
CADNA: a library for estimating round-off

error propagation

Fabienne Jézéquel 1, Jean-Marie Chesneaux

UPMC Univ. Paris 06
UMR 7606

Laboratoire d’Informatique de Paris 6
4 place Jussieu, F-75005 Paris, France

{Jean-Marie.Chesneaux, Fabienne.Jezequel}@lip6.fr

Abstract

The CADNA library enables one to estimate round-off error propagation using
a probabilistic approach. With CADNA the numerical quality of any simulation
program can be controlled. Furthermore by detecting all the instabilities which
may occur at run time, a numerical debugging of the user code can be performed.
CADNA provides new numerical types on which round-off errors can be estimated.
Slight modifications are required to control a code with CADNA, mainly changes
in variable declarations, input and output. This paper describes the features of the
CADNA library and shows how to interpret the information it provides concerning
round-off error propagation in a code.

PACS: 02.70.-c

Key words: CADNA; CESTAC method; Discrete Stochastic Arithmetic;
floating-point arithmetic; numerical validation; round-off errors.

PROGRAM SUMMARY

Manuscript Title: CADNA: a library for estimating round-off error propagation
Authors: Fabienne Jézéquel, Jean-Marie Chesneaux
Program Title: CADNA
Journal Reference:
Catalogue identifier:
Licensing provisions: none
Programming language: Fortran
Computer: PC running LINUX with an i686 or an ia64 processor, UNIX worksta-
tions including SUN, IBM.

1 Corresponding author

Preprint submitted to Elsevier Science 3 February 2008

Operating system: LINUX, UNIX
Keywords: CADNA; CESTAC method; Discrete Stochastic Arithmetic; floating-
point arithmetic; numerical validation; round-off errors.
PACS: 02.70.-c
Classification: 6.5 Software including Parallel Algorithms
Nature of problem:
A simulation program which uses floating-point arithmetic generates round-off er-
rors, due to the rounding performed at each assignment and at each arithmetic
operation. Round-off error propagation may invalidate the result of a program. The
CADNA library enables one to estimate round-off error propagation in any simula-
tion program and to detect all numerical instabilities that may occur at run time.
Solution method:
The CADNA library [1] implements Discrete Stochastic Arithmetic [2-4] which is
based on a probabilistic model of round-off errors. The program is run several times
with a random rounding mode generating different results each time. From this set
of results, CADNA estimates the number of exact significant digits in the result
that would have been computed with standard floating-point arithmetic.
Restrictions:
CADNA requires a Fortran 90 (or newer) compiler. In the program to be linked
with the CADNA library, round-off errors on complex variables cannot be esti-
mated. Furthermore array functions such as product or sum must not be used. Only
the arithmetic operators and the abs, min, max and sqrt functions can be used for
arrays.
Running time:
The version of a code which uses CADNA runs at least three times slower than its
floating-point version. This cost depends on the computer architecture and can be
higher if the detection of numerical instabilities is enabled. In this case, the cost
may be related to the number of instabilities detected.

References:

[1] The CADNA library, URL address: http://www.lip6.fr/cadna

[2] J.-M. Chesneaux, L’arithmétique Stochastique et le Logiciel CADNA, Habilita-
tion à diriger des recherches, Université Pierre et Marie Curie, Paris, 1995.

[3] J. Vignes, A stochastic arithmetic for reliable scientific computation, Math. and
Comp. in Sim. 35, 1993, pp. 233-261.

[4] J. Vignes, Discrete Stochastic Arithmetic for Validating Results of Numerical
Software, Num. Algo. 37, 2004, pp. 377-390.

2

LONG WRITE-UP

1 Introduction

Floating-point arithmetic only approximates exact arithmetic. So, when a sci-
entific code is run on a computer its results are not exact; the approximation
introduces a round-off error for each arithmetic operation, as does the as-
signment statement (because registers have more digits than memory words),
when the value cannot be coded exactly.

As the terms precision and accuracy are widely used throughout, they need to
be clearly defined. Precision refers to the number of bits used for the represen-
tation of floating-point numbers. For instance, in the IEEE 754 standard [1],
single precision and double precision variables are encoded respectively on 32
and 64 bits. Accuracy denotes the closeness of a computed result to the exact
result. The accuracy of a computed result may be affected by a truncation
error inherent to the approximation method used and by a round-off error due
to the finite precision of the arithmetic used.

CADNA (Control of Accuracy and Debugging for Numerical Applications)
[2,3] is a library which allows, during the execution of a code:

• the estimation of the error due to round-off error propagation,
• the detection of numerical instabilities,
• the checking of the sequencing of the program (tests and branchings),
• the estimation of the accuracy of all intermediate computations.

CADNA is based on the CESTAC method [4–6] which studies round-off error
propagation from a stochastic point of view. The basic idea is to use a random
rounding to obtain several samples of each result of any arithmetic operation.
The number of common digits in these samples estimates the number of exacty
significant digits in the floating-point result. So the deterministic arithmetic
of the computer is replaced by the so-called Discrete Stochastic Arithmetic
(DSA) [3].

Validation of numerical results, which is a real problem for scientific com-
puting, can therefore be carried out using the CADNA library. For instance,
round-off error propagation in 2DRMP, a suite of two-dimensional R-matrix
propagation programs, has been studied using CADNA [7]. Although pro-
grams written in ADA, C or Fortran can be controlled using the CADNA
library, this paper focuses on the Fortran version of CADNA. The following
section is a reference guide that describes types, subroutines and functions
that compose the CADNA library. Section 3 is a user’s guide that describes

3

step by step how to (slightly) modify a source code to use the Discrete Stochas-
tic Arithmetic implemented in the library. Section 4 gives instructions for the
installation of CADNA and describes how to test the library. Section 5 com-
ments on the results of the test programs. Finally, the software structure of
the library is presented in Section 6.

2 The CADNA library

2.1 The Discrete Stochastic Arithmetic and its implementation

The CADNA library implements Discrete Stochastic Arithmetic (DSA) which
is based on the CESTAC method. The principles of the CESTAC method are
first briefly described.

The CESTAC method [4–6] consists in running the same code N times with a
different round-off error propagation for each execution. The round-off error on
the final floating-point result is estimated from the different computed results
Ri (i = 1, ..., N). The different round-off error propagations are obtained by
using the random rounding mode, which consists in choosing with an equal
probability, for each operation, the result rounded up or down. In practice,
the rounding mode is randomly set to rounding towards −∞ or +∞.

It has been proved [4] that a computed result R is modelled to the first order
in 2−p as:

R ≈ Z = r +
n

∑

i=1

gi(d)2−pzi (1)

where r is the exact result, gi(d) are coefficients depending exclusively on the
data and on the code, p is the number of bits in the mantissa and zi are
independent uniformly distributed random variables on [−1, 1].

From equation (1), we deduce that:

(1) the mean value of the random variable Z is the exact result r,
(2) under some assumptions, the distribution of Z is a quasi-Gaussian dis-

tribution.

Then by identifying R and Z, i.e. by neglecting all the second order terms,
Student’s test can be used to determine the accuracy of R. Thus from N
samples Ri (i = 1, ..., N) the number of significant decimal digits common to

4

R and r can be estimated with the following equation.

