
NSV 2015

Numerical validation of compensated
summation algorithms with stochastic

arithmetic

S. Graillat1

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
CNRS, UMR 7606, LIP6, F-75005, Paris, France

F. Jézéquel2

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
CNRS, UMR 7606, LIP6, F-75005, Paris, France

Université Panthéon-Assas, 12 place du Panthéon, F-75231 Paris CEDEX 05, France

R. Picot3

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
CNRS, UMR 7606, LIP6, F-75005, Paris, France

Abstract

Compensated summation algorithms are designed to improve the accuracy of ill-conditioned sums. They
are based on algorithms, such as FastTwoSum, which are proved to provide, with rounding to nearest, the
sum of two floating-point numbers and the associated rounding error. Discrete stochastic arithmetic enables
one to estimate rounding error propagation in numerical codes. It requires a random rounding mode which
consists in rounding each computed result toward −∞ or +∞ with the same probability. In this paper we
analyse the impact of this random rounding mode on compensated summations based on the FastTwoSum
algorithm. We show the accuracy improvement obtained using such compensated summations in numerical
simulations controlled with discrete stochastic arithmetic.

Keywords: floating-point arithmetic, rounding errors, discrete stochastic arithmetic, error-free
transformations, compensated algorithms, summation algorithms, CADNA

1 Introduction

The power of computational resources continues to increase. Exascale computing

(1018 operations per second) is planned to be reached within a decade. In floating-

point arithmetic, each operation is likely to produce a rounding error. These errors

1 Email: stef.graillat@lip6.fr
2 Email: fabienne.jezequel@lip6.fr
3 Email: romain.picot@lip6.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:stef.graillat@lip6.fr
mailto:fabienne.jezequel@lip6.fr
mailto:romain.picot@lip6.fr

S. Graillat et al

can accumulate and at the end of a computation, the computed result can be very

far from the exact one. Moreover, the more operations are performed, the more the

accumulation of rounding errors is likely to be important.

As a consequence, it is fundamental to have some information on the numerical

quality (for example the number of exact significant digits) of the computed result.

To answer this question, a numerical library called CADNA [1] has been developed.

It implements Discrete Stochastic Arithmetic (DSA) [2] and makes it possible to

provide a confident interval of the computed result.

But if the accuracy of the computed result is not sufficient, it is necessary to

increase the precision of the computation. A well-known and efficient technique for

that is the use of compensated algorithms. These algorithms are based on the fact

that it is often possible to compute exactly the rounding errors of some elementary

operations like addition and multiplication. We now assume that we work with

a floating-point arithmetic adhering to the IEEE754-2008 Standard [3]. In that

case, if we use rounding to nearest, then the rounding error of an addition is a

floating-point number that can be computed exactly. The algorithms that enable

the computation of rounding errors are called error-free transformations (EFT).

An algorithm that relies on EFT to increase the accuracy is called a compensated

algorithm (see [4]).

However if we use directed rounding, the error of a floating-point addition is not

necessarily a floating-point number. Yet, directed roundings are required in DSA.

As a consequence, it is not clear whether we can use stochastic arithmetic to validate

some numerical codes that heavily rely on the use of error-free transformations.

In this article, we show that we can use stochastic arithmetic to validate com-

pensated summation. Several compensated algorithms exist for summation. The

first one is Kahan’s compensated summation [5]. Another one is the doubly com-

pensated summation algorithm by Priest (see [6] or chapter 4 of [7]). We mainly

focus here on the compensated algorithm derived by Ogita, Rump and Oishi [8].

In Section 2, we give some definitions and notations used in the sequel. In Sec-

tion 3, we present the principles of DSA. In Section 4, we analyse the impact of

directed roundings on an EFT for floating-point addition, the FastTwoSum algo-

rithm [9]. We show in Section 5 that we can still use stochastic arithmetic with

compensated summation. Section 6 confirms the accuracy of the algorithm and

shows performances.

2 Definitions and notations

Throughout the paper, we assume to work with a binary floating-point arithmetic

adhering to IEEE 754 floating-point standard [3]. We suppose that no overflow

occurs. The set of floating-point numbers is denoted by F, the relative rounding

error by u. For IEEE 754 double precision, we have u = 2−53 and for single precision

u = 2−24.

