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Abstract—Differences in simulation results may be observed
from one architecture to another or even inside the same archi-
tecture. Such reproducibility failures are often due to different
rounding errors generated by different orders in the sequence of
arithmetic operations. Reproducibility problems are particularly
noticeable on new computing architectures such as multicore
processors or GPUs (Graphics Processing Units). DSA (Discrete
Stochastic Arithmetic) enables one to estimate rounding error
propagation in simulation programs. In this paper, it is shown
that DSA can be used to estimate which digits in simulation
results may be different from one environment to another because
of rounding errors. A particular implementation of DSA, which
enables numerical validation in hybrid CPU-GPU environments,
is described. The estimation of numerical reproducibility using
DSA is illustrated by a wave propagation code which can be
affected by reproducibility problems when executed on different
architectures.

I. INTRODUCTION

Results of numerical simulations may be different from one
architecture to another, or even inside the same architecture
if they are computed using different compilers for instance.
In sequential or parallel environments, different orders in the
sequence of floating-point operations may lead to differences
in rounding error propagation and therefore to reproducibility
failures. It must be pointed out that the cause of differences
in results may be difficult to identify: rounding errors or
bug? Such differences are particularly noticeable with new
computing architectures such as multicore processors, GPUs
(Graphics Processing Units) and APUs (Accelerated Process-
ing Units). In high performance numerical simulations, repro-
ducibility problems have been identified in various domains:
energy science [1], climate science [2], atomic or molecular
dynamics [3], [4], fluid dynamics [5]. Various studies have
been carried out on numerical reproducibility on different
architectures. On the one hand, strategies have been pro-
posed [2], [3], [4], [5] to improve numerical accuracy, using for
instance accurate summations. Other works aim at forcing the
reproducibility of results, either affected by the same rounding
errors [6], [7] or correctly rounded [8], [9], [10], [11].

DSA (Discrete Stochastic Arithmetic) [12], [13] enables one
to estimate rounding error propagation in simulation programs.
This paper shows that DSA can be used, not to force a code
to be reproducible, but to estimate the number of digits in the

results which may be different from one execution to another
because of rounding errors. The CADNA1 library [14], [15],
[16], which implements DSA, enables the numerical quality
estimation of sequential programs in C or Fortran and of
parallel programs using MPI for communication [17]. This
paper describes a version of CADNA, briefly introduced in
[18], that can be used in hybrid CPU-GPU environments
to estimate rounding errors in CUDA programs. This paper
is organized as follows. In Section 2, differences in results
provided by a wave propagation code executed on several
architectures - CPU, GPU and APU - are pointed out. Section 3
presents the principles of DSA. Section 3 also describes the
CADNA library and presents the particularities of a CADNA
version for CPU-GPU codes. Section 4 shows that the re-
producibility problems observed in wave propagation results
can be explained by rounding error propagation thanks to the
CADNA library. Finally, concluding remarks are presented in
Section 5.

II. REPRODUCIBILITY FAILURES IN A WAVE PROPAGATION
CODE

We consider the three-dimensional acoustic wave equation

1

c2
∂2u

∂t2
−

∑
b∈{x,y,z}

∂2

∂b2
u = 0,

where u is the particle velocity, c is the wave velocity, and t
is the time. This equation, used for instance in oil exploration
[19], is solved with an explicit finite difference scheme of
order 2 in time and p in space (in our case p = 8). We
denote by uni,j,k (respectively fni,j,k) the wave (respectively
source) field in (i, j, k) coordinates and nth time step, al
(l = −p/2, . . . , p/2) the finite difference coefficients, ∆t the
time step and ∆h the spatial step size. Two mathematically
equivalent implementations of the finite difference scheme are
proposed:
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In order to satisfy the CFL (Courant-Friedrichs-Lewy) nec-
essary stability condition [20], the time step is computed by
taking into account the wave velocity c, the spatial step size
∆h and the spatial order p. Because these two implementations
require the same number of arithmetic operations, they should
lead to similar performance. However it would be interesting
to determine whether they differ in the numerical quality of
their results.

