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Abstract

Scientific computation has unavoidable approximations built into its very fabric.
One important source of error that is difficult to detect and control is round-off
error propagation which originates from the use of finite precision arithmetic. We
propose that there is a need to perform regular numerical ‘health checks’ on scientific
codes in order to detect the cancerous effect of round-off error propagation. This
is particularly important in scientific codes that are built on legacy software. We
advocate the use of the CADNA library as a suitable numerical screening tool. We
present a case study to illustrate the practical use of CADNA in scientific codes that
are of interest to the Computer Physics Communications readership. In doing so we
hope to stimulate a greater awareness of round-off error propagation and present a
practical means by which it can be analyzed and managed.
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1 Introduction

Computer Physics Communications has, since its inception over thirty-five
years ago, had a particular focus on the publication of descriptions of computer
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programs. Indeed, in the journal’s first paper [1], published in 1969 and entitled
“The publication of scientific Fortran programs”, Keith Roberts 2 proposed a
collection of general principles that he regarded as necessary if an international
library of published scientific programs was to be successfully established. It
was largely on these principles that the CPC Program Library was founded
and more than three decades later, with a library of over 2,000 published
programs, it continues to develop and expand.

The principles elucidated were practical and, for the most part, remain valid
today. They require, for example, that published programs should be intelli-
gible, portable, efficient, adaptable, modular and properly documented. How-
ever, one principle, verification, remains elusive. Robert’s suggestion, that
“The scientific community should always be able to verify that a published
program will produce correct results, or that a published calculation is correct,
in the same way that it can check the truth of scientific theorems or experimen-
tal measurements.”, is a tall order for scientific software. Indeed the principle,
as stated, is ambiguous since it needs to be clarified whether the results are
acceptable in relation to the real world, the mathematical model or the com-
putational model.

Many CPC programs are large software systems developed to enable virtual
experiments to be conducted on some physical system. The development pro-
cess, extending from the physical world to the mathematical model, then to
the computational model and finally to the computer implementation, in-
volves a number of approximations: physical effects may be discarded, con-
tinuous functions replaced by discretized ones and real numbers replaced by
finite precision representations. In consequence, approximation is woven into
the very fabric of scientific software and cannot be eliminated. Unfortunately,
despite developments in software engineering, there is every reason to believe
that the comment made by Leslie Fox in 1971 [2] is still valid today, “I have
little doubt that about 80 per cent of all the results printed from the computer
are in error to a much greater extent than the user would believe . . . ”. It is
incumbent, therefore, on the computational scientist to understand the source
and propagation of these errors and to manage them judiciously. The theme of
accuracy and reliability in scientific computation has recently been explored
and is amplified in [3].

One important source of error that is both esoteric and difficult to manage
originates from the use of finite precision arithmetic. It is well known that
the floating-point arithmetic commonly used in scientific computing only ap-
proximates exact arithmetic. Arithmetic expressions are no longer associative,
commutative and distributive. More important, the evaluation of most arith-

2 who was a founding Specialist Editor of CPC and its Principal Editor from 1980
until his death in 1985.
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metic expressions generates a round-off error. It is not uncommon to find that
the same code, using the same data, produces different results when executed
on different platforms 3 . Indeed, the same code, using the same data, on the
same computer can produce different results if the rounding mode is changed.
Potentially these errors can occur with each variable assignment and for each
arithmetic operation. This problem is exacerbated in a supercomputing envi-
ronment where trillions of floating-point operations may be performed every
second and in a Grid environment where the overall computation may in-
volve contributions from many heterogeneous platforms each with potentially
different round-off characteristics.

The propagation of these errors must be addressed to avoid the production
of computed results with few or no significant digits. In particular, numerical
verification is required to give confidence that the computed results are ac-
ceptable. However, in the absence of suitable tool support this is a practical
impossibility for large codes and refuge is normally taken in the unstable shel-
ter of extended precision, in the hope that accuracy will be maintained. The
following problem proposed by S. M. Rump [4] demonstrates the precarious-
ness of this position.

Consider the following innocuous looking function,

f(x, y) = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8 + x/(2y), (1)

to be evaluated at x = 77617 and y = 33096.

A Fortran implementation of Eq. (1), executed on an Itanium processor using
the Intel ifort compiler(v9.0.021), in single, double and quadruple precision
produces the results shown in Table 1.

The first three entries might lead the unwary to conclude that the single
precision result is incorrect and that the double precision result is accurate to
14 decimal digits. In fact all three results are incorrect, not only in the first
digit but also in the sign. The correct result, which lies within the small interval
displayed in the fourth entry of Table 1, was obtained using variable precision
interval arithmetic (VPIA) [5] with about 40 decimal digits of accuracy.

This example illustrates that round-off error can seriously compromise the re-
liability of a fixed precision floating-point computation. Further, an indication
of the seriousness of the error cannot always be obtained simply by observing
floating-point results at increased precision. For large scientific programs, such

3 even when each platform conforms to the IEEE 754 floating-point standard. Vari-
ations can occur because of compiler optimization, use of extended precision and
behaviour of intrinsic functions.
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Table 1
The computation of f(x, y) = 333.75y6+x2(11x2y2−y6−121y4−2)+5.5y8+x/(2y)
using Fortran, variable precision interval arithmetic, and CADNA.

