Parallelization of Discrete Stochastic Arithmetic

on

multicore architectures

F. Jézéquel', J.-L. Lamotte’ and O. Chubach*
TUPMC Univ Paris 06, UMR 7606, Laboratoire d’Informatique de Paris 6,
4 place Jussieu, 75252 Paris CEDEX 05, France
Email: {Fabienne.Jezequel,Jean-Luc.Lamotte} @lip6.fr
*Odessa I.1.Mechnikov National University,
Dvoryans’ka str. 2, Odessa, 65082, Ukraine
Email: elenachubach@gmail.com

Abstract—Discrete Stochastic Arithmetic (DSA) estimates
round-off error propagation in a program. It is based on a
synchronous execution of several instances of the program to
control using a random rounding mode. In this paper we show
how we can take advantage of multicore processors, which are
nowadays widespread, to reduce the cost of DSA in terms of
execution time. Several processes execute in parallel different
instances of the program and exchange data when necessary.
Several strategies are compared for the estimation of the result
accuracy and the detection of numerical instabilities. With our
parallel implementation, the cost of DSA is reduced by a factor
of about 2 compared with the sequential approach. Our parallel
implementation of DSA has been used successfully for the
numerical validation of a real-life application.

Index Terms—Discrete Stochastic Arithmetic, floating-point
arithmetic, multicore processors, numerical validation, round-off
errors;

I. INTRODUCTION

The increasing power of current computers enables one to
solve more and more complex problems. Then it is necessary
to perform more and more floating-point operations, each
one leading to a round-off error. Several approaches exist for
the round-off error analysis. Backward error analysis [1], [2]
provides error bounds at a moderate computational cost. But
this approach does not apply to any kind of problem and
may provide pessimistic bounds. Interval arithmetic [3], [4]
computes guaranteed error bounds. Because classical numer-
ical algorithms may lead to pessimistic bounds with interval
arithmetic, specific algorithms exist for solving problems with
interval arithmetic. Discrete Stochastic Arithmetic (DSA) [5],
[6] computes estimations of round-off errors. DSA is based
on the synchronous execution of N instances of a program
using a random rounding mode. Numerical validation with
DSA requires only a few modifications in the program to
control. DSA has been successfully used for the numerical
validation of real-life applications [7], [8].

Unfortunately the multiple executions inherent to DSA lead
to a problematic computational cost. In this paper we show
how multicore architectures, which are nowadays widespread,
can reduce this cost. Our aim is to perform in parallel on
a multicore system the N executions of a program required
by DSA. Because the program to control is sequential, this

approach is very different from the numerical validation using
DSA of codes running on distributed memory architectures
[9], [10] or on CPU-GPU hybrid systems [11], [12].

Several parallel implementations of DSA have been pro-
posed [13]-[15]. However their data exchanges, based on
the MPI communication library, require many data copies
and are very time consuming. These implementations have
been compared in terms of performance on a multi-processor
shared memory computer with an implementation using UNIX
functions for data exchange, in favour of the latter. Recently a
parallel implementation of DSA based on OpenMP has been
presented [16]. It has been used on simple Fortran programs
for performance benchmarking, but not yet to control large
scientific codes.

Because numerical simulation programs are usually exe-
cuted on UNIX-based operating systems, the parallel imple-
mentations of DSA presented in this paper use UNIX functions
to create processes and manage data exchange between them.
Several strategies are compared for the detection of numerical
instabilities which may occur during the execution. This paper
is organized as follows. Sect. II exposes the principles of
DSA. Sect. III presents the features of the sequential version
of the CADNA! software [17]-[19] which implements DSA.
Sect. IV describes different strategies for the parallelization
of DSA on multicore systems. These strategies are compared
in terms of performance in Sect. V. Sect. VI shows how
our parallel implementations of DSA have been used for the
numerical validation of a real-life application. Finally, in Sect.
VI concluding remarks are presented.

II. DISCRETE STOCHASTIC ARITHMETIC
A. Principles of the CESTAC method

Based on a probabilistic approach, the CESTAC method [5]
allows the estimation of round-off error propagation which oc-
curs with floating-point arithmetic. When no overflow occurs,
the exact result, , of any non exact floating-point arithmetic
operation is bounded by two consecutive floating-point values
R~ and RT. The basic idea of the method is to perform
each arithmetic operation N times, randomly rounding each

T'URL address: http://www.lip6.fr/cadna

time, with a probability of 0.5, to R~ or R*. The computer’s
deterministic arithmetic, therefore, is replaced by a stochastic
arithmetic where each arithmetic operation is performed N
times before the next one is executed, thereby propagating the
round-off error differently each time.