We denote by fl*(·) the result of a floating-point computation, where all opera-

tions inside parentheses are done in floating-point working precision with a directed

rounding (that is to say toward −∞ or +∞). Floating-point operations in IEEE

754 satisfy [7]

2

S. Graillat et al

∃ ε1 ∈ R, ε2 ∈ R such that

fl*(a ◦ b) = (a ◦ b)(1 + ε1) = (a ◦ b)/(1 + ε2) for ◦ = {+,−} and |εν | ≤ 2u.

This implies that

|a ◦ b− fl*(a ◦ b)| ≤ 2u|a ◦ b| and |a ◦ b− fl*(a ◦ b)| ≤ 2u|fl*(a ◦ b)| for ◦ = {+,−}.

We use standard notation for error estimations. The quantities γn are defined as

usual [7] by

γn(u) :=
nu

1− nu
for n ∈ N,

where we implicitly assume that nu ≤ 1.

3 Principles of Discrete Stochastic Arithmetic (DSA)

Based on a probabilistic approach, the CESTAC method [10] allows the estimation

of rounding error propagation which occurs with floating-point arithmetic. It uses

a random rounding mode which consists in rounding each computed result toward

−∞ or +∞ with the same probability. The computer’s deterministic arithmetic is

replaced by a stochastic arithmetic where each arithmetic operation is performed

N times before the next one is executed, thereby propagating the rounding error

differently each time. Therefore, for each computed result, the CESTAC method

furnishes us with N samples R1, . . . , RN . The value of the computed result R is

chosen to be the mean value of {Ri} and, if no overflow occurs, the number of exact

significant digits in R can estimated as

CR = log10

(√
N
∣∣R∣∣

στβ

)
, where R =

1

N

N∑
i=1

Ri and σ2 =
1

N− 1

N∑
i=1

(
Ri − R

)2
. (1)

τβ is the value of Student’s distribution forN−1 degrees of freedom and a probability

level 1− β.

The validity of CR is compromised if both operands in a multiplication or the

divisor in a division are not significant [11]. It is essential that such numbers with

no significance are detected and reported. Therefore multiplications and divisions

must be dynamically controlled in order to perform a so-called self-validation of the

method. The need for this control has led to the concept of computational zero [12].

A computed result is a computational zero, denoted by @.0, if ∀i, Ri = 0 or CR ≤ 0.

This means that a computational zero is either a mathematical zero or a number

without any significance, i.e. numerical noise.

To establish consistency between the arithmetic operators and the relational

operators, discrete stochastic relations [13] are defined as follows. Let X = {Xi}
and Y = {Yi} be two results computed with the CESTAC method,

(i) X = Y if and only if X−Y = @.0,

(ii) X > Y if and only if X > Y and X−Y 6= @.0,

(iii) X ≥ Y if and only if X ≥ Y or X−Y = @.0.

3

S. Graillat et al

Discrete Stochastic Arithmetic (DSA) is the combination of the CESTAC method,

the concept of computational zero, and the discrete stochastic relationships [2].

The CADNA 4 software [1] is a library which implements DSA with N = 3 and

β = 0.05. In contrast to interval arithmetic, that computes guaranteed results, the

CADNA software provides, with the probability 95% the number of exact significant

digits of any computed result. CADNA allows to use new numerical types: the

stochastic types. In practice, classic floating-point variables are replaced by the

corresponding stochastic variables, which are composed of three perturbed floating-

point values. When a stochastic variable is printed, only its exact significant digits

appear. Because the library contains the definition of all arithmetic operations and

order relations for the stochastic types, the use of CADNA in a program requires

only a few modifications: essentially changes in the declarations of variables and

in input/output statements. During the execution, CADNA can detect numerical

instabilities, which are usually due to the presence of numerical noise. When a

numerical instability is detected, dedicated CADNA counters are incremented. At

the end of the run, the value of these counters together with appropriate warning

messages are printed on standard output.

4 FastTwoSum with faithful rounding

If Algorithm 1 [9] is executed using a binary floating-point system adhering to IEEE

754 standard, with subnormal numbers available, and providing correct rounding

with rounding to nearest, then it computes two floating-point numbers s and t such

that

• s+ t = a+ b exactly;

• s is the floating-point number that is closest to a+ b.