Method f(77617, 33096)

Fortran : single precision 6.3382530× 1029

Fortran : double precision 1.17260394005318

Fortran : quad precision 1.17260394005317863185883490452018

V PIA [−0.827396059946821368141165095479816292005,

−0.827396059946821368141165095479816291986]

CADNA : single precision @.0

CADNA : double precision @.0

as those published in Computer Physics Communications, a numerical ‘health
check’ is strongly recommended. This is particularly important in codes that
rely on legacy software that has outlived its original hardware and its creators.
Often when available computing resources are increased the computational
scientist increases the problem size perhaps, inadvertently, rendering legacy
routines unfit for purpose because of the unseen, cancerous effect of round-off.
Ideally, we seek a numerical screening tool that will:

• report gradual and catastrophic loss of precision;
• report the accuracy of intermediate and final results;
• be of acceptable efficiency; and
• be non invasive to the source code.

The terms accuracy and precision are frequently used inconsistently. It is
appropriate therefore to clarify what we mean by them. In general terms, the
accuracy of a computation determines how close the computation comes to
the true mathematical value. It indicates, therefore, the correctness of the
result. The precision of a computation reflects the exactness of the computed
result without reference to the meaning of the computation. It is, therefore,
the number of significant digits not affected by round-off error. For example,
the number, 3.1428571 has eight decimal digit precision, irrespective of what
it represents. If this number represents 22/7 then it is also accurate to eight
decimal digits but if it represents the irrational number π then it is accurate
only to three decimal digits.

Several methods and tools have been developed over the years to analyze
round-off error propagation. These include direct analysis [6], inverse analysis
[7], methods based on algorithmic differentiation [8], interval arithmetic [9],
Monte Carlo arithmetic [10] and tools such as PRECISE (PRecision Estima-
tion and Control In Scientific and Engineering computing) [11].
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Each of these methods and tools has strengths and weaknesses and each has
made an important contribution to the field. However, it is not the purpose
of this paper to compare and contrast them. Rather we focus on the CES-
TAC method (Contrôle et Estimation Stochastique des Arrondis de Calculs)
[12] and its associated tool, CADNA (Control of Accuracy and Debugging for
Numerical Applications) [13]: a library designed to assist in numerical verifica-
tion and, in particular, to estimate precisely the computing error in computer
generated results i.e. to estimate of the number of common significant figures
between the computed result and the exact result 4 . The use of CADNA is
illustrated in the last two lines of Table 1. When the CADNA version of the
Fortran program is executed it outputs a computational zero, denoted by @.0,
in both single and double precision. This indicates clearly, that in both cases,
the answer contains no digits that are not affected by round-off, the result is
just numerical noise.

An objective of this paper is to stimulate a greater awareness of round-off
error propagation in scientific computation and to illustrate a practical means
by which it can be analyzed and managed. The main thrust of the paper is
presented in §3 where we illustrate how CADNA can be used to perform a
numerical ‘health check’ on scientific codes of the type published in Computer
Physics Communications. We go beyond the numerical ‘health check’ in §4
to demonstrate how CADNA can be used in a proactive way to compute
benchmark results by controlling both the truncation error of the approximate
numerical method and the round-off error. Finally, in §5 we assess CADNA
against the screening tool criteria mentioned earlier in this section.

To use any tool effectively the user must have some appreciation of the ideas
that underpin it. For this reason we begin by presenting background material
on the philosophy behind CADNA.

2 CADNA

The CADNA library is an implementation of discrete stochastic arithmetic
(DSA), which is based on the CESTAC method. Before describing the CADNA
library it is necessary to provide some background by giving a brief outline of
the CESTAC method and DSA from the perspective of a CADNA user.

4 A new open source version of the CADNA library is being prepared for publication
in Computer Physics Communications.
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2.1 The CESTAC methodology

Where no overflow occurs, the exact result, r, of any non exact floating-point
arithmetic operation is bounded by two consecutive floating-point values R−

and R+.

The basic idea of the method is to perform each arithmetic operation N times,
randomly rounding each time, with a probability of 0.5, to R− or R+. The com-
puter’s deterministic arithmetic, therefore, is replaced by a stochastic arith-
metic where each arithmetic operation is performed N times before the next
arithmetic operation is executed, thereby propagating the round-off error dif-
ferently each time. This is the essence of the CESTAC method [14,15]. The
method furnishes us with N samples, Ri, of the computed result R. The value
of the computed result, R, is the mean value of {Ri} and the number of exact
significant digits in R, CR, is estimated using the mean value and the standard
deviation of {Ri}.

It has been proved that the validity of CR is compromised if the two operands
in a multiplication or the divisor in a division are not significant. It is essen-
tial, therefore, that any computed result with no significance is detected and
reported, since its subsequent use may invalidate the method. The need for this
dynamical control of multiplications and divisions has led to the concept of
the computational zero [16].

A computed result, R, is a computational zero, denoted by @.0, if and only if
one of the following two conditions holds:

(1) ∀i, Ri = 0 i = 1, . . . , N
(2) CR ≤ 0

This means that a computational zero is either a mathematical zero or a
number without any significance i.e. numerical noise.

To establish consistency between the arithmetic operators and the relational
operators discrete stochastic relations are defined as follows. Let X and Y be
two computed results. Then discrete stochastic relations are defined as:

X = Y ifX − Y = @.0, (2)

X > Y ifX > Y and X − Y 6= @.0, (3)

X ≥Y ifX ≥ Y or X − Y = @.0. (4)

These definitions take into account the numerical noise and allow the recovery
of some coherence between relational and arithmetic operations [17,18].
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Discrete Stochastic Arithmetic (DSA) is simply the combination of the CES-
TAC method, the concept of the computational zero and the discrete stochas-
tic relationships.

