Numerical precision: just what’s needed

Fabienne Jézéquel
LIP6, Sorbonne Université, France

EuroHPC Summit
Green HPC session
25 Mar. 2021

th

SORBONNE
UNIVERSITE

Numerical precision: just what's needed 25 Mar. 2021 1

EO

Introduction

Floating-point arithmetic: [Sign [Exponent | Mantissa |

Various floating-point formats:

#bits
Mantissa (p) | Exp. | Range u=27"°
bfloat16 (half) 8 8 10538 | ~4x1073
fp16 (half) 11 5 1055 | =5x10°2
fp32 (single) 24 8 10538 | =6x10°8
fp64 (double) 53 11 105308 | < 1x 10716
fp128 (quad) 113 15 | 10¥%932 | z1x1073
\\ precision:
@ \ execution time ®
@ \, volume of results exchanged ©
@ energy efficiency ®
energy ratio
energy consumption proportional to p? ;Eggﬁg?g : g
fp32/bfloat16 =~9

@ But computed results may be invalid because of rounding errors ®

Numerical precision: just what's needed 25 Mar. 2021 2

In this talk we aim at answering the following questions.

@ How to control the validity of floating-point results?

@ How to determine automatically the suitable format for each variable?

Numerical precision: just what's needed 25 Mar. 2021 3

Rounding error analysis

Several approaches

@ Interval arithmetic

e guaranteed bounds for each computed result
the error may be overestimated

specific algorithms

ex: INTLAB [Rump’99]

@ Static analysis
@ no execution, rigorous analysis, all possible input values taken into account
@ not suited to large programs
e ex: FLUCTUAT [Goubault & al.06], FLDLib [Jacquemin & al.19]

@ Probabilistic approach

estimates the number of correct digits of any computed result
can be used in HPC programs

requires no algorithm modification

ex: CADNA [Chesneaux’'90], VERIFICARLO [Denis & al.’16],
VERROU [Févotte & al.17]

Numerical precision: just what's needed 25 Mar. 2021 4

Stochastic arithmetic vignes’04]

Stochastic arithmetic

Random
rounding

Classic arithmetic Ai®B; v — R
A®B — R

Ar®B, v — Ry

R=3.14237654 1 -
3 3765435689 Ay@ By T — Ry

Ry =3.141354786390989
Ry =3.143689456834534
R3 =3.142579087356598

@ each operation executed 3 times with a random rounding mode

Numerical precision: just what's needed 25 Mar. 2021 5

Stochastic arithmetic vignes’04]

Stochastic arithmetic

Random
rounding

Classic arithmetic Ai®B; v — R
A®B — R

Ar®B, v — Ry

R=3.14237654 1 -
3 3765435689 Ay@ By T — Ry

Ry =3.141354786390989
Ry =3.143689456834534
R3 =3.142579087356598

@ each operation executed 3 times with a random rounding mode
@ number of correct digits in the results estimated using Student’s test with
the confidence level 95%

Numerical precision: just what's needed 25 Mar. 2021 5

Stochastic arithmetic vignes’04]

Stochastic arithmetic

Random
rounding

Classic arithmetic Ai®B; v — R
A®B — R

Ar®B, v — Ry

R=3.14237654 1 -
3 3765435689 Ay@ By T — Ry

Ry =3.141354786390989
Ry =3.143689456834534
R3 =3.142579087356598

@ each operation executed 3 times with a random rounding mode
@ number of correct digits in the results estimated using Student’s test with
the confidence level 95%
@ operations executed synchronously
= detection of numerical instabilities
Ex: if (A>B) with A-B numerical noise
= optimization of stopping criteria

Numerical precision: just what's needed 25 Mar. 2021 5

The CADNA library

cadna.lip6.fr

Cadna

@ implements stochastic arithmetic for C/C++ or Fortran codes

@ provides stochastic types (3 floating-point variables and an integer)
half st float_st double_st quad_st

@ all operators and mathematical functions overloaded
= few modifications in user programs

@ support for MPI, OpenMP, GPU, vectorised codes

@ In one CADNA execution: accuracy of any result, complete list of
numerical instabilities