The code is executed for 64×64×64 space steps and 1000
time iterations in IEEE-754 binary32 arithmetic with rounding
to the nearest [21] and the following environments:
• AMD Opteron 6168 CPU with gcc 4.7.2 compiler;
• NVIDIA C2050 GPU (Graphics Processing Unit) with

CUDA (Compute Unified Device Architecture) platform;
• NVIDIA K20c GPU with OpenCL (Open Computing

Language);
• AMD Radeon HD 7970 GPU with OpenCL;
• AMD Trinity APU (Accelerated Processing Unit) with

OpenCL.
Different kinds of reproducibility problems are observed.

The results numerically vary
1) from one execution to another inside a GPU or an APU;

these repeatability problems are due to differences in the
execution order of the threads;

2) from one implementation of the finite difference scheme
to another; the maximal relative difference between
results is of the order of 10−1 to 1 depending on the
architecture, and the mean value of the relative differ-
ence between results is of the order of 10−5 whatever
the architecture;

3) from one architecture to another; again, the maximal
relative difference between results is of the order of 10−1

to 1 and its mean value is 10−5.
Indeed if two sets of results computed in binary32 are

compared, the results at the same space coordinates can have
from 0 to 7 significant digits in common, and the average
number of common significant digits is about 4. We recall
that results computed using binary32 arithmetic precision
can have at most 7 correct significant digits. To illustrate
these reproducibility problems, Table I presents at three space
coordinates (i, j, k), 0 ≤ i, j, k ≤ 63, the results obtained
after 1000 times iterations using the processing units and
languages previously mentioned. These results have different
orders of magnitude. Both implementations of the finite differ-
ence scheme are considered. Considering the example points

presented in Table I, any two results computed at the same
point in the space domain have 3 to 6 common significant
digits.

TABLE I
RESULTS COMPUTED AT THREE DIFFERENT POINTS IN THE SPACE DOMAIN

Point in the space domain
p1: (0, 19, 62) p2: (50, 12, 2) p3: (20, 1, 46)

AMD Opteron CPU with gcc
scheme 1 -1.110479 54.54238 614.1038
scheme 2 -1.110426 54.54199 614.1035

NVIDIA C2050 GPU with CUDA
scheme 1 -1.110204 54.54224 614.1046
scheme 2 -1.109869 54.54244 614.1047

NVIDIA K20c GPU with OpenCL
scheme 1 -1.109953 54.54218 614.1044
scheme 2 -1.111517 54.54185 614.1024

AMD Radeon GPU with OpenCL
scheme 1 -1.109940 54.54317 614.1038
scheme 2 -1.110111 54.54170 614.1044

AMD Trinity APU with OpenCL
scheme 1 -1.110023 54.54169 614.1062
scheme 2 -1.110113 54.54261 614.1049

III. ESTIMATING ROUNDING ERRORS WITH DISCRETE
STOCHASTIC ARITHMETIC (DSA)

A. Principles of DSA

Based on a probabilistic approach, the CESTAC
method [12] allows the estimation of rounding error
propagation which occurs with floating-point arithmetic.
When no overflow occurs, the exact result of any non
exact floating-point arithmetic operation is bounded by two
consecutive floating-point values R− and R+. The basic idea
of the method is to perform each arithmetic operation N
times, randomly rounding each time, with a probability of
0.5, to R− or R+. The computer’s deterministic arithmetic,
therefore, is replaced by a stochastic arithmetic where each
arithmetic operation is performed N times before the next
one is executed, thereby propagating the rounding error
differently each time. The CESTAC method furnishes us with
N samples R1, . . . , RN of the computed result R. The value
of the computed result, R, is the mean value of {Ri}16i6N
and the number of exact significant digits in R, CR, is
estimated as
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τβ is the value of Student’s distribution for N − 1 degrees of
freedom and a probability level 1 − β. In practice N = 3
and β = 0.05. Indeed, it has been shown [22], [23] that
N = 3 is in some reasonable sense the optimal value. The
estimation with N = 3 is more reliable than with N = 2
and increasing the size of the sample does not improve the
quality of the estimation. The probability of overestimating



the number of exact significant digits of at least 1 is 0.054%
and the probability of underestimating the number of exact
significant digits of at least 1 is 29%. By choosing β = 0.05,
we prefer to guarantee a minimal number of exact significant
digits with a high probability (99.946%), even if we are often
pessimistic by 1 digit. The complete theory can be found
in [12], [23].