2.2 The CADNA library

The CADNA library is an implementation of DSA devoted to programs writ-
ten in ADA, C, C++ and Fortran. In this paper we focus on the Fortran
implementation which is a set of data types, functions and subroutines that
may be easily incorporated into any Fortran program. In essence, Fortran
types are replaced by the corresponding stochastic types. A stochastic num-
ber is an N-dimensional set containing the perturbed floating-point values. In
practice, the floating-point values R− and R+ are obtained using the rounding
modes towards −∞ and +∞ defined in the IEEE 754 standard [19]. N is set
to 3 with the first two rounding modes chosen at random and the third set
to the opposite of the second. Interested readers are advised to consult [20]
where the choices concerning the value of N and the random rounding mode
are justified. Arithmetic operators, logical operators, all the standard intrinsic
functions 5 and some vector operations have been overloaded so that when an
operator is used the operands are triplets and the returned result is a triplet.
The print statement has been modified, through a special function str, to
output the computed result, R , only with its exact number of significant dig-
its, CR. A related special function, cestac, takes a stochastic argument and
returns an integer giving the current number of exact significant digits in the
stochastic argument. Input data and variables that are set to literal values
will often not be exact floating-point values e.g. x = 0.1. Such values can, and
should, be perturbed using the CADNA function data st(x).

During execution, when a numerical anomaly is detected, dedicated CADNA
counters are incremented. At the end of the run, the value of these counters
together with appropriate warning messages are printed on standard output.
These warnings are of two types.

(1) Warnings concerning the validity of the CADNA results. These include:
unstable multiplication where the two operands are computational zeroes;
unstable power, where the operand of the power function is a computa-
tional zero; and unstable division were the divisor is a computational
zero.

(2) Warnings concerning numerical instabilities. These instabilities can oc-
cur in overloaded functions such as SIGN, MOD, DIM, LOG, SIN or in
branching statements involving a computational zero. A numerical insta-

5 as defined by the F77 standard.
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bility is also reported in the case of a cancellation, i.e. the subtraction of
two very close values which generates a sudden loss of precision.

At the end of the run, each type of anomaly together with their occurrences
are printed. If no anomaly has been detected the computed results are reli-
able and the precision of each has been correctly estimated up to a certain
probability. If anomalies have been detected two cases need to be considered.
Warnings of type (1) indicate that the validity of CR has been compromised
and the CADNA results cannot be relied on. Warnings of type (2) means that
numerical instabilities have been detected. In both cases the messages need to
be analyzed, the source of the anomaly identified and, if necessary, the code
changed.

Numerical debugging can be performed using a symbolic debugger such as
gdb. A breakpoint needs to be set to detect each call of the CADNA instability
function. The name of this function depends on the system and the compiler.
Under Unix this name can be detected using the following statement.

nm ‘name_of_binary’ | grep unstability

Using gdb under Linux the following statement will output a trace of all
instabilities to the file gdb.out.

gdb ‘name_of_binary’ < gdb.in > gdb.out &

where gdb.in contains

break unstability_

run

while 1

where

cont

end

In these instructions where prints a complete trace of the instability that
stopped the run and cont causes execution to resume.

Normally the use of the CADNA library in a Fortran program involves the
following six steps.

(1) Declaration of the CADNA library to the compiler via use cadna. This
use statement is required after each PROGRAM, MODULE, SUBROUTINE and
FUNCTION statement.

(2) Initialization of random arithmetic and other internal parameters of
CADNA via call cadna init. This is called once after the main pro-
gram declaration statements. The first argument of the cadna init func-
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tion is the maximum number of instabilities which will be detected. The
other arguments are optional.

(3) Substitution of the type REAL and DOUBLE PRECISION by
type(single st) and type(double st), respectively.

(4) Use of the function data st to perturb input data if required. Care must
also be taken not to read floating-point file data directly into stochastic
variables which accommodate three file values. Rather the file data must
be read into an appropriate Fortran type such as REAL and then assigned
to the stochastic variable.

(5) Change of output statements to print stochastic results to exact precision
using str.

(6) Print the results of the anomaly detection via call cadna end().

These steps are illustrated below for a double precision Fortran implementa-
tion of a program to evaluate of the function given in Eq. (1). The CADNA
statements are shown as comments.

PROGRAM f

!use cadna

double precision :: y,x,res !type(double_st) :: y,x,res

!call cadna_init(100)

x=77617d0

y=33096d0

res=333.75*y*y*y*y*y*y+x*x*(11*x*x*y*y-y*y*y*y*y*y- &

121*y*y*y*y-2.0)+5.5*y*y*y*y*y*y*y*y+x/(2*y)

print *, res ! print *, str(res)

! call cadna_end()

END PROGRAM f

In this case, the data st function is not used to perturb x and y because the
chosen values are exactly represented.

3 Numerical ‘health check’ case study

We now present our experience of using the CADNA library to give a numerical
‘health check’ to 2DRMP. This suite of two-dimensional R-matrix propagation
programs [21,22] is aimed at creating virtual experiments on HPC [23,24] and
Grid architectures [25,26] in order to study electron scattering from H-like
atoms and ions at intermediate energies.

The essence of the technique is as follows. The two-electron configuration
space (x1, x2) is divided into square sectors as illustrated in Fig.1. The two-
electron wavefunction describing the motion of the target electron and the
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Fig. 1. Subdivision of the configuration space (x1, x2) into a set of connected sectors.

colliding electron is expanded within each sector in terms of one-electron basis
functions, {Pn,l}, that are eigenfunctions of the Schrödinger equation, solved
subject to certain fixed boundary conditions. The expansion coefficients are
determined by diagonalizing the corresponding Hamiltonian matrix. The R-
matrix may then be propagated across the sectors at each scattering energy
and the scattering properties of interest determined.