CR = log10





√
N

∣

∣

∣R
∣

∣

∣

στβ



 , (2)

where

R =
1

N

N
∑

i=1

Ri and σ2 =
1

N − 1

N
∑

i=1

(

Ri − R
)2

. (3)

τβ is the value of Student’s distribution for N − 1 degrees of freedom and a
probability level 1 − β. In practice N = 3, β = 0.05 and then τβ = 4.4303.
Thus with the CESTAC method, the mean value R is chosen as the computed
result and its number of exact significant decimal digits is estimated with
equation (2).

The CESTAC method is based on a first order model: the terms in 2−2p (p
being the number of bits of the mantissa) which appear in the expression of
the round-off error due to multiplications and divisions have been neglected.
Only the terms in 2−p are considered. It has been shown [4,2] that, if a com-
puted result becomes non-significant, i.e. if the round-off error it contains is
of the same order of magnitude as the result itself, then the first order ap-
proximation may be not legitimate. In practice the validation of the CESTAC
method requires a dynamic control of multiplications and divisions, during
the execution of the code. This leads to the synchronous implementation of
the method, i.e. to the parallel computation of the N samples Ri, and also to
the concept of computational zero, also named informatical zero [8].

Definition 1 During the run of a code using the CESTAC method, an inter-

mediate or a final result R is a computational zero, denoted by @.0, if one of

the two following conditions holds:

• ∀i, Ri = 0,
• CR ≤ 0.

Any computed result R is a computational zero if either R = 0, R being
significant, or R is non-significant. A computational zero is a value that cannot
be differentiated from the mathematical zero because of its round-off error.
From this concept, discrete stochastic relations have been defined.

Definition 2 Let X and Y be N-samples provided by CESTAC method.

• Discrete stochastic equality denoted by s = is defined as:

Xs = Y if X − Y = @.0

5

• Discrete stochastic inequalities denoted by s > and s ≥ are defined as:

Xs > Y if X > Y and X − Y 6= @.0
Xs ≥ Y if X ≥ Y or X − Y = @.0.

Discrete Stochastic Arithmetic (DSA) [2,3] is the association of the synchronous
implementation of the CESTAC method, the concept of computational zero
and the discrete stochastic relations. Elements of the DSA, which are named
stochastic numbers, are N -sets provided by the CESTAC method. Their num-
ber of exact significant digits can be estimated from equation (2). Therefore,
with the CADNA library, which implements the DSA, one can estimate the
impact of round-off errors on any result of a scientific code and also check that
no anomaly occurred during the run, especially in branching statements.

No notable change is required in a code to be run with CADNA. Indeed
CADNA has been written in Fortran 90 language, which enables one to create
new numerical types and to overload the arithmetic operators for these types.
All the arithmetic operators have been overloaded for stochastic numbers,
also for stochastic arrays of rank 1, in such a manner that when an operator is
used, the operands are N -sets and the returned result is a randomly perturbed
N -set. The relational operators have been overloaded in accordance with the
discrete stochastic relations. The standard functions defined in Fortran (sin,
cos, exp, ...) have also been overloaded. Likewise, input/output statements
have been modified, mainly the printing statement which gives as a result
the mean value of the N -set written with only its exact significant digits.
Furthermore, in order to enable the evaluation of the weight of uncertainties
on initial data on the results, a function called data st may be used to perturb
data as illustrated in 2.5.7.

During the run of a program, as soon as a numerical anomaly (for example
the product of non-significant numbers, or a relational test involving a non-
significant result) is produced, some special counters are updated. At the end of
the run, all information about numerical anomalies are printed on the standard
output. If no anomaly has been detected, it means that the program runs
without any numerical problem. Results are then given with their accuracy
(number of exact significant digits). If some numerical anomalies have been
detected, they must be analysed. Helped by the debugger associated with the
compiler, the user may retrieve the statements that produced the anomalies
and determine if changes in the code are required.

The stochastic types and the overloaded or newly defined functions of the
library are presented in the next subsections.

6

2.2 Stochastic types

In this version, CADNA provides two new numerical types, the stochastic

types :

type (single st) for stochastic variables in single precision

stochastic type associated with real

type (double st) for stochastic variables in double precision

stochastic type associated with double precision

2.3 Intrinsic functions

We present here how the intrinsic functions defined in Fortran have been
extended to stochastic types.

2.3.1 Conversion functions

The int and nint functions:

They take a parameter of stochastic type and return an integer. The knowledge
of the accuracy is lost. If X is a stochastic variable consisting in N samples Xi,

• int(X) is computed as int(
∑

N

i=1
Xi

N
)

• nint(X) is computed as nint(
∑

N

i=1
Xi

N
).

The aint and anint functions:

They take a parameter of stochastic type. The return value has the same type
as the input parameter. The control of the accuracy is preserved. If X (respec-
tively Y) is a stochastic variable consisting in N samples Xi (respectively Yi),

• the statement Y=aint(X) is equivalent to Yi = aint(Xi), i = 1, ..., N
• the statement Y=anint(X) is equivalent to Yi = anint(Xi), i = 1, ..., N .

The real function:

It takes a parameter of stochastic type and returns a value of type single st.

The dble function:

It takes a parameter of stochastic type and returns a value of type double st.

7

2.3.2 Numerical functions

The aimag and conjg functions:

These functions are not overloaded, since this version of CADNA has no
stochastic type corresponding to the standard complex type.

The abs function:

Given a single st argument, this function returns a positive single st value.
Given a double st argument, it returns a positive double st value. It accepts an
array of stochastic numbers of rank 1 as an argument.

The min and max functions:

The min and max functions have been extended in a more restricted way than
the previous functions: if they contain a stochastic argument, they must only

have two arguments and these two arguments must have the same precision
(single or double). So if there is a stochastic argument, the only (unordered)
possible type couples are (real, single st), (single st, single st), (double precision,
double st), (double st, double st).

The following table gives some examples of correct and wrong calls.

min(S,D) S of single st type incorrect

D of double st type

min(S,XD) S of single st type incorrect

XD of double precision or double st type

min(S1,S2) S1 and S2 of single st type correct

min(S,XS) S of single st type correct

XS of real type

min(D1,D2) D1 and D2 of double st type correct

min(D,XD) D of double st type correct

XD of double precision type

The min and max functions accept arrays of stochastic numbers of rank 1 as
arguments with the same rules as for scalar arguments.

The sign, mod and dim functions:

These functions accept stochastic arguments. The rules are the same as for
the min and max functions. No stochastic array is accepted.

8

2.3.3 Mathematical functions

These are the following functions:
**, sqrt, exp, log, log10, sin, cos, tan, asin, acos, atan, atan2, sinh, cosh, tanh.
They accept parameters of single st or double st stochastic type. The return
value has the same type as the input parameter.

For the ** operator, the rules for arguments are the same as for the min and
max functions. No stochastic array is accepted.

The sqrt function accepts a stochastic array of rank 1 as an argument.

Mathematical functions are defined, for stochastic types, by their generic name
only (for instance there is no stochastic version of dsin).

2.4 Relational operators

Comparison operators are overloaded and accept stochastic types and a mix-
ture of standard real or integer types with different precisions. They take into
account the accuracy of the operands.

Thus when the expression a .EQ. 0. is true, it means that a is a computational
zero, i.e. a is a mathematical zero or a has no exact significant digit.

Similarly, when the expression a .GT. b is true, it means that a-b is not a
computational zero (i.e. has at least one exact significant digit) and

∑N
i=1 ai >

∑N
i=1 bi.