The validity of CR is compromised if the two operands in
a multiplication or the divisor in a division are not significant
[23]. It is essential, therefore, that these results with no sig-
nificance are detected and reported, since their subsequent use
may invalidate the method. The need for this dynamic control
of multiplications and divisions has led to the concept of
the computational zero. A computed result is a computational
zero, denoted by @.0, if ∀i, Ri = 0 or CR ≤ 0. This means
that a computational zero is either a mathematical zero or a
number without any significance, i.e. numerical noise.

To establish consistency between the arithmetic opera-
tors and the relational operators, discrete stochastic relations
are defined as follows. Let X = (X1, ..., XN ) and Y =
(Y1, ..., YN ) be two results computed using the CESTAC
method, we have from [24]

X = Y if and only if X − Y = @.0;

X > Y if and only if X > Y and X−Y 6= @.0;

X ≥ Y if and only if X ≥ Y or X−Y = @.0.

Discrete Stochastic Arithmetic (DSA) [12], [13] is the
combination of the CESTAC method, the concept of the
computational zero, and the discrete stochastic relationships.

B. Numerical validation of sequential codes using DSA
The CADNA software [14], [15], [16] is a library which

implements DSA in any code written in C++ or in Fortran
and allows to use new numerical types: the stochastic types.
In practice, classic floating-point variables are replaced by
the corresponding stochastic variables, which are composed of
three floating-point values and an integer to store the accuracy.
The library contains the definition of all arithmetic operations
and order relations for the stochastic types. For instance,
let us consider an arithmetic operation ◦ ∈ {+,−, ∗, /}
between two stochastic variables A and B. This arithmetic
operation is performed three times on the associated floating-
point values Ai ◦ Bi, the rounding mode being randomly set
to rounding towards +∞ or −∞. The control of accuracy
is performed only on variables of stochastic type. Only exact
significant digits of a stochastic variable are printed or “@.0”
for a computational zero. Because all operators are redefined
for stochastic variables, the use of CADNA in a program
requires only a few modifications: essentially changes in the
declarations of variables and in input/output statements. The
CADNA software has been successfully used for the numerical
validation of real-life applications [17], [25], [26], [27], [28].

Attention has been paid to rounding mode setting in terms
of performance, because the rounding mode must be fre-
quently changed. On CPU the rounding mode is determined

by two bits in the Control Word, a 16-bit register in the FPU
(Floating-Point Unit). At the beginning of a program using
CADNA, the rounding mode is arbitrarily set to −∞. Then
the rounding mode is randomly changed using the CADNA
rnd_switch function that switches the rounding mode from
+∞ to −∞, or from −∞ to +∞. To reduce the cost of
rounding mode changes, the rnd_switch function is written
in assembly language and is specific to the processor and the
compiler chosen. The rnd_switch function changes in the FPU
Control Word the two bits associated with the rounding mode.
For performance reasons, a random number generator is not
called at each arithmetic operation. A long random sequence
is generated at the beginning of the program and stored in
an array. Then successive array elements are used cyclically
when random numbers are required.

CADNA can detect numerical instabilities which occur
during the execution of the code. When a numerical instability
is detected, dedicated CADNA counters are incremented. At
the end of the run, the value of these counters together with
appropriate warning messages are printed on standard output.
These warnings are of two types.

1) Warnings related to the self-validation of CADNA.
These include: unstable multiplication where the two
operands are computational zeroes and unstable divi-
sion where the divisor is a computational zero. These
warnings indicate that the validity of CR has been
compromised and the CADNA results cannot be relied
on.

2) Warnings concerning other numerical instabilities. These
instabilities can occur in overloaded mathematical func-
tions or in branching statements involving a computa-
tional zero. A numerical instability is also reported in
the case of a cancellation, i.e. the subtraction of two very
close values which generates a sudden loss of accuracy.

At the end of the run, each type of anomaly together with
their occurrences are printed. If no anomaly has been detected
the computed results are reliable and the accuracy of each has
been correctly estimated up to a certain probability. Otherwise
the messages need to be analysed, the source of the anomaly
identified and, if necessary, the code changed. The user can
specify the instabilities to be detected. One may choose, for
instance, to activate only self-validation, to detect all types of
instabilities or to deactivate the detection of instabilities.