It has been proved [20] that the computed result R of n
elementary arithmetic operations is modelled to the first order
in 277 as: "

RxZ=r+) g(d)2 "z)
i=1
where r is the exact result, g;(d) are coefficients depending
exclusively on the data and on the code, p is the number of bits
in the mantissa and z; are independent uniformly distributed
random variables on [—1,1].
From Eq. 1, we deduce that:
1) the mean value of the random variable Z is the exact
result r,

2) the distribution of Z is a quasi-Gaussian distribution.

Then by identifying R and Z, i.e. by neglecting all the
second order terms, Student’s test can be used to estimate the
accuracy of R. From N samples R;, ¢t = 1,2,..., N,

Vg € [0,1],375 € R sit. p<er| < f/%) —1-8

where
1 & 1 al 2

_— ‘ 2 =5

R_N;RZ and o _ril;(}zz R)". (3
73 is the value of Student’s distribution for N — 1 degrees of
freedom and a probability level 1 — 3.

Therefore the number of decimal significant digits common
to R and r can be estimated with the following equation.

mm)

“4)

aTg

CE = logyg <

Thus the implementation of the CESTAC method in a code
providing a result R consists in:

o performing N times this code with the random rounding
mode, which is obtained by using randomly the upward
or downward rounding mode; we then obtain N samples
R;of R

o choosing as the computed result the mean value R of R;,
i=1,..,N

o cstimating with Eq. 4 the number of exact decimal
significant digits of R.

In practice § = 0.05 and N = 3. Indeed, it has been
shown [20], [21] that N = 3 is in some reasonable sense the
optimal value. The estimation with N = 3 is more reliable
than with N = 2 and increasing the size of the sample does
not improve the quality of the estimation. The probability of
overestimating the number of exact significant digits of at least
1 is 0.054% and the probability of underestimating the number
of exact significant digits of at least 1 is 29%. By choosing
B = 0.05, we prefer to guarantee a minimal number of exact

significant digits with a high probability (99.946%), even if
we are often pessimistic by 1 digit. The complete theory can
be found in [5], [20].

B. Validity of the CESTAC method

Eq. 1 and 4 hold if the two following hypotheses are
verified.

1) the round-off errors «; are independent, centered uni-
formly distributed random variables,
2) the approximation to the first order in 277 is legitimate.

Concerning the first hypothesis, with the use of the random
arithmetic, round-off errors «; are random variables, however,
in practice, they are not rigorously centered and in this case
Student’s test gives a biased estimation of the computed result.
It has been proved [20] that, with a bias of a few o, the error
on the estimation of the number of exact significant digits of
R is less than one decimal digit. Therefore even if the first
hypothesis is not rigorously satisfied, the estimation obtained
with Eq. 4 is still correct up to one digit.

Concerning the second hypothesis, the approximation to
the first order only concerns multiplications and divisions.
Indeed the round-off error generated by an addition or a
subtraction does not contain any term of higher order. It has
been shown [20] that, if both operands in a multiplication
or the divisor in a division become insignificant, i.e. with no
more exact significant digit, then the first order approximation
may be not legitimate. In practice, the CESTAC method
requires, during the execution of the code, a dynamical control
of multiplications and divisions, which is a so-called self-
validation of the method. Because insignificant operands in
a multiplication may invalidate the estimation of accuracy,
arguments of the power function must be controlled too. This
self-validation leads to the synchronous implementation of the
method, i.e. to the parallel computation of the N results R;,
and also to the concept of computational zero, also named
informatical zero [22].

Definition 2.1: During the run of a code using the CESTAC
method, an intermediate or a final result R is a computational
zero, denoted by @.0, if Vi, R; = 0 or Cx < 0.

Any computed result R is a computational zero if either
R =0, R being significant, or R is insignificant.

C. Principles of DSA

Discrete Stochastic Arithmetic (DSA) [6] has been defined
from the synchronous implementation of the CESTAC method.
With DSA, a real number becomes an /N-dimensional set
and any operation on these N-dimensional sets is performed
element per element using the random rounding mode. The
number of exact significant digits of such an N-dimensional
set can be estimated from Eq. 4. From the concept of com-
putational zero, an equality concept and order relations have
been defined for DSA.