A critical component in the 2DRMP suite involves the construction of the
Hamiltonian matrices in each sector. In the case of diagonal sectors, computa-
tion of the two-electron part of the Hamiltonian matrix represents a significant
bottleneck [27]. This part of the Hamiltonian involves sums of products of two
dimensional radial integrals, termed a Slater integrals, and angular integrals.

Like many scientific codes 2DRMP is built on legacy routines developed over
many years. In this case use is made of radial and angular integral routines
developed for and used in the general R-matrix packages over the past three
decades [28–33].

Thus, given the importance of the radial and angular legacy routines and their
use in a new context we have subjected them to a CADNA ‘health check’. In
addition, since the radial integrals can only be computed using an approximate
quadrature method and the angular integrals are in closed form this allows us
to investigate the application of CADNA to approximate and finite methods
respectively. We begin by examining the radial integrals.

3.1 CADNA analysis of the radial integrals

Given solutions to the radial Schrödinger equation,

dPn,l(x)

dx2
=


 l(l + 1)

x2
− 2Z

x
− k2

n,l


Pn,l(x), x ∈ [a, b], (5)

subject to R-matrix boundary conditions [27], where n, l and Z represent the
principal quantum number, the orbital angular momentum (a nonnegative
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integer) and the electronic charge, respectively, the 2DRMP Slater integrals
take the form,

Iλ = J1,λ + J2,λ, (6)

with

J1,λ =
∫ b

a

∫ y

a
fλ(x, y)dxdy, (7)

fλ(x, y) =
Pn1,l1(y)Pn3,l3(y)

yλ+1
xλPn2,l2(x)Pn4,l4(x), x ∈ [a, y], (8)

J2,λ =
∫ b

a

∫ b

y
φλ(x, y)dxdy, (9)

φλ(x, y) = Pn1,l1(y)Pn3,l3(y)yλ Pn2,l2(x)Pn4,l4(x)

xλ+1
, x ∈ [y, b], (10)

and

max(|l1 − l3|, |l2 − l4|) ≤ λ ≤ min(l1 + l3, l2 + l4). (11)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14 16

P
_2

0,
4

x

Fig. 2. The function P20,4(x).

To compute the Slater integrals, 2DRMP uses a subroutine based on subrout-

ine rs taken from [29] 6 . To perform an initial numerical ‘health check’ on
subroutine rs involves instrumenting it with CADNA, following steps 1-6
as described in §2.2, and observing the output.

6 This subroutine uses Simpson’s Rule to compute the outer integral of Eqs. (7)
and (9) and a combination of the Trapezoidal Rule and Simpson’s Rule to compute
the inner integral of Eqs. (7) and (9).

11



Table 2
The computation of Iλ with λ ∈ {0, 2, 4, 6, 8} in double precision for the case a =
10−5, b = 15.0, n1 = 20, l1 = 4, n2 = 20, l2 = 4, n3 = 20, l3 = 4, n4 = 20,
l4 = 4 with CADNA and using 1025 equally spaced integration points. The method
to compute Iλ is described in §3.1.1 while the improved method to compute Iλ is
described in §3.1.2.

λ Iλ Iλ improved

0 0.1247937243912E + 000 0.1247936614595E + 000

2 0.471551365578E − 001 0.4715511531988E − 001

4 0.288813766E − 001 0.2888136383162E − 001

6 0.952431E − 002 0.2093430472201E − 001

8 0.3995087E + 002 0.1648754288096E − 001

Iλ with λ ∈ {0, 2, 4, 6, 8} was computed in double precision for the case a =
10−5, b = 15.0, n1 = 20, l1 = 4, n2 = 20, l2 = 4, n3 = 20, l3 = 4, n4 = 20,
l4 = 4, using 1025 equally spaced integration points 7 . This is a typical but
modest computation described in [27]. The function P20,4 is a smoothly varying
function as shown in Fig. 2 and thus can be assumed to be computed accurately
to required precision.

No anomaly was found, indicating that the stochastic values throughout the
code are reliable and the precision of each has been correctly estimated. The
computed values of Iλ are displayed in the second column of Table 2. Recalling
that CADNA only prints out those significant digits not affected by round-
off, this initial screening shows a loss of precision in Iλ for larger values of λ,
suggesting a round-off problem somewhere within subroutine rs.

To investigate further we used the CADNA cestac function to detect whether
there was any loss of precision in the intermediate results. This indicated that,
for the larger values of λ, there is a significant loss of precision in the inner
integral of J2,λ as y increases.

On examining the inner integral for the final case, J2,8,

g(y) =
∫ 15.0

y

Pn2,l2(x)Pn4,l4(x)

x9
dx, (12)

we observe the strange behaviour depicted in Fig. 3. The upper graph of Fig. 3
displays the number of significant digits in g(y) while the lower graph displays
g(y). In both figures, beyond approximately y = 3, the even points follow the

7 The number of integration points is not chosen on any rigorous criterion but on
experience. It represents a compromise between accuracy and efficiency: 1025 points
is expected to give a result accurate to about six figures. Doubling the number of
points gives one extra digit.
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Table 3
The computed value of g(y) =

∫ 15.0
y

Pn2,l2
(x)Pn4,l4

(x)

x9 dx at selected values of y.

i yi = a + (i− 1)h g(yi), using Eqs. (14-16) g(yi), using Eqs. (17-19)

380 5.55176411132801 0.2179550E − 006 0.104153303371283E − 007

381 5.56641253906239 0.103235E − 007 0.103234799220457E − 007

382 5.58106096679676 0.2177518E − 006 0.102120637691204E − 007

383 5.59570939453114 0.100807E − 007 0.100807385691787E − 007

. . . . . . . . . . . .