Algorithm 1 FastTwoSum

function [s, t] = FastTwoSum(a, b)

1: if |b| ≥ |a| then
2: exchange a and b

3: end if

4: s← a+ b

5: z ← s− a
6: t← b− z

The floating-point number t is the error on the floating-point addition of a and b

if Algorithm 1 is executed with rounding to nearest. With another rounding mode

this error may not be exactly representable ([14] page 125). In [15], a condition

on a and b is given for the FastTwoSum algorithm to provide the exact error on

the floating-point addition of a and b with directed rounding. In this paper, we

aim at analysing the impact of the random rounding mode required by DSA on

Algorithm 1. Therefore in the rest of this section, any arithmetic operation in

Algorithm 1 is rounded using the fl* function defined in Section 2. The results

4 URL address: http://www.lip6.fr/cadna

4

http://www.lip6.fr/cadna

S. Graillat et al

given in this section have been established using Sterbenz’s lemma [16] which is

recalled below. As a remark, Sterbenz’s lemma is valid with directed rounding. In

the Propositions presented in Sections 4 and 5, we assume underflow may occur be-

cause, in this case, additions or subtrations generate no rounding error if subnormal

numbers are available [17].

Lemma 4.1 (Sterbenz) In a floating-point system with subnormal numbers avail-

able, if x and y are finite floating-point numbers such that y/2 ≤ x ≤ 2y, then x−y
is exactly representable.

In [15], it is shown that the floating-point number z in Algorithm 1 is computed

exactly with directed rounding. This property is also true with the random rounding

mode. This associated proof is detailed below for completeness.

Proposition 4.2 The floating-point number z provided by Algorithm 1 using di-

rected rounding is computed exactly, i.e. z = s− a.

Proof:

Let us distinguish two cases.

(i) a, b ≥ 0:

Because 0 ≤ b ≤ a,

a ≤ a+ b ≤ 2a (2)

From the monotonicity of the fl* function we deduce

a ≤ fl*(a+ b) ≤ 2a (3)

Then

a ≤ s ≤ 2a (4)

Therefore, according to Sterbenz’s lemma, z = s− a.

(ii) a ≥ 0, b ≤ 0:
• if −b ≥ a

2 , then

a ≥ −b ≥ a

2
(5)

So a− (−b) is exactly representable because of Sterbenz’s lemma. Therefore

s = a+ b which implies z = s− a.
• if −b < a

2 , then

0 ≥ b > −a
2

(6)

Hence

a ≥ a+ b >
a

2
(7)

From the monotonicity of the fl* function we deduce

a ≥ s ≥ a

2
(8)

Therefore, from Sterbenz’s lemma, z = s− a.

The two cases a, b ≤ 0 and a ≤ 0, b ≥ 0, have a similar proof mainly using −a
and −b. 2.

5

S. Graillat et al

In general the correction t computed by Algorithm 1 using directed rounding is

different from the rounding error e on the sum of a and b. We establish below a

relation between t and e.

Proposition 4.3 Let s and t be the floating-point addition of a and b and the

correction both computed by Algorithm 1 using directed rounding. Let e be the error

on s: a+ b = s+ e. Then

|e− t| ≤ 2u|e|.

Proof:

From Proposition 4.2, z is computed exactly. However with directed rounding,

t may not be computed exactly. So δ ∈ R exists such that

t = b− z + δ (9)

and

|δ| ≤ 2u|b− z|. (10)

From Proposition 4.2, we deduce

|δ| ≤ 2u|a+ b− s| (11)

Let e be the error on the floating-point addition of a and b, then

a+ b = s+ e (12)

with

|e| ≤ 2u|a+ b|. (13)

From Equations (11) and (12), we deduce a bound on |δ| = |e− t|:

|δ| ≤ 2u|e| (14)

2.

5 Compensated summation with faithful rounding

The classic algorithm for computing summation is the recursive Algorithm 2.