Definition 2.2: Let X and Y be N-samples provided by the
CESTAC method.

o Discrete stochastic equality denoted by ds= is defined
as Xds=Y if and only if X — Y = @.0.

« Discrete stochastic inequalities denoted by ds> and ds>
are defined as:
Xds>Y if and only if X > Y and Xds# Y,
Xds>Y if and only if X > Y or Xds=Y.

Stochastic relational operators ensure that in a branching
statement the same sequence of instructions is performed for
all the samples which represent a variable. DSA enables to
estimate the impact of rounding errors on any result of a
scientific code and also to check that no anomaly occurred
during the run, especially in branching statements.

III. THE SEQUENTIAL VERSION OF THE CADNA
SOFTWARE

The CADNA software [17]-[19] is a library which imple-
ments DSA in any code written in C++ or in Fortran and
allows to use new numerical types: the stochastic types. In
essence, classical floating-point variables are replaced by the
corresponding stochastic variables, which are composed of
three perturbed floating-point values. The library contains the
definition of all arithmetic operations and order relations for
the stochastic types. The control of the accuracy is performed
only on variables of stochastic type. When a stochastic variable
is printed, only its exact significant digits appear. For a
computational zero, the string “@.0” is printed. Because all
operators are overloaded, the use of CADNA in a program
requires only a few modifications: essentially changes in the
declarations of variables and in input/output statements.

CADNA can detect numerical instabilities which occur
during the execution of the code. When a numerical anomaly
is detected, dedicated CADNA counters are incremented. At
the end of the run, the value of these counters together with
appropriate warning messages are printed on standard output.
These warnings are of two types.

1) Warnings related to the self-validation of CADNA.
These include: unstable multiplication where the two
operands are computational zeroes; unstable power,
where one of the arguments of the power function is
a computational zero; and unstable division were the
divisor is a computational zero. These warnings indicate
that the validity of C'z has been compromised and the
CADNA results cannot be relied on.

2) Warnings concerning other numerical instabilities. These
instabilities can occur in overloaded mathematical func-
tions or in branching statements involving a computa-
tional zero. A numerical instability is also reported in
the case of a cancellation, i.e. the subtraction of two very
close values which generates a sudden loss of accuracy.

At the end of the run, each type of anomaly together with
their occurrences are printed. If no anomaly has been detected
the computed results are reliable and the accuracy of each has
been correctly estimated up to a certain probability. Otherwise
the messages need to be analyzed, the source of the anomaly
identified and, if necessary, the code changed. The user can
specify the instabilities to be detected. One may choose, for
instance, to activate only self-validation, to detect all types of
instabilites or to deactivate the detection of instabilities.

In the CADNA library, an integer variable named accuracy
is associated with any stochastic number to store its number of
exact significant digits. Thanks to this variable, the accuracy of
a stochastic variable which is used several times without being
modified is computed only once. This happens for instance
in a matrix multiplication where the same stochastic variable
acts as an operand in several multiplications that have to be
controlled. The use of the accuracy variable increases the cost
of CADNA in terms of memory, but reduces its cost in terms
of execution time.

IV. PARALLELIZATION OF DSA

A. Processes and data exchange

The basic idea is to run in parallel the three arithmetic
operations inherent to any stochastic operation. The parallel ar-
chitecture of CADNA is based on three UNIX processes, each
one running an instance of the program. Processes exchange
information through a communication system. Functions and
operations that require data exchange between the processes
can be classified in two groups.

1) The first group contains all functions which require
the synchronization of the three processes. When ex-
ecuting these functions, processes exchange values syn-
chronously to ensure they all compute the same result.
Indeed the next sequence of instructions to be executed
may depend on the result of such functions. This first
group of functions includes:

« equality and order relational operations

« the absolute value function

« conversion functions from a stochastic type to a
classical floating-point type

« functions which compute the number of exact sig-
nificant digits of results (and therefore functions
which display results with their accuracy).

2) The second group contains operations for which a part
of the computation can be performed later. This group
includes multiplications and divisions. As mentioned
in Sect. II, the self-validation of the CESTAC method
requires to check that both operands in multiplications
and divisors are significant. Performing this kind of
control before any multiplication or division would be
costful, because it would lead to many communications.
However this control can be postponed, because it has no
impact on the choice of the next computation sequence
to be executed.