746 10.9130886621089 0.2075749E − 006 0.35254005852359E − 010

747 10.9277370898432 0.3474E − 010 0.34742269862922E − 010

748 10.9423855175776 0.2075739E − 006 0.34293770930925E − 010

749 10.9570339453120 0.3391E − 010 0.33907324325529E − 010

. . . . . . . . . . . .

1018 14.8974610058584 0.2075400E − 006 0.345211114012527E − 012

1019 14.9121094335928 0.30E − 012 0.300127939842871E − 012

1020 14.9267578613272 0.2075399E − 006 0.252902341589428E − 012

1021 14.9414062890616 0.2E − 012 0.204059815759057E − 012

upper dashed line while the odd points follow the lower solid one. Furthermore,
as y increases, the even points are computed to higher precision than the odd
ones, as shown by column three of Table 3. In fact, as the value of y approaches
15.0 the odd points have only a single digit that is not affected by round-off.

This might lead one to conclude that the even points are more accurate than
the odd ones. This, however, is the converse of the case and is a telling demon-
stration of the difference between accuracy and precision that was alluded to
in §1. Numerical quadrature is an approximate method that is affected both
by a truncation error in the method and by round-off error. These two sources
of error interfere differently in the computation of the even and the odd points.
As we shall see in the following section the truncation error is worse in even
points than that in odd points, but the round-off error is worse in odd points
than in even points. The odd points are therefore computed accurately to low
precision while the even points are computed inaccurately to higher precision.

While the values in Table 3 are small in magnitude we shall find in §3.1.2 that
their behaviour is indicative of a catastrophic error in the value of I8.
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Fig. 3. The inner integral of J2,8, g(y) =
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y

Pn2,l2
(x)Pn4,l4

(x)

x9 dx. The upper graph
displays the number of significant digits in g(y) and the lower graph displays g(y)
using a log scale on the y axis. In both graphs the even points are indicated by the
dashed line and odd points by the solid line.

3.1.1 Legacy algorithm to compute g(y) =
∫ b
y

Pn2,l2
(x)Pn4,l4

(x)

xλ+1 dx

The CADNA ‘health check’ has led us to conclude that there is a round-off
problem associated with the computation of g(y) defined by Eq. (12). To see
why, we need to analyse the legacy algorithm used by subroutine rs.

In the 1970s, for reasons of storage economy and computational efficiency, in-
ner integrals such as Eq. (12) were replaced by their mathematically equivalent
form,
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g(y) =
∫ b

a

Pn2,l2(x)Pn4,l4(x)

xλ+1
dx−

∫ y

a

Pn2,l2(x)Pn4,l4(x)

xλ+1
dx, (13)

and computed as follows,

g(y1) =
∫ b

y1

Pn2,l2(x)Pn4,l4(x)

xλ+1
dx, (14)

g(y2) = g(y1)−
∫ y2

y1

Pn2,l2(x)Pn4,l4(x)

xλ+1
dx, (15)

g(yi) = g(yi−2)−
∫ yi

yi−2

Pn2,l2(x)Pn4,l4(x)

xλ+1
dx 3 ≤ i ≤ k, (16)

with yk = b and y1 set to a. The integral in Eq. (14) is approximated using
a composite Simpson’s Rule, the integral in Eq. (15) is approximated using a
two-point Trapezoidal Rule and the integral in Eq. (16) is approximated using
a three-point Simpson’s Rule. This scheme is illustrated in Fig. 4 for g(y4).

By examining the integrand of Eq. (12),
Pn2,l2

(x)Pn4,l4
(x)

x9 , which is plotted in Fig.
5, the incorrect values of the even points in Fig. 3 can be seen to be influenced
by the use of the two-point Trapezoidal Rule to compute g(y2). This, as can
been seen from Fig. 5, is where the integrand climbs very steeply. Furthermore,
by examining the components of Eq. (16) using the cestac function we can
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Fig. 5. The integrand of the inner integral of J2,8: f(x) = P20,4P20,4

x9 .

see that, fortuitously, as y increases, the even points suffer less cancellation
during the subtraction than the odd points.

In summary, the even points of g(y) result from a poor algorithm that fortu-
itously suffers little loss of precision, while the odd points result from a better
algorithm that suffers a significant loss of precision. This behaviour becomes
more apparent with increasing λ. The round-off problem is exacerbated fur-
ther when g(y) is multiplied by yλ in Eq.(10). The errors towards the origin
are damped but, as y increases, the errors are amplified resulting in spurious
values for I6 and I8.

3.1.2 Improved algorithm to compute g(y) =
∫ b
y

Pn2,l2
(x)Pn4,l4

(x)

xλ+1 dx

An alternative algorithm is to compute g(y) =
∫ b
y

Pn2,l2
(x)Pn4,l4

(x)

xλ+1 dx directly,
but to construct it in the direction of decreasing y, not only for efficiency, but
more importantly because of the nature of the integrand shown in Fig. 5.