Algorithm 2 Summation of n floating-point numbers p = {pi}
function res = Sum(p)

1: s1 ← p1

2: for i = 2 to n do

3: si ← si−1 + pi
4: end for

5: res← sn

If we denote by s =
∑n

i=1 pi the exact summation, S =
∑n

i=1 |pi| and res the

computed summation, it is possible to show [7] that |s − res| ≤ γn−1(2u)|S| with

directed roundings. This accuracy is sometimes not sufficient in practice. Indeed,

6

S. Graillat et al

when the condition number |s|/S is large (greater than 1/u) then the recursive

algorithm does not even return one correct digit.

In Figure 1 and Algorithm 3 [8], a compensated scheme to evaluate the sum

of floating-point numbers is presented, i.e. the error of individual summation is

somehow corrected. Indeed, with Algorithm 1 (FastTwoSum), one can compute the

rounding error. Algorithm 1 can be cascaded and sum up the errors to the ordinary

computed summation.

?

?

?

- -

? ?

?

-

?

?

- - -

? ?

· · ·

p2 p3 pn−1 pn

q2 q3 qn−1 qn

π2 πn−1 πnπn−2π3p1

⊕ ⊕· · ·⊕ ⊕

⊕

FastTwoSum FastTwoSum FastTwoSum FastTwoSum

Fig. 1. Compensated summation algorithm

Algorithm 3 Compensated summation of n floating-point numbers p = {pi}
function res = FastCompSum(p)

1: π1 ← p1

2: σ1 ← 0

3: for i = 2 to n do

4: [πi, qi]← FastTwoSum(πi−1, pi)

5: σi ← σi−1 + qi
6: end for

7: res← πn + σn

Assuming Algorithm 3 is executed with rounding to nearest, a bound on the

accuracy of the result, established in [8], is recalled in Proposition 5.1.

Proposition 5.1 Let us suppose Algorithm FastCompSum is applied, with rounding

to nearest, to floating-point numbers pi ∈ F, 1 ≤ i ≤ n. Let s :=
∑
pi and

S :=
∑
|pi|. If nu < 1, then

|res− s| ≤ u|s|+ γ2
n−1(u)S with γn(u) =

nu

1− nu
. (15)

We aim at analysing the effects of the random rounding mode on Algorithm 3.

In [15], the impact of directed rounding on compensated summation is presented.

However the algorithm considered in [15] is slightly different from Algorithm 3.

Moreover in [15], the summation is assumed to be performed using one rounding

mode, whereas DSA requires frequent changes of the rounding mode. If Algorithm 3

is executed with the random rounding mode, then the EFT are no more exact.

However it is shown in Proposition 5.2 that the accuracy obtained with directed

rounding is similar to the one given in Proposition 5.1. Because in the proof of

7

S. Graillat et al

Proposition 5.1, rounding mode changes are allowed, we have an upper bound on

the error generated by Algorithm 3 with DSA. As a remark, in this paper, u has

a constant value independent of the roundind mode and previously mentioned in

Section 2.

Proposition 5.2 Let us suppose Algorithm FastCompSum is applied, with directed

rounding, to floating-point numbers pi ∈ F, 1 ≤ i ≤ n. Let s :=
∑
pi and S :=∑

|pi|. If nu < 1
2 , then

|res− s| ≤ 2u|s|+ 2(1 + 2u)γ2
n(2u)S with γn(2u) =

2nu

1− 2nu
. (16)

Proof:

Let ei be the error on the floating-point addition of πi−1 and pi (i = 2, ..., n):

πi + ei = πi−1 + pi (17)

From Proposition 4.3,

|ei − qi| ≤ 2u|ei| (18)

Because s is the exact addition of the n floating-point numbers pi and πn is the

associated floating-point addition,

s =
n∑
i=1

pi = πn +
n∑
i=2

ei (19)

The error on the floating-point number res computed using Algorithm 3 with

the random rounding mode is

|res− s| = |fl*(πn + σn)− s| (20)

Therefore

|res− s| = |(1 + ε)(πn + σn)− s| with |ε| ≤ 2u (21)

and

|res− s| = |(1 + ε)(πn + σn − s) + εs| (22)

From Equation (19),

|res− s| = |(1 + ε)(σn −
n∑
i=2

ei) + εs| (23)

Therefore

|res− s| ≤ (1 + 2u)|σn −
n∑
i=2

ei|+ 2u|s| (24)