The multicore versions of CADNA presented in this paper
use UNIX functionalities. Two versions are described: in the
first one, all data exchanges are performed synchronously;
in the second one, only necessary synchronizations are per-
formed. As a remark, once a program has been modified to be
controlled using DSA, it can be executed with the sequential or
the multicore versions of CADNA. The choice of the CADNA
version is specified just for compiling and linking, it induces
no extra change in the source code.

B. Version with synchronous data exchange

Three instances of a program are executed in parallel by
three processes with the random rounding mode. When data
exchange is required, it is performed synchronously. In this
case, each process sends to the two others all values required
by the function or the operation to be performed. Since all
the processes own all the values, they all perform the same
computation and take the same decision. Because associativity
is not satisfied in IEEE floating-point arithmetic [23], the order
of the three samples must absolutely be the same on the three
processes. Otherwise processes may take different decisions
and perform different sequences of instructions.

When the program starts, one process is launched. The
CADNA initialization function creates a shared memory seg-
ment and uses the fork UNIX function to launch two other
identical processes. Because the three processes must ex-
change values through the shared memory, attention has been
paid to manage concurrent access to a unique memory zone.
In order to optimize waiting time, a communication system
with active waiting has been implemented, rather than UNIX
semaphores.

Fig. 1 shows how a user program is executed. Each process
created by the CADNA initialization function runs an instance
of the same program. All tests require data exchange. Here,
because the equality test is overloaded, discrete stochastic
equality is actually tested in accordance with definition 2.2.
Each process computes the difference between its operands.
The three differences are exchanged through the shared mem-
ory segment, for the three processes to have exactly the same
triplet D = (D1, D2, D3). The number Cp of exact significant
digits of D is computed by all processes using Eq. 4. In all
processes, the order of the values which compose the triplet
must be the same for the same result C'5 to be computed. This
constraint is due to the fact that associativity is not necessarily
satisfied in IEEE floating-point arithmetic and ensures that the
result of the test and consequently the branch chosen are the
same for the three processes.

user program:
cadna_init(-1);
A=..
B=..

if (A==DB)

cadna_end();

process 1: process 2: process 3:
A =... Ar = ... Az = ...
B = .. By = ... Bz = ...
D1 =A1 - B Dy = Az — Be D3 = A3 — B3

all_to_all_exchange(D1 , D2, Ds3)
D = (D1,D2,D3) | D= (D1,D2,D3) | D= (D1, D2,D3)
if (D == @.0) if (D == @.0) if (D == @.0)

Fig. 1. Execution of a program using multicore DSA

C. Version using a validation box

In the second multicore version of CADNA, all data ex-
changes are not performed synchronously. Synchronizations
are required for functions or operations in the first group,
according to the classification introduced in IV-A. For oper-
ations in the second group (for instance multiplications and
divisions) synchronizations are useless. Indeed the control of
a multiplication or a division does not need to be performed
just before the operation and can be postponed. In this ver-
sion, computation inherent to the application and computation
related to the self-validation of the CESTAC method are
taken in charge by different processes. Like in the version
described in IV-B, three processes execute three instances of
the program. These processes form the so-called computation
box. The self-validation, which consists in controlling the
accuracy of operands in multiplications and divisions, is per-
formed by one or several processes denoted by the validation
box. For seek of simplicity, let us assume in the sequel that
the validation box consists of one process. Processes in the
computation box fill two buffers:

« a buffer to detect unstable multiplications which contains

all multiplication operands

o a buffer to detect unstable divisions which contains all

divisors.

The process in the validation box, which is created by a call to
the fork UNIX function, reads the stochastic numbers in these
buffers, checks their accuracy and, if necessary, increments
the counter associated with unstable multiplications or the
one associated with unstable divisions. If several processes
form the validation box, they manage several buffers of both
types. The first process, which is created using the fork UNIX
function, lanches of a number of OpenMP threads specified
by the user.