In this scheme,

g(yk) = 0.0, (17)

g(yk−1) =
∫ yk

yk−1

Pn2,l2(x)Pn4,l4(x)

xλ+1
dx, (18)

g(yi) = g(yi+2) +
∫ yi+2

yi

Pn2,l2(x)Pn4,l4(x)

xλ+1
dx, (19)

with yk = b and y1 set to a. This time the integral in Eq. (18) is approximated
using a two-point Trapezoidal Rule and the integral in Eq. (19) is approxi-
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Fig. 7. The inner integral of J2,8 using the improved algorithm:

g(y) =
∫ 15.0
y

Pn2,l2
(x)Pn4,l4

(x)

x9 dx, displayed on a log scale on the y axis.

mated using a three-point Simpson’s Rule. The two-point rule is now applied
to the smallest part of the integrand. This scheme is depicted in Fig. 6 for
g(y4), with k = 7 for illustration.

A CADNA ‘health check’ was performed on the implementation of the new
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algorithm. This time the values of the computed integral,

g(y) =
∫ 15.0

y

Pn2,l2(x)Pn4,l4(x)

x9
dx, (20)

display no erratic behaviour. This can be seen from Fig. 7. Furthermore, the
fourth column of Table 3, confirms that the computed results suffer no loss of
precision. Finally, comparison of the computed values of Iλ and Iλ improved,
in Table 2, shows a significant and disconcerting difference for the two cases
λ = 6 and λ = 8.

However, while the improved algorithm is computed to high precision how can
we be confident that the results are accurate? We are still using an approximate
method and CADNA is silent about the method’s truncation error. In §4 we
will use CADNA to minimize the global error and prove that these improved
values of Iλ are actually accurate to 6 significant figures. But first we turn our
attention to a CADNA ‘health check’ of the angular integrals.

3.2 CADNA analysis of the angular integrals

The two-electron angular integrals, fλ(l1, l2, l3, l4; L), are defined as follows,

fλ(l1, l2, l3, l4; L) = (−1)l1+l3+L

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)

2λ + 1
×W (l1, l2, l3, l4; L, λ)

×C(l1, l3, λ; 0, 0, 0)C(l2, l4, λ; 0, 0, 0), (21)

with

max(|l1 − l3|, |l2 − l4|) ≤ λ ≤ min(l1 + l3, l2 + l4). (22)

The orbital angular momenta, l1, l2, l3, l4, are integer values that satisfy the
following triangular relation with the system’s total angular momentum L,

|l1 − l3| ≤ L ≤ l1 + l3, (23)

|l2 − l4| ≤ L ≤ l2 + l4. (24)

The W (a, b, c, d; e, f) and C(j1, j2, j3; j4, j5, j6) coefficients are the well known
Racah and Clebsch-Gordan coefficients respectively. These coefficients are in
essence sums of products of factorials and are defined as closed form expres-
sions in Appendix A.
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Table 4
A selection of computed values of fλ(11, 11, 11, 11; 4), C(11, 11, λ; 0, 0, 0) and
W (11, 11, 11, 11; 4, λ).

λ fλ(11, 11, 11, 11; 4) C(11, 11, λ; 0, 0, 0) W (11, 11, 11, 11; 4, λ)

4 0.50813444080822E − 001 −0.236847553604108E + 000 0.15410887950933E − 001

8 −0.317795375791E − 001 −0.2438287246232E + 000 −0.17177940290068E − 001

12 −0.71409106455E − 002 −0.25662232592E + 000 −0.5124471257194E − 002

16 0.20770765E − 001 −0.281612934E + 000 0.1633825112085E − 001

22 0.5036E − 001 0.486E + 000 0.18122135513439E − 001

Computation of fλ(l1, l2, l3, l4; L) is an example of a finite computation that,
unlike an approximate method, is only affected by round-off. In this case a
CADNA ‘health check‘ will reveal not only the precision, but more important,
the accuracy of the computed result.

The legacy routines used to compute the Clebsch-Gordan and Racah coeffi-
cients are subroutine cg, from program STG2 [29], and subroutine dracah,
from program WEIGHTS [34], respectively. As before, these routines were in-
strumented with CADNA and the output observed. No anomaly was found,
again indicating that the stochastic values throughout the code are reliable
and the precision of each has been correctly estimated.

In Table 4 we present some results for Case 3 as defined in [27]. This is a
typical case that 2DRMP is expected to handle. This initial numerical health
screening shows immediately a significant loss of precision and accuracy in
fλ(11, 11, 11, 11; 4) as λ increases. Further investigation using CADNA reveals
that the cause of the problem is the computation of the Clebsch-Gordan co-
efficients.

The closed expressions in Appendix A can be implemented in different ways,
each resulting in different round-off behaviour. The legacy Clebsch-Gordan
routine implements Eq. (27) directly, making no attempt to control the round-
off error propagation associated with the multiplication and division of facto-
rial values. This is perfectly satisfactory for small values of angular momen-
tum, but, as can been seen from column three in Table 4, is wholly inadequate
for larger values of angular momentum. This can be seen more starkly if we
use subroutine cg to compute C(10, 30, 40; 2, 2, 4), an example taken from
[39]. The result is a computational zero, @.0, which means that there is no
significant digit.

The Racah legacy routine on the other hand does not implement Eq. (28)
directly, rather it employs the approach discussed by Wills [39] which recasts
Eq. (28) as Eq. (29). This approach removes factorials from the sum and
those factorials outside the sum are manipulated as ln(n!) rather than n!. This
approach is reliable for both large and small angular momenta. For example,
using subroutine dracah to compute W (35, 35, 40, 40 : 26, 45), an example
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taken from [40], we obtain the following result that is accurate to 11 significant
figures, −0.17868488177E − 002.

