run time. Furthermore, if the sequen
e (In) 
onverges at leastlinearly to I, from se
tion 2, the exa
t signi�
ant digits of In+1 are in 
ommonwith I, up to k digits. The value k, whi
h depends on the 
onvergen
e speedof (In), 
an be determined from theorem 5 or 7.15



Let us 
onsider a sequen
e generated using the trapezoidal or Simpson's rulewith the te
hnique of step halving previously des
ribed. If the 
onvergen
ezone is rea
hed and 
omputations are performed until the di�eren
e betweentwo su

essive iterates is insigni�
ant, then, from se
tion 2, the exa
t signi�-
ant bits of the last iterate are in 
ommon with the exa
t value of the integral,up to one.More generally, if a sequen
e (In) 
onverging at least linearly to I is 
omputedusing DSA, the optimal iterate 
an be dynami
ally determined and the numberof signi�
ant digits it has in 
ommon with the exa
t limit I 
an be evaluated.If operations on limits of sequen
es are required in a numeri
al algorithm, asimilar strategy, based on the following theorem, 
an be used.Theorem 16 Let us 
onsider the 
omputation in DSA of two sequen
es (Ik)and (Jk) 
onverging at least linearly to I and J respe
tively.Let In (respe
tively Jm) be an iterate su
h that its exa
t signi�
ant bits are in
ommon with I up to p (respe
tively J up to q).If we denote by 
 an exa
t arithmeti
al operator, then the exa
t signi�
antbits of In 
 Jm are in 
ommon with the exa
t value I
 J , up to max(p; q).PROOF. From se
tion 2, as the sequen
e (Ik) 
onverges at least linearlyto I, if it is 
omputed until the di�eren
e between two su

essive iterates isinsigni�
ant, i.e. In�1�In = �:0, then we 
an determine the value p su
h thatthe exa
t signi�
ant bits of In are in 
ommon with I, up to p. Similarly if thesequen
e (Jk) is 
omputed until Jm�1� Jm = �:0, then we 
an determine thevalue q su
h that the exa
t signi�
ant bits of Jm are in 
ommon with J , upto q. A

ording to the appli
ation of theorem 15 in DSA, if an arithmeti
aloperation is performed on In and Jm, the exa
t signi�
ant bits of the resultare those obtained with the same operation performed on I and J , up tomax(p; q).Remark 17 A

ording to se
tion 2, if the 
onvergen
e of the sequen
es (Ik)and (Jk) is suÆ
iently fast, then p = q = 1. In this 
ase, the exa
t signi�
antbits of the result obtained are those provided by the same operation on thelimits, up to one.More generally, in a numeri
al algorithm involving the 
omputation of sev-eral sequen
es, if ea
h sequen
e is 
omputed until the di�eren
e between twosu

essive iterates is insigni�
ant, ea
h limit is approximated by the optimaliterate. A

ording to se
tion 2, if ea
h sequen
e 
onverges at least linearly, we
an evaluate the number of signi�
ant digits 
ommon between the limit andits approximation. If arithmeti
al operations are performed on these approxi-16



mations, we 
an determine the signi�
ant digits of the result obtained whi
hare 
ommon with the result of the same operations performed on the limits.
5 Dynami
al 
ontrol of 
ombined sequen
esThis se
tion shows how to approximate the limit of a sequen
e by its optimaliterate, this iterate being itself the limit of another sequen
e. The theoremspresented in se
tions 2 and 3 
an be 
ombined to determine the number ofdigits of the approximation obtained whi
h are in 
ommon with the exa
tresult. In the strategies des
ribed in this se
tion, small letters denote exa
tvalues and 
apital letters the 
orresponding approximations 
omputed usingDSA.
5.1 A strategy to 
ompute 
ombined sequen
esWe 
onsider a sequen
e in whi
h ea
h term um is the limit of another sequen
e.More pre
isely, let (um) be a sequen
e 
onverging at least linearly to u and,for all m, let (um;n) be a sequen
e 
onverging at least linearly to um.For all m, let Um be the approximation of um 
omputed using DSA. Um isobtained by 
omputing the sequen
e (um;n) until, in the 
onvergen
e zone, thedi�eren
e between two su

essive iterates is insigni�
ant.As for all m, the sequen
e (um;n) 
onverges at least linearly to um, a

ordingto se
tion 2, one 
an determine the value q su
h that the exa
t signi�
ant bitsof Um are 
ommon to um, up to q.Figure 1 represents the signi�
ant bits of Um and Um+1 if the di�eren
eUm � Um+1 is insigni�
ant. In this 
ase, the exa
t signi�
ant bits of Um+1are 
ommon to Um and are also 
ommon to um and um+1, up to q.As the sequen
e (um) 
onverges at least linearly to u, one 
an determine thevalue p su
h that the bits 
ommon to um and um+1 are 
ommon with u, upto p.Consequently if the di�eren
e Um�Um+1 is insigni�
ant, the exa
t signi�
antbits of Um+1 are 
ommon with u, up to p+ q.17