2.5 CADNA specific functions

The previous part described how some standard Fortran statements are slightly
affected when using the CADNA tool. Now we present functions that are spe-
cific to the library. Note that the subroutines cadna init, cadna end and str
have to appear, respectively to initialize the library, to close the library and
to print the results with their accuracy. The other functions nb significant digit,
computed zero, old type, cadna enable, cadna disable and data st will appear in
some applications.

2.5.1 Initializing and closing the library

The cadna init subroutine has to be called once, early in the main program.
This subroutine has four integer arguments:

9

cadna init(numb instability, cadna instability, cancel level, init random).

With the first argument which must always be present, the user chooses the
maximum number of numerical instabilities that will be detected.

• if numb instability = −1, all the instabilities will be detected
• if numb instability = 0, no instability will be detected
• if numb instability = M (strictly positive M), the M first instabilities will be

detected.

The other arguments are optional.

The second argument allows the user to determine what kind of instabilities
will be enabled or disabled. There are 8 integer parameters in the library:
cadna branching,
cadna mathematic,
cadna intrinsic,
cadna cancellation,
cadna division,
cadna power,
cadna multiplication,
cadna all.

By default, the detection of all types of instability is enabled. The user has
only to specify what kind of instability is to be disabled by passing, as the
second argument, the addition of the chosen parameters. cadna all disables all
the detections of instabilities.

For instance, with the statement
call cadna init(−1, cadna branching)
the detection of unstable tests is disabled.
With the statement
call cadna init(−1, cadna mathematic + cadna intrinsic)
the detection of instabilities due to mathematical functions and Fortran in-
trinsic functions is disabled.

The third argument corresponds to the following. An unstable cancellation
is pointed out when the difference between the number of exact significant
digits (i.e. digits which are not affected by round-off errors) of the result
of an addition or a subtraction and the minimimum of the number of exact
significant digits of the two operands is greater than the cancel level argument.
The default value of this argument is 4. In other words, when one loses more
than cancel level significant digits in one addition or subtraction, CADNA
considers that a catastrophic cancellation has been detected (if the detection
of this kind of instability is enabled).

10

The last argument is an integer which is used to initialize some internal vari-
ables for random arithmetic. The default value for this argument is 51.

The cadna end subroutine ”closes” the library and prints to the standard out-
put the result of the detection of numerical instabilities.

2.5.2 Obtaining a string from a result with its evaluated accuracy

The str function has a stochastic argument and returns a string containing the
scientific notation of this argument; only the exact significant digits appear in
the string. Thus accuracy is easy to read. Note that there is no guarantee of

the last digit provided by the str function. When the argument has no exact
significant digit, the string that is returned is @.0. The field width of the
output string is 14 for a single st variable and 23 for a double st variable. The
following instructions:

type (single st) :: X,Y,Z

...

write(*,*) ’X = ’,str(X)

write(*,*) ’Y = ’,str(Y)

write(*,*) ’Z = ’,str(Z)

may yield for instance:

X = 0.123456E+00 (6 exact significant digits)

Y = 0.123E+00 (3 exact significant digits)

Z = @.0 (no exact significant digit, computational zero)

2.5.3 Obtaining the number of exact significant digits of a stochastic variable

The nb significant digit function has a stochastic argument and returns an
integer giving the number of exact significant decimal digits of this argument
when the function is called.

At some point nb significant digit(x) may return 7; later during the run it may
return 5. If x becomes non-significant then nb significant digit(x) returns 0.

11

2.5.4 Testing if a variable is a computational zero

The computed zero function has one stochastic argument and returns a logical
value. The computed zero function returns TRUE if its argument is a computa-
tional zero, i.e. its argument is a mathematical zero or has no exact significant
digit.

2.5.5 Obtaining a standard value from a stochastic variable

The old type function has a stochastic (single st or double st) argument and
returns a value of the associated standard type (real or double precision). The
output value is the mean value of the N samples. Obviously, for the statement
y = old type(x)
where y is real and x is single st any information on the accuracy of x is lost
when using y.

2.5.6 Enabling and disabling the detection of instabilities

The cadna enable and cadna disable subroutines are used respectively to enable
and disable the detection of one kind of instability. Each of these subroutines
has one integer argument, which may be one of the seven following integer
parameters defined in the CADNA library:
cadna branching,
cadna mathematic,
cadna intrinsic,
cadna cancellation,
cadna division,
cadna power,
cadna multiplication.

2.5.7 Reducing accuracy of initial data

Initial data are read by the generic function read as for standard types. By the
implicit conversion formerly described, they are stored into stochastic variables
having the maximal accuracy represented by N equal samples. These data
are often known with less significant digits than provided by their internal
representation. The data st function allows the user to introduce some effective
uncertainties on these data, reducing their initial accuracy. So the accuracy of
results depends in some way on the accuracy of initial data.

The data st subroutine has three arguments: call data st(X,ERX, IER).
The first argument is stochastic and must be present.
The second one is an optional real argument that contains the relative or

12

absolute uncertainty of the first one. The last argument determines the kind
of the uncertainty: relative or absolute.

If X is a stochastic variable and ERX is a real value strictly less than 1, the
call data st(X,ERX, IER) statement modifies the values of the N samples in X
according to the following formula:

Xi = Xi ∗ (1 + ERX ∗ ALEA) for i = 1 to N if IER = 0

Xi = Xi + ERX ∗ ALEA for i = 1 to N if IER = 1

ALEA is a random variable uniformly distributed between -1 and 1.
If ERX is 0, no perturbation takes place as if the statement was suppressed.
If ERX is absent, perturbation will concern only the last bit of the mantissa.
If IER is absent, it is like IER = 0. The data st subroutine without ERX
must be used when data are considered as exact but cannot be exactly coded
in the memory.

3 CADNA user guide

The use of the CADNA library involves seven steps:

• declaration of the CADNA library for the compiler,
• initialization of the CADNA library,
• substitution of the type REAL or DOUBLE PRECISION by stochastic types

in variable declarations,
• possible changes in the input data if perturbation is desired, to take into

account uncertainty in initial values,
• change of output statements to print stochastic results with their accuracy,
• possible use of CADNA functions to evaluate the number of exact significant

digits or access the current ordinary value (losing knowledge of current
accuracy)

• termination of the CADNA library.

Subsections 3.1 to 3.10 describe the necessary changes for a Fortran source
code to be compiled with the CADNA library. Subsection 3.11 is devoted to
the dynamical numerical debugging that CADNA allows.

3.1 Declaration of the CADNA library

The use CADNA pseudo-statement must be placed before any declaration of
stochastic variables, in order for stochastic types and overloaded or new func-

13

tions or subroutines to be found by the compiler. As usual in a Fortran 90
source code, this statement must be added:

• after one among the following lines
· PROGRAM that begins an application
· MODULE that begins a module
· SUBROUTINE if it begins an “isolated subroutine”, i.e. a subroutine that

is not declared into the scope of a program or a module declaration
· FUNCTION if it begins an “isolated function”, i.e. a function that is not

declared into the scope of a program or a module declaration
• before any declaration.

3.2 Initialization and termination of the CADNA library

The call to the cadna init subroutine must be inserted immediately after the
main program declaration statements to initialize the random arithmetic. For
more information about the arguments of the cadna init subroutine, see 2.5.1.

The call to the cadna end subroutine must be the last executed program state-
ment. The cadna end subroutine writes on the standard output a report on
the numerical stability of the run.

3.3 Declaration of variables

3.3.1 Changes in the type of variables

To control the numerical quality of a variable, its standard type must be
replaced by the associated stochastic type.