Let us evaluate an upper bound on |σn −
∑n

i=2 ei|.

|σn −
n∑
i=2

ei| ≤ |σn −
n∑
i=2

qi|+ |
n∑
i=2

qi −
n∑
i=2

ei| (25)

8

S. Graillat et al

The error on σn is [7]

|σn −
n∑
i=2

qi| ≤ γn−2(2u)
n∑
i=2

|qi| (26)

From Equation (18),

|
n∑
i=2

qi −
n∑
i=2

ei| ≤ 2u
n∑
i=2

|ei| (27)

Therefore from Equations (26) and (27),

|σn −
n∑
i=2

ei| ≤ γn−2(2u)

n∑
i=2

|qi|+ 2u

n∑
i=2

|ei| (28)

Let us first evaluate an upper bound on
∑n

i=2 |ei| and then an upper bound on∑n
i=2 |qi|. Let us show by induction that

n∑
i=2

|ei| ≤ γn−1(2u)

n∑
i=1

|pi| (29)

From Equation (17), we deduce that if n = 2,

π2 + e2 = π1 + p2 and π1 = p1 (30)

Therefore

|e2| ≤ γ1(2u) (|p1|+ |p2|) (31)

Let us assume that Equation (29) is true for n and that an extra floating-point

number pn+1 is added. Then

πn+1 = fl*(πn + pn+1) (32)

πn+1 = fl*

(
n+1∑
i=1

pi

)
(33)

From [7],

|πn+1| ≤ (1 + γn(2u))
n+1∑
i=1

|pi| (34)

Let en+1 be the error on the floating-point addition of πn and pn+1:

πn+1 + en+1 = πn + pn+1 (35)

From Equation (34),

|en+1| ≤ 2u|πn+1| ≤ 2u (1 + γn(2u))

n+1∑
i=1

|pi| (36)

9

S. Graillat et al

Hence, assuming that Equation (29) is true for n,

n+1∑
i=2

|ei| ≤ (γn−1(2u) + 2u(1 + γn(2u)))
n+1∑
i=1

|pi| (37)

From Proposition 8.1 in the appendix, we deduce

n+1∑
i=2

|ei| ≤ γn(2u)
n+1∑
i=1

|pi| (38)

Therefore by induction Equation (29) is true.

Let us evaluate an upper bound on
∑n

i=2 |qi|:

n∑
i=2

|qi| ≤
n∑
i=2

|ei|+
n∑
i=2

|qi − ei| (39)

From Equations (18) and (29),

n∑
i=2

|qi| ≤ γn−1(2u)

n∑
i=1

|pi|+ 2u

n∑
i=2

|ei| (40)

From Equation (29),

n∑
i=2

|qi| ≤ γn−1(2u)
n∑
i=1

|pi|+ 2uγn−1(2u)
n∑
i=1

|pi| (41)

Therefore
n∑
i=2

|qi| ≤ (γn−1(2u) + 2uγn−1(2u))

n∑
i=1

|pi| (42)

From Proposition 8.2 in the appendix, we deduce

n∑
i=2

|qi| ≤ γn(2u)
n∑
i=1

|pi| (43)

From Equations (28), (29) and (43), we deduce

|σn −
n∑
i=2

ei| ≤ γn−2(2u)γn(2u)

n∑
i=1

|pi|+ 2uγn−1

n∑
i=1

|pi| (44)

Therefore

|σn −
n∑
i=2

ei| ≤ (γn−2(2u)γn(2u) + 2uγn−1(2u))
n∑
i=1

|pi| (45)

From Proposition 8.3 in the appendix, we deduce

|σn −
n∑
i=2

ei| ≤ 2γ2
n(2u)

n∑
i=1

|pi| (46)

10

S. Graillat et al

Therefore, from Equations (24) and (46),

|res− s| ≤ 2u|s|+ 2(1 + 2u)γ2
n(2u)

n∑
i=1

|pi| (47)

2.