PSfrag repla
ements Umbits 
ommon with umUm+1bits 
ommon with um+1bits 
ommon with u p bits q bits
q bits

signi�
ant bits not a�e
ted by round-o� errors and 
ommon to Um and Um+1
signi�
ant bits not a�e
ted by round-o� errors

signi�
ant bits not a�e
ted by round-o� errors

Fig. 1. Signi�
ant bits of Um and Um+15.2 Dynami
al 
ontrol of integrals on an in�nite domainLet us 
onsider the 
omputation of an improper integral g = R10 �(x)dx. Thein�nite interval of integration is partitioned into �nite intervals of length L.Let fj = R (j+1)LjL �(x)dx and gm = Pmj=0 fj, limm!1 gm = g.g 
an be numeri
ally approximated by an iterate gm, m being suÆ
iently high.The optimal number of iterates to 
ompute 
an be determined dynami
allyusing DSA.Let Fj;n be the approximation of fj 
omputed using the trapezoidal or Simp-son's rule with step L2n . For all j, the sequen
e (Fj;n) is 
omputed until thedi�eren
e between two su

essive iterates is insigni�
ant. This is not a
hievedat the same iteration of all values of j. Let nj be the iteration at whi
hFj;nj�1 � Fj;nj = �:0.A

ording to se
tion 2, for all j, the exa
t signi�
ant bits of Fj;nj are in
ommon with fj, up to one. Let Gm = Pmj=0 Fj;nj . A

ording to theorem 16,the exa
t signi�
ant bits of Gm are in 
ommon with gm, up to one.Figure 2 represents the signi�
ant bits of Gm and Gm+1 if the di�eren
eGm �Gm+1 is insigni�
ant. In this 
ase, the exa
t signi�
ant bits of Gm+1are 
ommon to Gm and are also 
ommon to gm and gm+1, up to one.We assume that the sequen
e (gm) 
onverges at least linearly to g. A

ordingto se
tion 2, if the 
onvergen
e zone is rea
hed, Cgm;gm+1 = Cgm;g + 
 where
 represents p bits. Therefore the bits 
ommon to gm and gm+1 are 
ommonwith g, up to p. 18



PSfrag repla
ements Gmbits 
ommon with gmGm+1bits 
ommon with gm+1bits 
ommon with g p bitssigni�
ant bits not a�e
ted by round-o� errors and 
ommon to Gm and Gm+1
signi�
ant bits not a�e
ted by round-o� errors

signi�
ant bits not a�e
ted by round-o� errors

Fig. 2. Signi�
ant bits of Gm and Gm+1Consequently if the di�eren
e Gm �Gm+1 is insigni�
ant, the exa
t signi�
antbits of Gm+1 are 
ommon with g, up to p+ 1.6 Numeri
al experimentsNumeri
al experiments have been 
arried out using DSA implemented in theCADNA library. Two examples are presented: the 
omputation of a de�niteintegral and the 
omputation of an integral on an in�nite interval.6.1 Computation of a de�nite integralLet us 
onsider the integral I = Z 10 6x3 � 15x2 � 28x+ 229x2 + 12x+ 4 dx = 1.I has been estimated with the trapezoidal and Simpson's rules using thestrategy des
ribed in se
tion 2. Approximations In have been 
omputed withstep 12n until the di�eren
e In � In+1 is insigni�
ant. From se
tion 2, we 
anguarantee that the exa
t signi�
ant bits of the last iterate IN are in 
ommonwith the exa
t value of I, up to one.Table 1 presents for both rules the approximations of I obtained in singleand double pre
ision. The number of exa
t signi�
ant digits of ea
h result hasbeen estimated using DSA. For ea
h sequen
e, the exa
t signi�
ant digits ofthe last iterate are reported in table 1.We 
an noti
e that the exa
t signi�
ant digits of ea
h approximation obtained19