Example:

standard declaration CADNA declaration

real :: a,b type (single st) :: a,b

double :: c type (double st) :: c

real, dimension(6) :: d,e,f type (single st), dimension(6) :: d,e,f

When the real declaration is implicit, this general declaration should be added:
implicit type (single st) (A-H,O-Z)

14

3.3.2 Changes in the name of some variables

In a Fortran program, the name of a variable can be the name of an intrinsic
function. For instance in a Fortran source code, such a declaration is valid:
integer :: nint, dim, max

Intrinsic functions are overloaded in the CADNA library. Therefore it is not
allowed anymore and, if the name of a variable is also the name of an intrinsic
function, it must be changed in the entire source code.

3.4 DATA for initializing stochastic variables

As previously described, each stochastic variable is represented by N different
variables of the standard associated type. So initializing stochastic variables
in DATA sections is possible by writing N occurrences of the standard initial
value.

Example:

standard declaration CADNA declaration

real :: d type (single st) :: d

data d/3.245/ data d%x, d%y, d%z /3*3.245/

3.5 Changes in assignments or arithmetic operations

3.5.1 Conversions between usual types and stochastic types

In assignment statements, conversions are implicit from Fortran real, integer
or double precision types to and from stochastic types (because the = operator
has been overloaded), but for conversions from stochastic types to standard
types, the knowledge of accuracy is lost.

An immediate conversion from a stochastic type to the corresponding standard
type may also be performed using the old type function, which also loses any
knowledge of accuracy.

When a variable is set to a value which can not be exactly coded on computer,
the data st function must be used.

15

Example:

Initial Fortran Modified statements

statements for CADNA

use cadna

real :: x type (single st) :: x

call cadna init(-1)

x=1.234 x=1.234

call data st(x)

3.5.2 Standard arithmetic operators

As previously described, all arithmetic operators on floating-point variables
are overloaded and arithmetic expressions without functions do not have to
be modified. Expressions may contain a mixture of stochastic types, standard
types and integer types.

With the following declarations:
type (single st) :: a,b
type (double st) :: c
the statement c = a * a + b * 3 needs no change.

The result of expressions containing stochastic terms will be of stochastic type.
As for standard types, double st prevails over single st.
So with the previous declarations, c = a * c + b * 3 needs no change.

3.5.3 Vector operators and functions

In Fortran 90, some arithmetic operators and intrinsic functions are general-
ized to act on arrays. In this version of CADNA, only arithmetic operators and
the abs, min, max, sqrt functions are overloaded for stochastic arrays. Standard
or stochastic scalar types may be mixed with stochastic arrays if they have
the same precision. The assignment statement has also been overloaded for
stochastic arrays with the same rules.

3.6 Changes in reading statements

The generic function read is adapted to standard floating-point variables,
which must be transformed into stochastic variables.

16

Example:

Initial Fortran Modified statements

statements for CADNA

use cadna

real :: x real :: xaux

type (single st) :: x

call cadna init(-1)

.....

read (5,*) x read (5,*) xaux

x=xaux

3.7 Changes in printing statements

Before printing each stochastic variable, it must be transformed in a string by
the str function. The required length is 14 for a single st variable and 23 for a
double st variable. Therefore formats should be modified.

For example, if a real variable x becomes a single st variable, the printing
instruction can be modified as follows:

Initial Fortran Modified statements

statements for CADNA

use cadna

real :: x type (single st) :: x

call cadna init(-1)

... ...

write(6,100) x write(6,100) str(x)

100 format(1x,’x = ’,f8.3) 100 format(1x,’x = ’,a14)

If standard formats (write(*,*)...) are used, the only change is the use of the
str function.

17

3.8 Changes in intrinsic functions

3.8.1 Changes of non-generic names

For each intrinsic function, only its generic version has been overloaded in
the CADNA library. So each intrinsic function that is not generic must be
replaced by its generic name. For instance, any call to the alog function must
be replaced by a call to the log function.

3.8.2 Changes in the call of min and max functions

With CADNA, the min and max functions must have two arguments (for more
details, see 2.3). Consequently a call to the min or max function with more
than two arguments must be changed.

Example:

Initial Fortran Modified statements

statements for CADNA

use cadna

real :: a,b,c,d type (single st) :: a,b,c,d

call cadna init(-1)

... ...

d=max(a,b,c) d=max(max(a,b),c)

3.8.3 Suppression of intrinsic functions declarations

Intrinsic functions are sometimes declared as in the following example:
intrinsic max, abs
As intrinsic functions are overloaded in the CADNA library, they are no longer
intrinsic. Therefore such declarations must be removed from the original source
code.

3.9 Changes in statement functions

Statement functions are defined with the “=” operator. With CADNA such
functions must be written in a standard way, because the “=” operator has
not been overloaded for the definition of statement functions.

18

Example:

Initial Fortran Modified statements

statements for CADNA

use cadna

real :: f,x,y,a type (single st) :: f

f(x,y) = x + a*y call cadna init(-1)

a=2./3.

.....

function f(x,y)

use cadna

type (single st) :: f,x,y,a

a=2./3.

call data st(a)

f = x + a*y

return

end function f

3.10 Constants passed as function arguments

Function definitions and function calls must sometimes be adapted because
stochastic parameters of functions must not be passed by value.

19

Example:

Initial Fortran Modified statements

statements for CADNA

use cadna

real :: f, a type (single st) :: aux, f, a

call cadna init(-1)

aux=2.

a=3.14*f(2.) a=3.14*f(aux)

... ...

function f(x) function f(x)

use cadna

real :: f, x type (single st) :: f, x

... ...

end function f end function f

3.11 Numerical debugging with CADNA

One can enable the detection of the following instabilities:
UNSTABLE DIVISION(S),
UNSTABLE POWER FUNCTION(S),
UNSTABLE MULTIPLICATION(S),
UNSTABLE BRANCHING(S),
UNSTABLE MATHEMATICAL FUNCTION(S),
UNSTABLE INTRINSIC FUNCTION(S),
UNSTABLE CANCELLATION(S).

The library counts the number of detections for each instability. The global
information for these detections is printed out by the cadna end subroutine,
see 2.5.1.

The accuracy estimated by CADNA is valid if there is no deep numerical
anomaly during the computation, i.e. no UNSTABLE DIVISION, UNSTABLE
POWER FUNCTION or UNSTABLE MULTIPLICATION, see [2,4].

20

The meaning of the message is:

• unstable division: the divisor is non-significant
• unstable power function: one operand of the ** operator is non-significant
• unstable multiplication: both operands are non-significant
• unstable branching: the difference between the two operands is non-

significant (a computational zero). The chosen branching statement is asso-
ciated with the equality

• unstable mathematical function: in the LOG, SQRT, EXP or LOG10
function, the argument is non-significant.

• unstable intrinsic function:
(1) in the INT or NINT function: the function INT (or NINT) returns

different values for each component of the stochastic argument.
(2) in the ABS function: the argument is non-significant.
(3) in the SIGN or MOD function: the second argument is non-significant.
• unstable cancellation: as explained in 2.5.1, an unstable cancellation is

pointed out when the difference between the number of exact significant
digits (i.e. digits which are not affected by round-off errors) of the result of
an addition or a subtraction and the minimimum of the number of exact
significant digits of the two operands is greater than the cancel level argu-
ment. The default value of this argument is 4. In other words, when one
loses more than cancel level significant digits in one addition or subtraction,
CADNA considers that a catastrophic cancellation has been detected (if the
detection of this kind of instability is enabled).