V. PERFORMANCE ANALYSIS
A. Experimental environment

Because the parallel implementations of DSA examined in
this section require three or four processes, experiments have
been carried out on a quad-core processor. All execution times
have been measured on a quad-core Intel i5-2500 processor
running Linux with the gcc 4.6.3 compiler. Several implemen-
tations of DSA have been compared in terms of performance:
« the sequential CADNA library
o the parallel implementation of DSA with synchronous
data exchange, as described in IV-B

o the parallel implementation of DSA with a validation box
consisting of one process, as described in IV-C

o the parallel implementation of DSA with a validation
box consisting of one process and an accuracy variable
associated with any stochastic number; in the two other
parallel implementations, the accuracy of a stochastic
number may be computed several times even if this
number is not modified.

All these implementations have been tested using several
modes for the detection of numerical instabilities:

« the detection of all kinds of instabilities, denoted by the
full mode;

o the detection of unstable multiplications and unstable
divisions in order to perform a self-validation of the
CESTAC method, as described in II;

e no detection of instabilities. With this mode, which is
not recommended, the execution time can be considered
the minimum that can be obtained whatever instability
detection chosen.

The detection of cancellations is very costful in the sequen-
tial CADNA library. Therefore, in order to save communi-
cation time, it has been chosen not to enable this detection
in the parallel implementations of DSA. For a complete
numerical debugging of a code, the sequential CADNA library
is preferable.

We are interested in the ratio between the execution time
measured using the classical IEEE floating-point arithmetic
and using DSA. The ratios obtained with the sequential
CADNA library and several parallel implementations of DSA
are compared for linear algebra programs in V-B and the
computation of integrals in V-C.

B. Linear algebra programs
35

30
@seq-full

25 Upara-box-self

1xseq-self

><seq-no

“*para-box-acc-no
para-box-acc-self
para-sync-no
para-sync-self
‘para-box-no

“ieee

20

15

10 e

T T

100 200 300 400 500 600 700 800 900 1000

Fig. 2. Ratios between the execution times in IEEE arithmetic and in DSA
for matrix multiplication, the matrix sizes varying from 100 to 1000.

Fig. 2 (respectively Fig. 3) presents the ratios between the
execution times in IEEE arithmetic and in DSA for matrix
multiplication (respectively for linear system solving using
Jacobi method), the matrix sizes varying from 100 to 1000. In
both figures, the graphs in the legend are ordered like in the
chart. Some graphs are associated with very close execution
times and therefore overlap.

From Fig. 2, for matrix multiplication, the cost of the
sequential CADNA library varies from 12 to 19 with self-
validation and from 20 to 34 with the detection of all kinds
of instabilities. Matrix multiplication is implemented using
three nested loops. Better performance would be obtained
with an optimized routine in floating-point arithmetic and
consequently the cost of CADNA would be higher.

80

70
@seq-full
Ipara-box-self
1rseq-no
=seq-self
““para-sync-no
rpara-box-acc-no
30 para-box-acc-self
b= Jpara-sync-self
‘para-box-no
“ieee

60

50

40

20

10 F J -

0
100 200 300 400 500 600 700 800 900 1000

VTN

VTNV

VTV

Fig. 3. Ratios between the execution times in IEEE arithmetic and in DSA
for linear system solving using Jacobi method, the matrix sizes varying from
100 to 1000.

At each iteration of the Jacobi method, the infinite norm
of the residue is computed. However since we are interested
in performance comparison, the number of iterations is set
to 328, which is, in this numerical experiment, the optimal
number [22] determined thanks to the CADNA library. From
Fig. 3, for Jacobi method, the cost of the sequential CADNA
library varies from 15 to 23 with self-validation and from 53
to 76 with the detection of all kinds of instabilities.

The following remarks are valid for both programs. The
execution times of the sequential CADNA library without
instability detection and with self-validation are similar. This
is partly due to the fact that the input matrices contain no
computational zero. When the detection of all instabilities is
activated, the increase of the execution time is essentially due
to the detection of cancellations.

With the parallel implementation of DSA with synchronous
data exchange, the execution times are similar whatever the
mode chosen for instability detection. We recall that the
detection of cancellations is not implemented in this parallel
version. The cost of this parallel implementation of DSA is
reduced by a factor of about 2, compared with the sequential
CADNA library with self-validation.

The parallel implementation with the validation box and no
accuracy variable performs worse than the sequential CADNA
library, when self-validation is activated. As a remark, the
performance of this parallel implementation without any insta-
bility detection is very satisfactory. However the self-validation
is strongly recommended, otherwise results may be displayed
with a too optimistic accuracy without any warning message.