Table 1Approximations of Irule in single pre
ision in double pre
isiontrapezoidal I9 = 0:10000E + 01 I21 = 0:100000000000E + 001Simpson I8 = 0:100000E + 01 I13 = 0:1000000000000E + 001are in 
ommon with I. The number of iterations requested for the stopping
riterion to be satis�ed depends of 
ourse on the pre
ision 
hosen, but alsoon the quadrature method used. Whatever the pre
ision is, less iterations areperformed with Simpson's rule than with the trapezoidal rule. This is dueto the di�erent 
onvergen
e speeds of the 
omputed sequen
es. Indeed theapproximation of I is of order 2 with the trapezoidal rule and of order 4with Simpson's rule. For ea
h rule, the error on the last iterate jIN � Ij isinsigni�
ant. Be
ause of round-o� error propagation, the 
omputer 
an notdistinguish IN from I.6.2 Computation of an improper integralLet us 
onsider the improper integral g = Z 10 e�ax dx = 1a , where a > 0.g has been estimated using the strategy des
ribed in 5.2. Using the samenotations as in 5.2, let gm = Pmj=0 fj, where fj = R (j+1)LjL e�ax dx. The approx-imations of the integrals fj are 
omputed with Simpson's rule using DSA. Forevery j, a sequen
e is 
omputed until the di�eren
e between two su

essiveiterates is insigni�
ant.As gm � g = R1(m+1)L e�ax dx = �m+1a , where � = e�aL, the sequen
e (gm)
onverges linearly to g. Therefore theorem 5 
an apply: if the 
onvergen
ezone is rea
hed, the signi�
ant bits 
ommon to two su

essive iterates are also
ommon to g, up to log2( 11��).Let Gm be the approximation of gm 
omputed using DSA. The sequen
e (Gm)is 
omputed until the di�eren
e between two su

essive iterates is insigni�
ant.We denote by M the iteration at whi
h GM�1 � GM = �:0. A

ording tose
tion 5.2, the exa
t signi�
ant bits of GM are in 
ommon with g, up tolog2( 11��) + 1. Therefore the exa
t signi�
ant de
imal digits of GM are in
ommon with g up to Æ, where Æ = log10( 21��).Table 2 presents for a = 1 and di�erent values of L the approximations GMobtained in double pre
ision. The number of exa
t signi�
ant digits of GM notin 
ommon with g is approximated by Æ. As the length L in
reases, the numberM of integrals fj to be approximated de
reases. Only the exa
t signi�
ant20



digits of GM are reported: the other signi�
ant digits are a�e
ted by round-o� error propagation. We noti
e that the number of exa
t signi�
ant digitsobtained (from thirteen to �fteen) is satisfying for 
omputations 
arried out indouble pre
ision. The exa
t signi�
ant digits whi
h are not in 
ommon withthe exa
t value g = 1 
an easily be identi�ed. For example, if L = 10�1,among the fourteen exa
t signi�
ant digits of GM , the two last digits are notin 
ommon with g. We noti
e that, for every approximation GM reported intable 2, its exa
t signi�
ant digits are in 
ommon with g up to dÆe.Table 2Results obtained with Simpson's rule for a = 1L Æ � M GM10�2 2.3 2335 0.9999999999276E+00010�1 1.3 284 0.99999999999953E+0001 0.5 33 0.999999999999996E+00010 0.3 4 0.99999999999999E+00050 0.3 2 0.10000000000004E+001Table 3 presents for a = 10�5 and di�erent values of L the exa
t signi�
antdigits of the approximations GM obtained in double pre
ision. As in table 2,we noti
e that if the length L in
reases, the number M of integrals fj to beapproximated de
reases. For ea
h approximation GM obtained, we 
an easilyidentify its exa
t signi�
ant digits whi
h are in 
ommon with the exa
t valueg = 105. As in table 2, we noti
e that the exa
t signi�
ant digits of GM are in
ommon with g up to dÆe.Table 3Results obtained with Simpson's rule for a = 10�5L Æ � M GM102 3.3 19136 0.999999995109E+005103 2.3 2346 0.9999999999352E+005104 1.3 279 0.99999999999923E+005105 0.5 33 0.999999999999995E+005106 0.3 5 0.99999999999999E+005
7 Con
lusionDis
rete Sto
hasti
 Arithmeti
 
an be used to dynami
ally determine the op-timal iterate of a 
onverging sequen
e. Furthermore, if the sequen
e 
onverges21



at least linearly, the number of signi�
ant digits of this iterate 
ommon withthe limit 
an be estimated. This number depends on the speed of 
onvergen
eof the sequen
e.If an arithmeti
al operation is performed on the optimal iterates of two se-quen
es, we 
an determine the signi�
ant digits of the 
omputed result 
om-mon with the exa
t result of the same operation performed on the two limits.This allows a dynami
al 
ontrol of numeri
al algorithms involving the 
om-putation of several sequen
es. Integrals on an in�nite interval 
an be approxi-mated by 
omputing several 
onverging sequen
es. By 
ontrolling dynami
allyea
h sequen
e, we 
an determine the signi�
ant digits of the approximation
ommon with the exa
t value of the integral.The sequen
es examined in this paper all 
onverge to a s
alar value. A per-spe
tive to this work 
ould be the numeri
al validation of sequen
es of ve
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