To perform actual numerical debugging, it is necessary, for each instability,
to identify the statement in the code that generates this instability. This can
be performed directly using a symbolic debugger like gdb with Linux or as a
background task using special input and output files. In both cases, one has to
put a breakpoint at the entry of the instability internal function of the CADNA
library. This function is called each time a numerical instability is detected.
To get the right label for this system and compiler dependent function, one
can use the following statement:

nm name of the binary code | grep instability

For instance, using gdb with Linux, the general statement which enables the
detection of all the instabilities in a single run is

nohup gdb name of the binary code < gdb.in > gdb.out &

nohup allows to keep the process alive even when logging off.

The gdb.in file may contain

break instability_

21

run

while 1

where

cont

end

where prints out the complete trace of the instability which has stopped the
run and cont makes the execution going on. The gdb.out file will contain all
the traces of instabilities.

Although numerical debugging is intended to be performed on rather long
source codes, it is illustrated in 5.6 with an experiment carried out using a
simple Fortran source code.

4 Installation instructions

All installation instructions can be found in the INSTALL file of the package.

You first need to configure the installation by typing in the directory which
contains the CADNA package

./configure

You may use options, such as FC to specify the name of the FORTRAN com-
piler or prefix to specify (with an absolute path) which directory will contain
the compiled library. For instance, you may choose the following options:

./configure FC=g95 --prefix=/home/jmc/cadna_bin

To compile the library, type

make

Then to install the CADNA library in the directory specified with the prefix
option, type

make install

Finally, to compile and execute the seven examples presented in the following
section, just type

cd examples

make clean

make

22

5 Test runs

We present, with the seven examples included in the distribution, an illustra-
tion of the use of the CADNA library and the benefits of the DSA. For each
example, we describe the results obtained using the standard floating-point
arithmetic and then the results provided by the CADNA library.

The results reported in this section have been obtained using the g95 (ver-
sion 0.9) Fortran compiler on a Pentium M processor running Linux. Different
results may be obtained with another processor or another compiler, especially
when the digits printed out using the standard floating-point arithmetic are
affected by round-off errors. With CADNA, as results are printed out using
the str function, only their exact significant digits appear. We recall that there
is no guarantee of the last digit provided by the str function.

5.1 Example 1: a rational fraction function of two variables

In the following example [9], the rational fraction

F (x, y) = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8 +
x

2y

is computed with x = 77617, y = 33096. The 15 first digits of the exact result
are -0.827396059946821.

Using IEEE double precision arithmetic with rounding to the nearest, one
obtains: res = 5.764607523034235E+17 and using CADNA in double precision,
one obtains:

CADNA software --- University P. et M. Curie --- LIP6

Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

Cancellation instabilities detection: ON

res = @.0

CADNA software --- University P. et M. Curie --- LIP6

There is 1 numerical instability

0 UNSTABLE DIVISION(S)

0 UNSTABLE POWER FUNCTION(S)

0 UNSTABLE MULTIPLICATION(S)

23

0 UNSTABLE BRANCHING(S)

0 UNSTABLE MATHEMATICAL FUNCTION(S)

0 UNSTABLE INTRINSIC FUNCTION(S)

1 UNSTABLE CANCELLATION(S)

CADNA points out the complete loss of accuracy of the result.

5.2 Example 2: solving a second order equation

The roots of the following second order equation are computed:

0.3x2 − 2.1x + 3.675 = 0.

The exact values are: Discriminant d=0, x1=x2=3.5.

Using IEEE single precision arithmetic with rounding to the nearest, one ob-
tains:

d = -0.0000028610227

There are two complex solutions.

z1 = 0.3500000E+01 + i * 0.8457279E-03

z2 = 0.3500000E+01 + i * -.8457279E-03

and using CADNA in single precision, one obtains:

CADNA software --- University P. et M. Curie --- LIP6

Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

Cancellation instabilities detection: ON

d = @.0

Discriminant is zero.

The double solution is 0.349999E+01

CADNA software --- University P. et M. Curie --- LIP6

There are 1 numerical instabilities

0 UNSTABLE DIVISION(S)

0 UNSTABLE POWER FUNCTION(S)

0 UNSTABLE MULTIPLICATION(S)

0 UNSTABLE BRANCHING(S)

0 UNSTABLE MATHEMATICAL FUNCTION(S)

24

0 UNSTABLE INTRINSIC FUNCTION(S)

1 UNSTABLE CANCELLATION(S)

The standard floating-point arithmetic cannot detect that d=0. The wrong
branching is performed and the result is false.

The CADNA software takes the accuracy of operands into account in the
order relations or in the equality relation and, therefore, the correct branching
is performed and the exact result is obtained.

5.3 Example 3: computing a determinant

The determinant of Hilbert’s matrix of size 11 is computed using Gaussian
elimination without pivoting strategy. The determinant is the product of the
different pivots. Hilbert’s matrix is defined by: a(i, j) = 1/(i + j − 1). All the
pivots and the determinant are printed out.

The exact value of the determinant is 3.0190953344493 10−65.

Using IEEE double precision arithmetic with rounding to the nearest, one
obtains:

Pivot number 1 = 0.1000000000000000D+01

Pivot number 2 = 0.8333333333333331D-01

Pivot number 3 = 0.5555555555555526D-02

Pivot number 4 = 0.3571428571428830D-03

Pivot number 5 = 0.2267573696145566D-04

Pivot number 6 = 0.1431549050529594D-05

Pivot number 7 = 0.9009749264103679D-07

Pivot number 8 = 0.5659971084095516D-08

Pivot number 9 = 0.3551369635569034D-09

Pivot number 10 = 0.2226762517485834D-10

Pivot number 11 = 0.1399228241996033D-11

Determinant = 0.3028594438809703D-64

and using CADNA in double precision, one obtains:

CADNA software --- University P. et M. Curie --- LIP6

Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

Cancellation instabilities detection: ON

25

Pivot number 1 = 0.100000000000000E+001

Pivot number 2 = 0.833333333333333E-001

Pivot number 3 = 0.55555555555555E-002

Pivot number 4 = 0.3571428571428E-003

Pivot number 5 = 0.22675736961E-004

Pivot number 6 = 0.1431549051E-005

Pivot number 7 = 0.90097493E-007

Pivot number 8 = 0.5659970E-008

Pivot number 9 = 0.35513E-009

Pivot number 10 = 0.2226E-010

Pivot number 11 = 0.14E-011

Determinant = 0.30E-064

CADNA software --- University P. et M. Curie --- LIP6

No instability detected

The gradual loss of accuracy is pointed out by CADNA. One can see that the
value of the determinant is significant even if it is very ”small”. This shows
how difficult it is to judge the numerical quality of a computed result by its
magnitude.

5.4 Example 4: computing a second order recurrent sequence

This example was proposed by J.-M. Muller [10]. The 25 first iterations of the
following recurrent sequence are computed:

Un+1 = 111 − 1130

Un

+
3000

UnUn−1

with U0 = 5.5 and U1 =
61

11
. The exact value of the limit is 6.