The parallel implementation with the validation box and the
accuracy variable are similar to those of parallel implementa-
tion of DSA with synchronous data exchange.

C. Computation of integrals

Tables I and II present the execution times of programs com-
puting integrals using the trapezoidal method. A sequence of

Execution instability execution | ratio
detection time (s)
IEEE - 8.80 1
sequential DSA full 94.00 10.7
self-validation 66.17 7.5
no detection 57.57 6.5
parallel DSA full 84.03 9.5
(synchronous exchange) self-validation 56.73 6.4
no detection 30.59 3.5
parallel DSA full 59.92 6.8
(validation box) self-validation 35.11 4.0
no detection 28.06 3.2
parallel DSA full 59.72 6.8
(validation box & accuracy) | self-validation 32.28 3.7
no detection 32.24 3.7
TABLE I
EXECUTION TIME FOR THE COMPUTATION OF [
Execution instability execution | ratio
detection time (s)
IEEE - 0.22 1
sequential DSA full 40.18 182.6
self-validation 28.15 128.0
no detection 20.02 91.0
parallel DSA full 17.81 81.0
(synchronous exchange) self-validation 17.91 81.4
no detection 10.96 49.8
parallel DSA full 23.10 105.0
(validation box) self-validation 23.09 105.0
no detection 8.71 39.6
parallel DSA full 10.88 49.5
(validation box & accuracy) | self-validation 10.85 49.3
no detection 10.81 49.1

TABLE I
EXECUTION TIME FOR THE COMPUTATION OF I

approximations is computed, the integration step being halved
at each iteration. The execution times have been measured
for 224 partitions of the integration interval. We are interested
in performance comparisons; readers can refer to [7], [24]-
[26] for detailed information about the dynamical control of
integrals computation using DSA and strategies for optimizing
the global error which consists of both the truncation error
and the round-off error. The following integrals have been

computed.
. ,[1 = 1100 fl(x)d:v
with fy(z) = 228 4 cos(x) exp(sin(z))

x

2
. I2 = f—l f2(l’)d$
. _ 225-102*+52% 60224802437
with fo(2) = S s 5 rats

The cost of DSA depends strongly on the integrand. The
ratio between the execution times measured using the classical
IEEE floating-point arithmetic and using the sequential version
of CADNA with self-validation is 7 for I; and 128 for I5.
The integrand f5 is particularly unfavourable to DSA, because
it contains mathematical expressions that are efficiently com-
puted in one instruction using IEEE floating-point arithmetic.

The following remarks are valid for both integrals. The
performance obtained using a parallel implementation of DSA
with a validation box, no accuracy variable and no instability

detection is very satisfactory. However at least self-validation
is strongly recommended. For each implementation of DSA,
execution times measured with no instability detection should
be considered the minimum that can be obtained. If self-
validation is activated using a parallel implementation of DSA,
the best performance is obtained with a validation box and
an accuracy variable. Using this configuration, the cost of
DSA with self-validation is reduced by a factor of at least
2 compared with the sequential CADNA library, whatever the
integral.

VI. NUMERICAL VALIDATION OF THE SHALLOW-WATER
APPLICATION

The sequential CADNA library and the parallel implemen-
tations of DSA described in Sect. IV have been integrated into
the shallow-water application [27] developed by the LOCEAN
laboratory in Paris for data assimilation experiments. This
application implements the two-dimensional shallow-water
model in the horizontal plane (x,y), also called Saint-Venant
model, which arises from the vertical integration of three-
dimensional Navier-Stokes equations. This model describes
the linear flow of a nonviscous fluid in shallow-water envi-
ronment with a free surface. The shallow-water application
contains over 8,000 lines of codes.

212 unstable multiplications and 149,564 losses of accuracy
due to cancellations have been detected by the CADNA library.
All the operands responsible for the unstable multiplications
have been identified. Their order of magnitude is such that
they have no impact on the estimation of accuracy provided
by CADNA. The cancellations have a limited impact on the
numerical stability of the code, which is very satisfactory.