6 Numerical results

In the numerical experiment presented here, the sum of 200 randomly generated

floating-point numbers is computed in double precision with the CADNA library

using the Sum and the FastCompSum algorithms. In Figure 2, one can observe the

number of exact significant digits of the results estimated by CADNA from Equa-

tion (1). Using the Sum algorithm, if the condition number increases, the number

of exact significant digits of the result decreases and the result has no more correct

digit for condition numbers greater than 1015. Using the FastCompSum algorithm,

as long as the condition number is less than 1015, the compensated summation

algorithm produces results with the maximal accuracy (15 exact significant digits

in double precision). For condition numbers greater than 1015, the accuracy de-

creases and there is no more correct digit for condition numbers greater than 1030.

The results provided by CADNA are consistent with well known properties of com-

pensated summation algorithms [7]: with the current precision, the FastCompSum

algorithm computes results that could have been obtained with twice the working

precision.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 100000 1e+10 1e+15 1e+20 1e+25 1e+30 1e+35 1e+40

n
u
m

b
e
r

o
f

e
x
a
ct

 s
ig

n
ifi

ca
n
t

d
ig

it
s

condition number

Sum
FastCompSum

Fig. 2. Accuracy estimated by CADNA using the Sum and the FastCompSum algorithms with 200 randomly
generated floating-point numbers

The number of numerical instabilities detected during the execution depends on

the condition number. These numerical instabilities are of various types:

• using the Sum algorithm,

· cancellation (subtraction of two very close values which generates a sudden loss

of accuracy)

11

S. Graillat et al

• using the FastCompSum algorithm,

· cancellation

· unstable branching (due to a non significant difference between the operands in

a relational test)

· non significant argument in the absolute value function.

Because no multiplication and no division is performed, no instability related to

the self-validation of DSA can be detected.

Table 1 presents the execution times for the sum of 100 000 floating-point num-

bers computed in double precision. Execution times have been measured with and

without CADNA on an Intel Core 2 quad Q9550 CPU at 2.83 GHz using g++

version 4.8.3. The code has been run using CADNA with two kinds of instability

detection:

• the detection of all kinds of instabilities;

• no detection of instabilities. With this mode, the execution time can be considered

the minimum that can be obtained whatever instability detection chosen. This

mode is usually not recommended because it does not enable the self-validation

of DSA. However, as previously mentioned, using summation algorithms, no in-

stability can invalidate the estimation of accuracy.

From Table 1 the cost of the FastCompSum algorithm over the classic summation

is about 6 without CADNA and varies from 4 to 9 with CADNA, depending on the

level of instability detection. The cost of CADNA in terms of execution time varies

from 10 to 15 if no instability detection is activated. This overhead is higher if any

instability is detected because of the heavy cost of the cancellation detection.

Sum

execution instability detection execution time (s) ratio

IEEE - 3.25E-04 1

CADNA all instabilities 1.40E-02 43.2

no instability 3.40E-03 10.5

FastCompSum

execution instability detection execution time (s) ratio

IEEE - 2.00E-03 1

CADNA all instabilities 6.11E-02 30.6

no instability 2.98E-02 14.9

Table 1
Execution times with and without CADNA for the sum of 100 000 floating-point numbers

12

S. Graillat et al

7 Conclusion and perspectives

In this article, we have shown that we can validate compensated summation based

on the FastTwoSum algorithm with discrete stochastic arithmetic even if EFT are

not valid as we use directed rounding modes. In a future article, we will generalize

this analysis to other EFT like TwoSum and TwoProduct. Then we will see if we

can still use discrete stochastic arithmetic for validating compensated algorithms

for dot product and polynomial evaluation (compensated Horner scheme).

Acknowledgement

The authors wish to thank EDF (Electricité De France) for its financial support.

References

[1] F. Jézéquel and J.-M. Chesneaux. CADNA: a library for estimating round-off error propagation.
Computer Physics Communications, 178(12):933–955, 2008.

[2] J. Vignes. Discrete Stochastic Arithmetic for validating results of numerical software. Numerical
Algorithms, 37(1–4):377–390, December 2004.

[3] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. IEEE Standard 754-2008,
August 2008.

[4] J.-M. Chesneaux, S. Graillat, and F. Jézéquel. Encyclopedia of Computer Science and Engineering,
volume 4, chapter Rounding Errors, pages 2480–2494. Wiley, 2009.