C. Numerical validation of hybrid CPU-GPU codes using
DSA

An asynchronous implementation of the CESTAC method
for the estimation of rounding errors in GPU codes written
in CUDA is proposed in [29]. Unfortunately with such an
implementation of the CESTAC method, the whole code is
executed several times with the random rounding mode and
no instability in arithmetic operations can be detected. We
present here a version of CADNA which implements DSA for
the numerical validation of hybrid CPU-GPU codes written in



CUDA. This version differs from the sequential version in two
main respects: rounding mode change and instability detection.

On GPU an arithmetic operation can be performed with a
specified rounding mode. For instance a multiplication with
rounding towards +∞ can be executed using the fmul_ru
function and a multiplication with rounding towards −∞
using the fmul_rd function. Therefore a stochastic operation
on GPU implies three floating-point operations randomly
rounded towards +∞ or −∞ using the appropriate arithmetic
function. Unlike on CPU, random numbers are not stored in
a global array on GPU, because it is incompatible with GPU
programming paradigms. Each GPU thread being independent,
it generates random numbers using its own seed and taking
into account its own thread index. On GPU, random numbers
are generated when they are required, i.e. during the stochastic
operations. As a remark, because of the robustness of accuracy
estimation by DSA [22], the quality of the random number
generator is not a critical issue: only boolean values are
required.

On CPU, numerical instabilities that occur during the ex-
ecution are counted. Such a count is not performed on GPU
because it would consume shared memory and require many
atomic operations. On GPU an unsigned char is associated
with each result to store the numerical instabilities that have
affected it. Each bit of this char is associated with a type of
instability. For instance, its last bit is set to 1 if the result
has been affected by at least one unstable multiplication.
Therefore in the CPU-GPU version of CADNA a stochastic
variable is composed of three floating-point variables and four
unsigned char: one for the accuracy, one for the instabilities
and two for padding to respect memory alignment. Instability
detection increases the execution time with CADNA. Can-
cellation detection is particularly costful because it requires
to compare for all additions and subtractions the operands
accuracy with the result accuracy. For performance reasons,
the main instabilities can be detected with the GPU version
of CADNA: the instabilities related to the self-validation of
CADNA (unstable multiplications and unstable divisions) and
the unstable branching statements.

IV. ESTIMATION OF REPRODUCIBILITY IN WAVE
PROPAGATION RESULTS BY MEANS OF DSA

The acoustic wave propagation code has been executed
with the CADNA library on CPU and on GPU. Results
presented in this section have been computed in the following
environments:
• an AMD Opteron 6168 CPU with gcc 4.7.2 compiler;
• an NVIDIA C2050 GPU with CUDA 5.0 platform.
With implementations (1) and (2) of the finite difference

scheme, the number of exact significant digits in the results
computed with CADNA varies from 0 to 7. On CPU its
mean value is 4.06 with both schemes; on GPU it is 3.43
with scheme (1) and 3.49 with scheme (2). These remarks
are consistent with the observations described in Section II.
Numerical instabilities occur during the execution: 272,394

losses of accuracy due to cancellations with scheme (1) and
285,186 with scheme (2). This kind of instability is detected
by the CPU version of CADNA if the subtraction of two close
floating-point numbers leads to a loss of accuracy of at least
4 digits.

Table II presents results obtained on CPU and on GPU at
the same points in the space domain as in Table I. These
results have been computed, on the one hand, using CADNA
and, on the other hand, using IEEE floating-point arithmetic
with rounding to the nearest. With CADNA, only the exact
significant digits, i.e. the digits not affected by rounding errors,
are printed. Results in the first four rows in Table II have
been computed using binary32 arithmetic precision. Results
in the last row have been obtained in binary64 on CPU with
CADNA. Although CADNA prints 11 to 14 exact significant
digits in these three results, only their first 10 digits are
reported in Table II. The number of exact significant digits
estimated by CADNA depends on the point considered in the
space domain. As already mentioned in Section III, accuracy
estimation by DSA is rather pessimistic than optimistic. Be-
cause of the probabilistic aspect of DSA, the number of exact
significant digits estimated by CADNA may slightly differ on
CPU and on GPU. In Table II one can notice that the digits
provided by CADNA in binary32 are in common with those
computed in binary64. Results reported in Table II have been
computed using implementation (1) of the finite difference
scheme. The same digits are provided by CADNA with the
other implementation, except one less digit is given on GPU
for point p1.