Execution instability execution | ratio
detection time (s)

IEEE - 7.76 1
sequential DSA full 192.38 24.8
self-validation 70.64 9.1

no detection 70.65 9.1

parallel DSA self-validation 41.34 53
(synchronous exchange) no detection 19.42 2.5
parallel DSA self-validation 25.28 33
(validation box) no detection 16.75 2.2
parallel DSA self-validation 20.17 2.6
(validation box & accuracy) no detection 20.19 2.6

TABLE III
EXECUTION TIME OF THE SHALLOW-WATER APPLICATION

From Table III, the cost of the sequential CADNA library
is a factor of about 25 if all kinds of instabilities are detected.
It is a factor of about 9 with self-validation only. With the
parallel implementations of DSA, if self-validation is activated,
the cost of the numerical validation is reduced by a factor
of 1.7 to 3.5, the best performance being measured with the
validation box and the accuracy variable. As a remark, in
the parallel implementations of DSA, because the detection
of cancellations is not enabled, the execution times with the
detection of all kinds of instabilities and with self-validation
are similar. The moderate cost of DSA is due to the fact that

the shallow-water application performs not only computation
but also input/output tasks. As observed in Sect. V, the cost
of DSA on a computation kernel may be high. However this
cost usually becomes reasonable on a real-life application.

VII. CONCLUSION

In this paper, we have shown that we can take advantage of
multicore architectures to improve the performance of DSA.
Several parallel implementations of DSA which use UNIX
functions for data exchange have been compared. The best
performance has been obtained with the following features: a
validation box for the detection of instabilities and a variable
to store the accuracy of results. With such a parallel imple-
mentation, the cost of DSA is reduced by a factor of about 2
compared with the sequential CADNA library when the same
level of instability detection is enabled. With the shallow-
water application, we have shown that using our parallel
implementation the cost of DSA can be significantly reduced
on real-life applications.

In our parallel implementation of DSA, the detection of
cancellations is not possible because it would require too
many data transfers. The same modifications in a program are
required by the sequential CADNA library and our parallel im-
plementation of DSA. Therefore we recommend the following
strategy for the numerical validation of a sequential program.
First it can be executed with our parallel implementation of
DSA to check the numerical quality of its results. Then, for a
more detailed analysis, it can be executed with the CADNA
library. In this case, the instructions responsible for numerical
instabilities can be identified using a debugger and, if possible,
modified to improve the numerical quality of the results.

A version of CADNA for the numerical validation of MPI
programs already exists. The present paper shows it will
be possible to improve its performance when it is used on
multicore processors. The numerical validation of OpenMP
programs, which is still under investigation, may also benefit
from the comparison of the different strategies reported in the
present paper.

ACKNOWLEDGEMENT

The authors wish to thank J. Brajard from the LOCEAN
laboratory in UPMC (Université Pierre et Marie Curie, Paris,
France) who made the shallow water application available
and P. Li who controlled with CADNA the shallow water
application during his internship in the framework of the
Emergence-UPMC research program.

REFERENCES

[1] J. Wilkinson, Rounding errors in algebraic processes.
Cliffs, N.J.: Prentice-Hall Inc., 1963.

[2] N. Higham, Accuracy and stability of numerical algorithms, 2nd ed.
Philadelphia, PA: Society for Industrial and Applied Mathematics
(SIAM), 2002.

Englewood

[3] G. Alefeld and J. Herzberger, Introduction to interval analysis. Aca-
demic Press, 1983.
[4] U. Kulisch, Advanced Arithmetic for the Digital Computer. Springer-

Verlag, Wien, 2002.
[51 J. Vignes, “A stochastic arithmetic for reliable scientific computation,”
Math. Comput. Simulation, vol. 35, pp. 233-261, 1993.

[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

——, “Discrete stochastic arithmetic for validating results of numerical
software,” Num. Algo., vol. 37, no. 1-4, pp. 377-390, Dec. 2004.

F. Jézéquel, F. Rico, J.-M. Chesneaux, and M. Charikhi, “Reliable
computation of a multiple integral involved in the neutron star theory,”
Math. Comput. Simulation, vol. 71, no. 1, pp. 44-61, 2006.

N. Scott, F. Jézéquel, C. Denis, and J.-M. Chesneaux, “Numerical "health
check’ for scientific codes: the CADNA approach,” Computer Physics
Communications, vol. 176, no. 8, pp. 507-521, Apr. 2007.

J.-L. Lamotte, “Vers une chaine de validation des logiciels numériques a
I’aide de méthodes probabilistes,” Habilitation a diriger des recherches,
Université Pierre et Marie Curie, Paris, Nov. 2004.