Using IEEE double precision arithmetic with rounding to the nearest, one
obtains:

U(3) = 0.5590163934426237D+01

U(4) = 0.5633431085044127D+01

U(5) = 0.5674648620512615D+01

U(6) = 0.5713329052423919D+01

U(7) = 0.5749120920462043D+01

U(8) = 0.5781810933690098D+01

U(9) = 0.5811314466602178D+01

U(10) = 0.5837660476543959D+01

U(11) = 0.5861018785996283D+01

26

U(12) = 0.5882524608269310D+01

U(13) = 0.5918655323805488D+01

U(14) = 0.6243961815306110D+01

U(15) = 0.1120308737284091D+02

U(16) = 0.5302171264499677D+02

U(17) = 0.9473842279276452D+02

U(18) = 0.9966965087355071D+02

U(19) = 0.9998025776093678D+02

U(20) = 0.9999882245337588D+02

U(21) = 0.9999992970745579D+02

U(22) = 0.9999999580049865D+02

U(23) = 0.9999999974893262D+02

U(24) = 0.9999999998498109D+02

U(25) = 0.9999999999910112D+02

The exact limit is 6.

and using CADNA in double precision, one obtains:

CADNA software --- University P. et M. Curie --- LIP6

Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

Cancellation instabilities detection: ON

U(3) = 0.55901639344262E+001

U(4) = 0.5633431085044E+001

U(5) = 0.56746486205E+001

U(6) = 0.5713329052E+001

U(7) = 0.574912092E+001

U(8) = 0.57818109E+001

U(9) = 0.581131E+001

U(10) = 0.58377E+001

U(11) = 0.5861E+001

U(12) = 0.588E+001

U(13) = 0.6E+001

U(14) =@.0

U(15) =@.0

U(16) =@.0

U(17) = 0.9E+002

U(18) = 0.999E+002

U(19) = 0.9999E+002

U(20) = 0.99999E+002

U(21) = 0.999999E+002

27

U(22) = 0.9999999E+002

U(23) = 0.999999999E+002

U(24) = 0.9999999999E+002

U(25) = 0.99999999999E+002

The exact limit is 6.

CADNA software --- University P. et M. Curie --- LIP6

CRITICAL WARNING: the self-validation detects major problem(s).

The results are NOT guaranteed

There are 9 numerical instabilities

7 UNSTABLE DIVISION(S)

0 UNSTABLE POWER FUNCTION(S)

2 UNSTABLE MULTIPLICATION(S)

0 UNSTABLE BRANCHING(S)

0 UNSTABLE MATHEMATICAL FUNCTION(S)

0 UNSTABLE INTRINSIC FUNCTION(S)

0 UNSTABLE CANCELLATION(S)

The traces UNSTABLE DIVISION(S) are generated by divisions where the
denominator is a computational zero. Such operations make the computed
trajectory turn off the exact trajectory and then, the estimation of accuracy
is not possible any more. Even using the double precision, the computer cannot
give any significant result after the iteration number 15.

5.5 Example 5: computing a root of a polynomial

This example deals with the improvement and optimization of an iterative
algorithm by using new tools which are contained in CADNA. This program
computes a root of the polynomial

f(x) = 1.47x3 + 1.19x2 − 1.83x + 0.45

by Newton’s method. The sequence is initialized with x = 0.5.

The iterative algorithm xn+1 = xn − f(xn)

f ′(xn)
is stopped with the criterion

|xn − xn−1| < 10−12.

Using IEEE double precision arithmetic with rounding to the nearest, one
obtains:

x(29) = 0.4285714317551499

x(30) = 0.4285714317551499

28

and using CADNA in double precision, one obtains:

CADNA software --- University P. et M. Curie --- LIP6

Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

Cancellation instabilities detection: ON

x(100) = 0.4285714E+000

x(101) = 0.4285714E+000

CADNA software --- University P. et M. Curie --- LIP6

CRITICAL WARNING: the self-validation detects major problem(s).

The results are NOT guaranteed

There are 501 numerical instabilities

76 UNSTABLE DIVISION(S)

0 UNSTABLE POWER FUNCTION(S)

0 UNSTABLE MULTIPLICATION(S)

72 UNSTABLE BRANCHING(S)

0 UNSTABLE MATHEMATICAL FUNCTION(S)

77 UNSTABLE INTRINSIC FUNCTION(S)

276 UNSTABLE CANCELLATION(S)

With CADNA, one can see that 8 significant digits were lost (despite the
apparent stability). By using a symbolic debugger, one can see that, at the last
iteration, the denominator is a non-significant value (a computational zero)
and that the last answer to the stopping criterion is not reliable. CADNA
allows to stop the algorithm when the subtraction xn −xn−1 is non-significant
(there is no more information to compute at the next iteration). In Newton’s
method, a division by a computational zero may suggest a double root. One
can simplify the fraction. When these two transformations are done, the code is
stabilized and the results are obtained with the best accuracy of the computer.
The exact value of the root is xsol = 3/7 = 0.428571428571428571... Now, we
obtain:

CADNA software --- University P. et M. Curie --- LIP6

Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

Cancellation instabilities detection: ON

29

x(48) = 0.428571428571429E+000

x(49) = 0.428571428571429E+000

CADNA software --- University P. et M. Curie --- LIP6

No instability detected

5.6 Example 6: solving a linear system

In this example, CADNA is able to provide correct results which were impos-
sible to be obtained with the standard floating-point arithmetic. The following
linear system is solved using Gaussian elimination with partial pivoting. The
system is





















21 130 0 2.1

13 80 4.74 108 752

0 −0.4 3.9816 108 4.2

0 0 1.7 9 10−9





















. X =





















153.1

849.74

7.7816

2.6 10−8





















The exact solution is xt
sol = (1, 1, 10−8, 1). Using IEEE single precision arith-

metic with rounding to the nearest, one obtains:

x_sol(1) = 0.6261988E+02 (exact solution: 0.1000000E+01)

x_sol(2) = -0.8953979E+01 (exact solution: 0.1000000E+01)

x_sol(3) = 0.0000000E+00 (exact solution: 0.1000000E-07)

x_sol(4) = 0.1000000E+01 (exact solution: 0.1000000E+01)

and using CADNA in single precision, one obtains:

CADNA software --- University P. et M. Curie --- LIP6

Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

Cancellation instabilities detection: ON

x_sol(1) = 0.999E+00 (exact solution: 0.1000000E+01)

x_sol(2) = 0.1000E+01 (exact solution: 0.1000000E+01)

x_sol(3) = 0.999999E-08 (exact solution: 0.9999999E-08)

x_sol(4) = 0.1000000E+01 (exact solution: 0.1000000E+01)

30

CADNA software --- University P. et M. Curie --- LIP6

There are 3 numerical instabilities

0 UNSTABLE DIVISION(S)

0 UNSTABLE POWER FUNCTION(S)

0 UNSTABLE MULTIPLICATION(S)

1 UNSTABLE BRANCHING(S)

0 UNSTABLE MATHEMATICAL FUNCTION(S)

1 UNSTABLE INTRINSIC FUNCTION(S)

1 UNSTABLE CANCELLATION(S)

During the reduction of the third column, the matrix element a(3,3) is equal
to 4864. But the exact value of a(3,3) is zero. The standard floating-point
arithmetic cannot detect that a(3,3) is non-significant. This value is chosen
as pivot. That leads to erroneous results. CADNA detects the non-significant
value of a(3,3). This value is eliminated as pivot. That leads to satisfactory
results.

With this simple example, we show how numerical debugging (introduced
in 3.11) can be performed in order to identify which instructions are respon-
sible for instabilities. As described in 3.11, using a symbolic debugger, a file
containing all the traces of instabilities can be created. With the present ex-
ample, the relevant part of this file, obtained using gdb with Linux and named
gdb.out, is shown below.