[5] W. Kahan. Further remarks on reducing truncation errors. Comm. ACM, 8:40, 1965.

[6] D. M. Priest. On Properties of Floating Point Arithmetics: Numerical Stability and the Cost of
Accurate Computations. PhD thesis, Mathematics Department, University of California, Berkeley,
CA, USA, November 1992. ftp://ftp.icsi.berkeley.edu/pub/theory/priest-thesis.ps.Z.

[7] N.J. Higham. Accuracy and stability of numerical algorithms. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, second edition, 2002.

[8] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product. SIAM J. Sci. Comput., 26(6):1955–
1988, 2005.

[9] T.J. Dekker. A floating-point technique for extending the available precision. Numerische Mathematik,
18(3):224–242, 1971.

[10] J. Vignes. A stochastic arithmetic for reliable scientific computation. Mathematics and Computers in
Simulation, 35:233–261, 1993.

[11] J.-M. Chesneaux. L’arithmétique stochastique et le logiciel CADNA. Habilitation à diriger des
recherches, Université Pierre et Marie Curie, Paris, France, November 1995.

[12] J. Vignes. Zéro mathématique et zéro informatique. Comptes Rendus de l’Académie des Sciences -
Series I - Mathematics, 303:997–1000, 1986. also: La Vie des Sciences, 4 (1) 1-13, 1987.

[13] J.-M. Chesneaux and J. Vignes. Les fondements de l’arithmétique stochastique. Comptes Rendus de
l’Académie des Sciences - Series I - Mathematics, 315:1435–1440, 1992.

[14] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol,
D. Stehlé, and S. Torres. Handbook of Floating-Point Arithmetic. Birkhäuser, Boston, 2010.

[15] J. Demmel and H. D. Nguyen. Fast reproducible floating-point summation. In 21st IEEE Symposium
on Computer Arithmetic, Austin, TX, USA, April 7-10, pages 163–172, 2013.

[16] P.H. Sterbenz. Floating-point computation. Prentice-Hall series in automatic computation. Prentice-
Hall, 1973.

[17] J.R. Hauser. Handling floating-point exceptions in numeric programs. ACM Trans. Program. Lang.
Syst., 18(2):139–174, 1996.

13

ftp://ftp.icsi.berkeley.edu/pub/theory/priest-thesis.ps.Z

S. Graillat et al

8 Appendix

The same notations as in Section 2 are used. We consider a precision-p binary

floating-point system. Let u = 2−p and γn(2u) = 2nu
1−2nu . Let us assume that

nu < 1
2 .

Proposition 8.1

γn−1(2u) + 2u(1 + γn(2u)) ≤ γn(2u) (48)

Proof:

γn−1(2u) ≤ 2(n− 1)u

1− 2nu
(49)

and

2u(1 + γn(2u)) =
2u

1− 2nu
(50)

Therefore from Equations (49) and (50), we deduce

γn−1(2u) + 2u(1 + γn(2u)) ≤ 2nu

1− 2nu
(51)

2.

Proposition 8.2

γn(2u) + 2uγn(2u) ≤ γn+1(2u) (52)

Proof:

Because nu < 1
2 ,

γn(2u) <
1

1− 2nu
(53)

Therefore

γn(2u) + 2uγn(2u) < γn(2u) +
2u

1− 2nu
(54)

and

γn(2u) + 2uγn(2u) <
2(n+ 1)u

1− 2nu
(55)

Therefore we can deduce Equation (52). 2.

Proposition 8.3

γn−2(2u)γn(2u) + 2uγn−1(2u) ≤ 2γ2
n(2u) (56)

Proof:

γn(2u)− 2u =
2nu− 2u + 4nu2

1− 2nu
(57)

Because 1− 2nu > 0 and 2nu + 4nu2 > 2u, γn(2u)− 2u > 0.

Therefore

2u < γn(2u) (58)

Furthermore, because γn−1(2u) ≤ γn(2u), we can deduce Equation (56). 2.

14

	Introduction
	Definitions and notations
	Principles of Discrete Stochastic Arithmetic (DSA)
	FastTwoSum with faithful rounding
	Compensated summation with faithful rounding
	Numerical results
	Conclusion and perspectives
	References
	Appendix