4 Beyond the ‘health check’: dynamical determination of the op-
timal step size

The purpose of this section is to illustrate how CADNA can be used in a proac-
tive way to establish benchmark results for the Slater integrals by dynamically
determining the optimal step size to minimize the truncation error.

When an approximate numerical method is used, a truncation error, e(h)m,
which depends on the chosen step size h, is generated in addition to the com-
puting error, e(h)c, which is due to round-off error propagation. From the
perspective of a computational scientist, the practical error of interest is the
global error e(h)g which combines e(h)m and e(h)c. As h increases e(h)m in-
creases and e(h)c decreases, but when h decreases e(h)m decreases and e(h)c

increases. These two sources of error counterbalance each other. Ideally we
wish to minimize the global error which occurs when ec(h) ≈ em(h). With
normal floating-point arithmetic this is not possible as we have no estimate of
ec(h): however, with CADNA it is possible. In effect, we generate a sequence
of approximations, In, halving the step size each time. When the difference be-
tween two successive iterations is a computational zero no further meaningful
computation can occur and we have achieved the optimal computed result for
the method using the finite precision available. We establish this procedure on
a solid mathematical foundation by recalling the following theorem that was
proved in [35].

Theorem 1 Let I(h) be an approximation of order p of an exact value I, i.e.
I(h)− I = Khp +O (hq) with 1 ≤ p < q, K ∈ R.

If In is the approximation computed with the step h0

2n , then CIn,In+1 =

CIn,I +log10

(
2p

2p−1

)
+O

(
2n(p−q)

)
, where Ca,b is the number of significant digits

common to a and b.

For the Trapezoidal Rule and Simpson’s Rule since p = 2 and q = 4 and p = 4
and q = 6, respectively [36], we obtain [37] for the Trapezoidal Rule,

CIn,In+1 = CIn,I + log10

(
4

3

)
+O

(
1

4n

)
, (25)

and for Simpson’s Rule,
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Table 5
Benchmark computation of Iλ with λ ∈ {0, 2, 4, 6, 8} in double precision for the case
a = 10−5, b = 15.0, n1 = 20, l1 = 4, n2 = 20, l2 = 4, n3 = 20, l3 = 4, n4 = 20,
l4 = 4. While the results are displayed to 11 exact significant digits, by virtue of
Theorem 1, the computed result is correct to 10 significant figures.

λ Iλ

0 0.12479372449E + 000

2 0.47155137140E − 001

4 0.28881377469E − 001

6 0.20934314687E − 001

8 0.16487550218E − 001

CIn,In+1 = CIn,I + log10

(
16

15

)
+O

(
1

4n

)
. (26)

This means that in a series of successive iterations of In, when the convergence
zone is reached 8 , the significant digits common to two successive approxima-
tions are also in common with the exact result I, up to one bit. This is because
the term log10

(
2p

2p−1

)
decreases as p increases and corresponds to one bit for

the worst case p = 1. As we are using a mixture of the Trapezoidal Rule and
Simpson’s Rule we expect p to lie between 2 and 4.

In practical terms, if computations are performed in the convergence zone,
until the difference between two successive approximations is a computational
zero then the significant bits of the last approximation not affected by round-
off errors are in common with the exact value of the integral, I, up to one
bit.

Approximations In(λ), for λ ∈ {0, 2, 4, 6, 8}, were computed in double preci-
sion for the case a = 10−5, b = 15.0, n1 = 20, l1 = 4, n2 = 20, l2 = 4, n3 = 20,
l3 = 4, n4 = 20, l4 = 4, until, for each λ, the difference | In(λ) − In+1(λ) |
had no exact significant digit. These values, which required 217 integration
steps, are presented in Table 5. While the CADNA function str prints 11
exact significant digits, by virtue of Theorem 1, only 10 are in common with
the exact result I(λ). Comparing Table 5 with Table 2 it is clear that the im-
proved algorithm using 1025 integration points produces results accurate to
six significant figures. This also confirms the catastrophic error in the original
algorithm for I6 and I8.

8 i.e. O (
2n(p−q)

)
becomes negligible.
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5 Conclusions

In this paper we have focused on the danger of round-off error propagation
in scientific codes, particularly in codes that employ legacy routines. We have
advocated and demonstrated the use of the CADNA library as a numerical
‘health check’ screening tool to help detect and control these errors. We now
evaluate CADNA again the numerical screening tool criteria identified in the
introduction.

• Report gradual and catastrophic loss of precision? We have demon-
strated that CADNA’s cestac and str functions and its concept of a com-
putational zero easily enables the detection and reporting of both gradual
and catastrophic loss of precision. We have observed that round-off error
can seriously diminish the precision of the results of a computation and
that the degree of damage cannot always be determined by repeating the
computation with a longer word length. However, by using the CADNA
library we can determine for each arithmetic and logical operation whether
a numerical anomaly has occurred and if not CADNA will provide defini-
tively the number of significant figures in the result that are not affected by
round-off. This is arguably CADNA’s greatest strength, rendering it a very
effective numerical screening tool for scientific programs.

• Report the accuracy of intermediate and final results? This criterion
presents CADNA with some difficulty. The problem is that approximate
numerical methods are subject to both round-off error and a truncation error
due to the computational method. We have illustrated a poor method that is
well computed and gives rise to an inaccurate result with a large number of
exact significant digits. Likewise, we have illustrated a better method that is
poorly computed and gives rise to a result that is more accurate with very
few significant digits. This emphasizes the important distinction between
accuracy and precision and shows that the CADNA library is silent about
the accuracy of approximate computational methods. Most scientific codes
will be constructed from a mix of finite, iterative and approximate methods.
The complex interaction and interference amongst their results means that
CADNA cannot automatically indicate the accuracy of intermediate and
final results. However, as we will see below CADNA can still be an effective
and useful tool when used proactively in a careful and controlled manner.