Breakpoint 1, 0x080599e6 in instability_ ()

(gdb) > > >#0 0x080599e6 in instability_ ()

#1 0x0804e18f in cadna_sub_MP_sub_st_st__ ()

#2 0x08049b8b in MAIN_ () at ex6_cad.f90:59

#3 0x08063c56 in main (argc=1, argv=0xbfc0de34)

Breakpoint 1, 0x080599e6 in instability_ ()

#0 0x080599e6 in instability_ ()

#1 0x08056e3e in cadna_intr_MP_abs_st__ ()

#2 0x080496ba in MAIN_ () at ex6_cad.f90:37

#3 0x08063c56 in main (argc=1, argv=0xbfc0de34)

Breakpoint 1, 0x080599e6 in instability_ ()

#0 0x080599e6 in instability_ ()

#1 0x08059993 in cadna_gt_MP_gt_st_st__ ()

#2 0x080496d2 in MAIN_ () at ex6_cad.f90:37

#3 0x08063c56 in main (argc=1, argv=0xbfc0de34)

From the gdb.out file, the first instability is caused by the instruction located
at line 59 in the Fortran source file ex6 cad.f90. This instruction is:

31

a(k,j)=a(k,j) - aux*a(i,j)

The instability is due to the subtraction of two single precision stochastic
variables, i.e. of type single st. When the cadna end function is called, this
instability generates the message

1 UNSTABLE CANCELLATION(S)

The second instability is caused by the instruction located at line 37 in the
Fortran source file:

if (abs(a(j,i)).gt.pmax) then

This instability is due to the abs intrinsic function used with a single precision
stochastic argument and generates the output message

1 UNSTABLE INTRINSIC FUNCTION(S)

Finally, the third instability is caused by the same instruction. It is due to
the gt relational operator used with two single precision stochastic arguments.
This instruction generates the output message

1 UNSTABLE BRANCHING(S)

An additional tool which, for each type of instability, lists all the instructions
responsible for it is currently under development.

5.7 Example 7: when CADNA fails

CADNA is based on a probabilistic model. It should never be forgotten that all
the estimations computed by CADNA are probabilistic, even if the probability
is close to 1. Moreover, the theoretical model shows that CADNA is able to
estimate the round-off errors of the first order. If they represent the global
round-off errors, CADNA works well but, if they are dominated by terms of
greater order, CADNA may fail. That is what happened in example 4. However
because of an unstable division, the problem has been detected.

In the present example, we have the same behaviour but only with additions
and subtractions, so without any warning of numerical instability. Let us per-
form the following computation:

x=6.83561d+05

y=6.83560d+05

z=1.00000000007d0

r = z - x

32

r1 = z - y

r = r + y

r1 = r1 + x

r1 = r1 - 2

r = r + r1

! r = ((z-x)+y) + ((z-y)+x-2)

The exact result is 1.410−10. The result obtained using IEEE double precision
arithmetic with rounding to the nearest is 2.3283064365386963E-10

With CADNA, because we essentially performed the same computation, ((z−
x)+y) and ((z−y)+x−2), we find that if the same rounding mode is chosen for
both parts, the final result appears as exact but it is wrong. It happens in one
case in four and the result provided by CADNA is then 0.116415321826935E-
009 with 15 exact significant digits. If computations are performed 100,000
times using CADNA, one may obtain:

CADNA software --- University P. et M. Curie --- LIP6

Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

Cancellation instabilities detection: ON

Enter the number of iterations

100000

r = @.0 ; ierr = 27289

CADNA software --- University P. et M. Curie --- LIP6

There are 300000 numerical instabilities

0 UNSTABLE DIVISION(S)

0 UNSTABLE POWER FUNCTION(S)

0 UNSTABLE MULTIPLICATION(S)

0 UNSTABLE BRANCHING(S)

0 UNSTABLE MATHEMATICAL FUNCTION(S)

0 UNSTABLE INTRINSIC FUNCTION(S)

300000 UNSTABLE CANCELLATION(S)

The last value of r is printed out, and also ierr the number of times when the
result was wrong. The corresponding source code is:

program ex7

use cadna

implicit none

33

type(double_st) :: r,r1,x,y,z

integer :: i, nloop, ierr

call cadna_init(-1)

print *,’ Enter the number of iterations’

read *,nloop

ierr = 0

do i=1,nloop

x=6.83561d+05

y=6.83560d+05

z=1.00000000007d0

r = z - x

r1 = z - y

r = r + y

r1 = r1 + x

r1 = r1 - 2

r = r + r1

! r = ((z-x)+y) + ((z-y)+x-2)

if(r.ne.1.4d-10) ierr = ierr + 1

enddo

print *, ’r = ’, str(r), ’; ierr = ’,ierr

call cadna_end()

end program ex7

6 CADNA library structure

The CADNA source code consists of one assembly language file described in
subsection 6.1 and eleven Fortran 90 language files described in subsections 6.2
to 6.12.

6.1 cadna rounding.s

cadna rounding.s is a symbolic link to the assembly file corresponding to the
processor and the Fortran compiler used. This assembly file contains five rou-
tines which change the rounding mode and set it to one of the rounding modes
defined by the IEEE 754 standard [1]. These routines are called in the CADNA
Fortran source codes. Indeed frequent changes of the rounding mode must be
performed for random arithmetic. They can also be called in any Fortran code
compiled with the CADNA library. The effects of these routines are listed
below.

• rnd arr: sets the rounding mode to rounding to the nearest.

34

• rnd moinf: sets the rounding mode to rounding towards −∞ (or downward
rounding).

• rnd plinf: sets the rounding mode to rounding towards +∞ (or upward
rounding).

• rnd zero: sets the rounding mode to rounding towards 0.
• rnd switch: switches the rounding mode from +∞ to −∞, or from −∞

to +∞.

The rounding mode can also be set by using the IEEE set rounding mode sub-
routine from the IEEE ARITHMETIC intrinsic module provided by the For-
tran 2003 standard. Despite its portability, this subroutine is not used in the
CADNA library because of its cost in terms of performance. The routines
in assembly language previously described, which are frequently called in the
library, are optimized for the processor and the Fortran compiler chosen.

6.2 cadna type.f90

cadna type.f90 contains the cadna type module which defines several types,
parameters, subroutines, ...

The cadna type module contains the definition of the stochastic types single st
and double st described in 2.2.

cadna type contains the declaration and the initialization of integer parameters
which can be used to specify which kind of instability to detect or not, as
described in 2.5.1.

cadna type contains the declaration and the initialization to TRUE of the fol-
lowing logical variables:
cadna branching tag,
cadna mathematic tag,
cadna intrinsic tag,
cadna cancellation tag,
cadna division tag,
cadna power tag,
cadna multiplication tag.
If one of these variables is set to TRUE or FALSE the corresponding instability
is respectively enabled or disabled. These are internal variables; they are only
used in the CADNA Fortran source code.

cadna type contains the declaration and the initialization to FALSE of the
cadna deactivate logical variable, which is internal to CADNA. If this variable
is set to TRUE or FALSE CADNA self-validation is respectively deactivated or
activated. Indeed the validation of the CESTAC method requires a dynamical

35

control of divisions, multiplications (and therefore power operations) [4,2].

cadna type contains the declaration and the initialization to 0 of integer vari-
ables used to count the instabilities of each kind which may occur at run
time.

cadna type contains the cadna enable and cadna disable subroutines which can
be used to enable or disable one kind of instability as described in 2.5.6. If
the detection of instabilities generated by divisions, multiplications, or power
operations is disabled, then the cadna deactivate variable is set to TRUE, i.e.