TABLE II
RESULTS COMPUTED AT THREE DIFFERENT POINTS IN THE SPACE DOMAIN
WITH AND WITHOUT CADNA USING IMPLEMENTATION (1) OF THE FINITE

DIFFERENCE SCHEME

Point in the space domain
p1: (0, 19, 62) p2: (50, 12, 2) p3: (20, 1, 46)

IEEE CPU -1.110479 54.54238 614.1038
IEEE GPU -1.110204 54.54224 614.1046

CADNA CPU -1.1 54.54 614.104
CADNA GPU -1.11 54.5 614.10

Reference -1.108603879 54.54034021 614.1041156

Figures 1 and 2 present, respectively on CPU and on GPU,
the number of exact significant digits estimated by CADNA
in the results computed with scheme (1) with respect to their
absolute values. Similar results are observed with the other
scheme. The highest results (in absolute value) are affected
by low rounding errors and the highest rounding errors impact
negligible results. Although the same trend can be observed
on CPU and on GPU, there are differences between the
two distributions due to the probabilistic aspect of DSA.
Depending on the point in the space domain, the number of
exact significant digits may be higher on CPU or on GPU.
The average difference between results accuracy on CPU and
on GPU is 0.6 digit. Furthermore because of differences in the
execution order of the threads, the accuracy distribution may
be slightly different from one execution to another on GPU.



Fig. 1. Number of exact significant digits in the results computed on CPU
with respect to their absolute values.

Fig. 2. Number of exact significant digits in the results computed on GPU
with respect to their absolute values.

Table III presents execution times of the acoustic wave prop-
agation code in the environments mentioned at the beginning
of this section. Because the execution times measured with
implementations (1) and (2) of the finite difference scheme
are similar, only the performance of implementation (1) is
reported in Table III. The code has been run in binary32 both
on CPU and on GPU. CADNA has been used on CPU with
several kinds of instability detection:

• the detection of all kinds of instabilities;
• no detection of instabilities. With this mode, which is

not recommended, the execution time can be considered
the minimum that can be obtained whatever instability
detection chosen;

• the detection of unstable multiplications, unstable di-
visions and unstable branching statements. This mode,
which enables the self-validation of CADNA, is also

available on GPU.
One can notice that the cost of CADNA with instability

detection in multiplications, divisions and branching state-
ments is very close to its cost with no instability detection.
Actually this code cannot generate such instabilities: in all
multiplications at least one operand is a constant, all divisors
are constants and it has no branching statement. The cost
of CADNA with the detection of any kind of instability is
2.6 times higher. This is essentially due to the cancellation
detection which is particularly expensive in terms of execution
time. The cost of CADNA on GPU is about twice lower than
on CPU with the same level of instability detection. This may
be explained by the pipeline flush at each change of rounding
mode on CPU which affects instruction level parallelism.

TABLE III
EXECUTION TIMES WITH AND WITHOUT CADNA ON CPU AND GPU

CPU
execution instability detection execution time (s) ratio

IEEE - 110.8 1
CADNA all instabilities 4349 39.3

no instability 1655 14.9
mul., div., branching 1663 15.0

GPU
execution instability detection execution time (s) ratio

IEEE - 0.80 1
CADNA mul., div., branching 5.73 7.2

V. CONCLUSION

In this paper, we have shown that DSA can provide an
estimation of the reproducibility of numerical programs. By
estimating which digits are affected by rounding errors, DSA
may explain why differences are observed in the results of a
program executed in different environments. Therefore when
the deployment of a code on a parallel architecture generates
differences in the computed results, the presence of a bug
can possibly be discarded. Based on a probabilistic approach,
DSA can provide a trend of the distribution or the evolution
of results accuracy. If results differences are due to different
orders in the sequence of floating-point operations, a similar
trend should be provided by DSA whatever the environment
chosen. But a sequential implementation of DSA is not suffi-
cient and efficient methods must be proposed for the numerical
validation of large scale simulation programs. This paper
has shown the feasibility of numerical validation with DSA
for CPU-GPU programs. Furthermore DSA can be used for
accuracy estimation in distributed memory environments [17].
It has recently been shown how to take advantage of SIMD
units such as AVX (Advanced Vector eXtensions) in programs
using DSA [30]. However, work must still be carried out to
extend efficiently DSA to emerging computing architectures
that are prone to numerical reproducibility failures.
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