• Be of acceptable efficiency? It has been shown empirically [12] that
the use of stochastic triples is sufficient to provide estimations of round-off
errors that are perfectly realistic and not pessimistic. When used in ‘health
check’ mode the increase in execution time by a factor of at least three
is acceptable. However, it is unlikely to be acceptable in production runs,
except perhaps in safety-critical application areas, such as transportation
and nuclear-power generation, where performance may be outweighed by
safety.
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• Be non invasive to the source code? The use of overloaded operators
and the replacement of intrinsic types with derived stochastic types makes
the CADNA library straightforward to implement. However, in a large code
even this is tedious and error prone. Problems can arise when third party
software or libraries are used. For example, if LAPACK routines are used
these must also be instrumented with CADNA. Nevertheless, the benefits
gained significantly outweigh the inconvenience of instrumenting a source
code with CADNA.

In addition to using CADNA as a numerical ‘health check’ screening tool
we have also explored the use of CADNA in proactive way. Some further
comments are pertinent here.

In normal floating-point arithmetic iterative methods are typically terminated
when the difference between two successive iterations is less than or equal to
ε where ε is some arbitrary positive value. This criterion is unsatisfactory.
First, if ε is too large the sequence is terminated prematurely before the op-
timal solution is reached. Second, if ε is too small useless iterations will be
performed which cannot, because of round-off error propagation, improve the
accuracy of the result. Furthermore, when the termination criterion is reached
no information is available on the precision of the computed result. We have
shown that by using the CADNA library the iterative process can be dynam-
ically controlled and terminated at the optimal point. This is when, in the
convergence zone, the difference between two successive iterations is a com-
putational zero. No further meaningful computation can occur and we have
achieved the optimal computed result for the method using the floating-point
number representation available. In addition, we know the exact number of
significant digits in the computed result.

For certain iterative problems, use of the CADNA library enables definitive
benchmark computations to be performed. We have shown that when Theo-
rem 1 is applicable then, when the optimal termination point is reached, we
get the added benefit of knowing not only the number of exact significant
digits, but that these digits are identical with those in the exact result. A
significant benefit is that this represents a benchmark result against which
the computed results of other, perhaps, more complicated methods can be
directly compared. An example is the development of ad hoc extended fre-
quency dependent quadrature rules recently designed to improve the accuracy
and significantly reduce the computation time of the Slater integrals [27]. This
method’s computed results agree with the benchmark CADNA computations
and can therefore be concluded to be accurate to 10 significant figures, with
no formal analysis of the method being required.

Finally, we should note that CADNA is not a numerical panacea. First,
CADNA tells us nothing about the accuracy of the underlying computational

23



method. Second, when used in ‘health check’ mode it suffers from the plight
of all testing methods: it only gives us information about the tests carried out
and tells us nothing definitive about the range of values not tested. However,
having been used successfully in industry and research centres for many years
we believe it to be a reliable and useful tool for helping to validate the results
of numerical software.
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Appendix A

Wigner’s closed expression for the Clebsch-Gordan coefficient (see Eq. 3.18
in [38]),

26



C (j1, j2, j3; m1,m2,m3) = δm3,m1+m2

×
[
(2j3 + 1)

(j3 + j1 − j2)!(j3 − j1 + j2)!(j1 + j2 − j3)!(j3 + m3)!(j3 −m3)!

(j1 + j2 + j3 + 1)!(j1 −m1)!(j1 + m1)!(j2 −m2)!(j2 + m2)!

] 1
2

×∑
ν

(−)ν+j2+m2(j2 + j3 + m1 − ν)!(j1 −m1 + ν)!

ν!(j3 − j1 + j2 − ν)!(j3 + m3 − ν)!(ν + j1 − j2 −m3)!
(27)

Racah’s closed expression for the W-coefficient (see Eq. 6.7 in [38]),

W (a, b, c, d; ef) = ∆R(abe)∆R(cde)∆R(acf)∆R(bdf)

× ∑
χ

(−)χ+a+b+c+d(χ + 1)!

(χ− a− b− e)!(χ− c− d− e)!(χ− a− c− f)!(χ− b− d− f)!

× 1

(a + b + c + d− χ)!(a + d + e + f − χ)!(b + c + e + f − χ)!
, (28)

with

∆R(abc) =

[
(a + b− c)!(a− b + c)!(−a + b + c)!

(a + b + c + 1)!

] 1
2

.

Scott and Hibbert formulation of the W-coefficient (see Eqs. (4-7) in [34])
using approach of Wills [39],

W (a, b, c, d; ef) = (−)qmin+a+b+c+d a0!

b0!
× ∆R(abc)∆R(cde)∆R(acf)∆R(bdf)F (abcdef), (29)

with

a i = (qmin + 1 + i)
[
(qmin + i− a− b− e)(qmin + i− c− d− e)

× (qmin + i− b− d− f)(qmin + i− a− c− f)
]−1

, (30)

b i = (a + b + c + d− qmin − i)(a + e + d + f − qmin − i)

× (b + c + e + f − qmin − i), (31)

F (abcdef) = [1− a1b0(1− a2b1(1− a3b2(1 . . . ]. (32)
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