CADNA self-validation is deactivated.

cadna type contains the cadna init subroutine which has to be called to initial-
ize the library, as described in 2.5.1.

With CADNA, a random rounding mode is used. This implies frequent changes
of the rounding mode, which are performed or not, depending on the value re-
turned by the myrandom function defined in cadna type. Indeed the myrandom
function returns a logical value which is randomly assigned.

Finally, cadna type contains the cadna end subroutine which lists all the nu-
merical instabilities which occurred at run time, as described in 2.5.1.

6.3 cadna cestac.f90

cadna cestac.f90 contains the cadna cestac module which defines:

• the nb significant digit function described in 2.5.3
• the computed zero function described in 2.5.4.

These functions can be used in any Fortran code to be compiled with the
CADNA library and accept a single precision or a double precision stochastic
argument. Both functions are actually interfaces. Two versions exist for each
function:

• one for single precision stochastic variables,
• one for double precision stochastic variables.

6.4 cadna convert.f90

cadna convert.f90 contains the cadna convert module which defines the con-
version functions (int, nint, aint, anint, real, dble) described in 2.3.1 and the
old type function described in 2.5.5.

36

The cadna convert module also contains the data st subroutine which perturbs
data, as described in 2.5.7.

6.5 cadna to.f90

cadna to.f90 contains the cadna to module which overloads the assignment
operator (=). If a stochastic variable is involved in an assignment, one of the
subroutines of the cadna to module is actually called. Indeed the cadna to
module contains as many subroutines as ordered pairs of types which can be
involved in the assignment.

6.6 Overloading of arithmetic operators

Arithmetic operators are overloaded in the following files:
cadna add.f90,
cadna sub.f90,
cadna mul.f90,
cadna div.f90.
These files contain the cadna add, cadna sub, cadna mul and cadna div modules.
If a stochastic variable is an operand of an arithmetic operator, one of the
functions of the corresponding module is actually called. Indeed each module
defines as many functions as ordered pairs of types which can be involved in
the operation.

6.7 Overloading of relational operators

Relational operators are overloaded in the following files:
cadna equ.f90,
cadna ge.f90,
cadna gt.f90,
cadna le.f90,
cadna lt.f90.
These files contain the cadna equ, cadna ge, cadna gt, cadna le and cadna lt
modules. The name of each module indicates which operator it overloads. It is
worth noting that the cadna equ module contains the functions which overload
the EQ (EQual) and the NE (Not Equal) operators. One function exists per
ordered pair of types which can be involved in a kind of test. The overloading of
relational operators takes into account the numerical quality of the operands,
as described in 2.4.

37

6.8 cadna intr.f90

cadna intr.f90 contains the cadna intr module which overloads the following
functions: abs, dim, max, min, mod, sign. Detailed information on the definition
of these functions for stochastic arguments is given in 2.3.2.

6.9 cadna math.f90

cadna math.f90 contains the cadna math module which overloads the math-
ematical functions listed in 2.3.3. Detailed information on the definition of
these functions for stochastic arguments is given in 2.3.3.

6.10 cadna str.f90

cadna str.f90 contains the cadna str module which defines the str function.
This function prints the exact significant digits of a stochastic argument, as
described in 2.5.2.

6.11 cadna.f90

cadna.f90 contains the cadna module which just enables to use all the modules
previously presented.

6.12 cadna unstab.f90

cadna unstab.f90 contains the instability subroutine. This subroutine has an
integer argument which characterizes a type of instability. This subroutine,
which increments the counter inherent to a type of instability, is called each
time a numerical instability occurs.

7 Conclusion

In this paper, we have presented the CADNA library which enables one to
control the numerical quality of any scientific code written in Fortran. CADNA
can estimate in any (final or intermediate) result which digits are affected by

38

round-off error propagation. Furthermore as CADNA can detect any numerical
instability which may occur at run time, a numerical debugging of the code
can be performed.

Implementing CADNA in a code mainly consists in replacing the standard
numerical types by stochastic types, on which round-off error propagation
can be estimated. CADNA provides the stochastic types and the definition
of arithmetic operators, relational operators and functions which have been
overloaded to be used with stochastic variables. Thanks to this overloading,
CADNA can be used without having to rewrite or notably change the initial
code.

The benefits of CADNA have been pointed out in Section 5 with several
test programs which implement direct or iterative algorithms. However as the
CADNA library is based on a probabilistic model of round-off errors, it is not
infallible. CADNA may consider as reliable a result which is actually not. This
drawback is illustrated in the last example presented in Section 5. Nevertheless
the prediction of such over-optimistic results is rare. Indeed the last program
in Section 5 has been written on purpose. The opposite trend, which is due to
the statistic parameters chosen for CADNA is usually observed: the numerical
quality estimated by CADNA is rather slightly pessimistic.

Although attention has been paid to performance optimization in the CADNA
library, its cost remains a factor of about 3.5 for memory and at least 3 for
execution time. This run time performance degradation depends on the archi-
tecture used and on the numerical instabilities to be detected. The changes
of the rounding mode required by the Discrete Stochastic Arithmetic are per-
formed using routines in assembly language which are frequently called in the
CADNA source code. These routines have been optimized according to the
target processor and depend also on the Fortran compiler used. In order to
enable round-off error estimation at a moderate computing cost, future im-
provements in the CADNA library will depend on the definite evolution of
computer architectures and compilers.

Acknowledgements The authors sincerely wish to thank N.S. Scott and the
reviewers for their careful reading and their constructive comments.

References

[1] IEEE Computer Society, New York. IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-1985, 1985. Reprinted in SIGPLAN
Notices, 22(2):9-25, 1987.

[2] J.-M. Chesneaux. L’arithmétique stochastique et le logiciel CADNA.

39

Habilitation à diriger des recherches, Université Pierre et Marie Curie, Paris,
November 1995.

[3] J. Vignes. Discrete stochastic arithmetic for validating results of numerical
software. Num. Algo., 37(1–4):377–390, December 2004.

[4] J.-M. Chesneaux. Study of the computing accuracy by using probabilistic
approach. In C. Ullrich, editor, Contribution to Computer Arithmetic and
Self-Validating Numerical Methods, pages 19–30, IMACS, New Brunswick, New
Jersey, USA, 1990.

[5] J. Vignes. A stochastic arithmetic for reliable scientific computation. Math.
Comput. Simulation, 35:233–261, 1993.

[6] J. Vignes and M. La Porte. Error analysis in computing. In Information
Processing 1974, pages 610–614. North-Holland, 1974.

[7] N.S. Scott, F. Jézéquel, C. Denis, and J.-M. Chesneaux. Numerical ’health
check’ for scientific codes: the CADNA approach. Computer Physics
Communications, 176(8):507–521, April 2007.

[8] J. Vignes. Zéro mathématique et zéro informatique. C. R. Acad. Sci. Paris
Sér. I Math., 303:997–1000, 1986. also: La Vie des Sciences, 4 (1) 1-13, 1987.

[9] S.M. Rump. Reliability in Computing. The Role of Interval Methods in Scientific
Computing. Academic Press, 1988.

[10] J.-M. Muller. Arithmétique des Ordinateurs. Masson, 1989.

40