S. Montan and C. Denis, “Numerical Verification of Industrial Numerical
Codes,” in ESAIM: Proc., vol. 35, Mar. 2012, pp. 107-113.

F. Jézéquel and J.-L. Lamotte, “Numerical validation of Slater integrals
computation on GPU,” in [4th international symposium on Scientific
Computing, Computer Arithmetic and Validated Numerics (SCAN 2010),
Lyon, France, Sep. 2010, pp. 78-79.

W. Li, S. Simon, and S. Kiess, “On the numerical sensitivity of computer
simulations on hybrid and parallel computing systems,” in International
Conference on High Performance Computing and Simulation (HPCS),
july 2011, pp. 510-516.

J.-L. Lamotte, “Parallelization of the CESTAC method on shared mem-
ory and distributed memory computers,” in 10th International Sym-
posium on Scientific Computing, Computer Arithmetic, and Validated
Numerics (SCAN 2002), Paris, France, Sep. 2002.

A. Ghaneme and J.-L. Lamotte, “On the performance of a parallel
implementation of the CESTAC method with self-validation on several
parallel machines,” in Proc. SCAN2004 conference, Fukuoka, Japan,
Oct. 2004.

J.-L. Lamotte and D. Martins, “First parallel implementation of the
CESTAC method with self validation,” Mathematical Modelling and
Scientific Computations, minisymposium within the 33rd Spring Confer-
ence of the Union of the Mathematicians in Bulgaria, Borovets, Bulgaria,
pp. 427433, Apr. 2004.

W. Li and S. Simon, “Numerical error analysis for statistical software
on multi-core systems,” in Proceedings of COMPSTATS 2010, 19th
International Conference on Computational Statistics, Paris - France,
August 22-27, Y. Lechevallier and G. Saporta, Eds. Physica-Verlag
HD, 2011, pp. 1295-1302.

F. Jézéquel and J.-M. Chesneaux, “CADNA: a library for estimating
round-off error propagation,” Computer Physics Communications, vol.
178, no. 12, pp. 933-955, 2008.

F. Jézéquel, J.-M. Chesneaux, and J.-L. Lamotte, “A new version of the
CADNA library for estimating round-off error propagation in Fortran
programs,” Computer Physics Communications, vol. 181, no. 11, pp.
1927-1928, 2010.

J.-L. Lamotte, J.-M. Chesneaux, and F. Jézéquel, “CADNA_C: A version
of CADNA for use with C or C++ programs,” Computer Physics
Communications, vol. 181, no. 11, pp. 1925-1926, 2010.

J.-M. Chesneaux, “L’arithmétique stochastique et le logiciel CADNA,”
Habilitation a diriger des recherches, Université Pierre et Marie Curie,
Paris, France, Nov. 1995.

J.-M. Chesneaux and J. Vignes, “Sur la robustesse de la méthode
CESTAC,” C. R. Acad. Sci. Paris Sér. I Math., vol. 307, pp. 855-860,
1988.

J. Vignes, “Zéro mathématique et zéro informatique,” C. R. Acad. Sci.
Paris Sér. I Math., vol. 303, pp. 997-1000, 1986, also: La Vie des
Sciences, 4 (1) 1-13, 1987.

IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Stan-
dard 754-1985, IEEE Computer Society, New York, 1985, reprinted in
SIGPLAN Notices, 22(2):9-25, 1987.

F. Jézéquel, “A dynamical strategy for approximation methods,” C. R.
Acad. Sci. Paris - Mécanique, vol. 334, pp. 362-367, 2006.

F. Jézéquel and J.-M. Chesneaux, “Computation of an infinite integral
using Romberg’s method,” Num. Algo., vol. 36, no. 3, pp. 265-283, Jul.
2004.

F. Jézéquel, “Dynamical control of converging sequences computation,”
Applied Numerical Mathematics, vol. 50, no. 2, pp. 147-164, 2004.

L. Nardi, C. Sorror, F. Badran, and S. Thiria, “YAO: A Software for
Variational Data Assimilation Using Numerical Models.” in LNCS 5593,
Computational Science and Its Applications - ICCSA 2009, O. Gervasi,
D. Taniar, B. Murgante, A. Lagana, Y. Mun, and M. L. Gavrilova, Eds.
Springer-Verlag, 2009, pp. 621-636.