Numerical precision: just what's needed 25 Mar. 2021 6

cadna.lip6.fr

The SAM library

www-pequan.lip6. fr/~jezequel/SAM

SAM (Stochastic Arithmetic in Multiprecision) [Graillat & al.’11]

@ implements stochastic arithmetic in arbitrary precision (based on MPFR')
mp_st stochastic type

1www.mpfr.org

Numerical precision: just what's needed 25 Mar. 2021 7

www-pequan.lip6.fr/~jezequel/SAM
www.mpfr.org

The SAM library

www-pequan.lip6. fr/~jezequel/SAM

SAM (Stochastic Arithmetic in Multiprecision) [Graillat & al.’11]

@ implements stochastic arithmetic in arbitrary precision (based on MPFR')
mp_st stochastic type
@ recent improvement: control of operations mixing different precisions

Ex: mp_st<23> A; mp_st<47>B; mp_st<35> C;
C=AeB

S LN

35 bits 23 bits 47 bits

= accuracy estimation on FPGA

1www.mpfr.org

Numerical precision: just what's needed 25 Mar. 2021 7

www-pequan.lip6.fr/~jezequel/SAM
www.mpfr.org

An example without/with CADNA

Computation of P(x,y) =9x* — y* +2y? [Rump’83]

#include <iostream>
using namespace std;
double rump(double x, double y) {
return 9.0*x*x*x*x - y*y*y*y + 2.0%y*y;
}
int main() {
cout.precision(15);
cout.setf(ios::scientific,ios::floatfield);
double x, vy;
X = 10864.0;
y = 18817.0;
cout<<"Pl="<<rump(x, y)<< endl;
x = 1.0/3.0;
y = 2.0/3.0;
cout<<"P2="<<rump(x, y)<< endl;
return 0;

Numerical precision: just what's needed 25 Mar. 2021 8

An example without/with CADNA

Computation of P(x,y) =9x* — y* +2y? [Rump’83]

#include <iostream>
using namespace std;
double rump(double x, double y) {
return 9.0*x*x*x*x - y*y*y*y + 2.0%y*y;
}
int main() {
cout.precision(15);
cout.setf(ios::scientific,ios::floatfield);
double x, vy;
X = 10864.0;
y = 18817.0;
cout<<"Pl="<<rump(x, y)<< endl;
x = 1.0/3.0;
y = 2.0/3.0;
cout<<"P2="<<rump(x, y)<< endl;
return 0;

3

P1=2.00000000000000e+00
P2=8.02469135802469e-01

Numerical precision: just what's needed 25 Mar. 2021 8

#include <iostream>

using namespace std;

double rump(double x, double y) {
return 9.0*xX*xX*xX*xX-y*y*y*y+2.0%y*y;

}

int main() {
cout.precision(15);
cout.setf(ios::scientific,ios::floatfield);

double X, V;

x=10864.0; y=18817.0;
cout«"Pl="«rump(x, y)<«endl;
x=1.0/3.0; y=2.0/3.0;
cout«"P2="«rump(x, y)«endl;

return 0;

Numerical precision: just what's needed 25 Mar. 2021

#include <iostream>

#include <cadna.h>

using namespace std;

double rump(double x, double y) {
return 9.0*xX*xX*xX*xX-y*y*y*y+2.0%y*y;

}

int main() {
cout.precision(15);
cout.setf(ios::scientific,ios::floatfield);
cadna_init(-1);
double X, V;
x=10864.0; y=18817.0;
cout«"Pl="«rump(x, y)<«endl;
x=1.0/3.0; y=2.0/3.0;
cout«"P2="«rump(x, y)«endl;
cadna_end();
return 0;

Numerical precision: just what's needed 25 Mar. 2021

#include <iostream>

#include <cadna.h>

using namespace std;

double rump (double x, double y) {
return 9.0*xX*xX*xX*xX-y*y*y*y+2.0%y*y;

}

int main() {
cout.precision(15);
cout.setf(ios::scientific,ios::floatfield);
cadna_init(-1);
double X, V;
x=10864.0; y=18817.0;
cout«"Pl="«rump(x, y)<«endl;
x=1.0/3.0; y=2.0/3.0;
cout«"P2="«rump(x, y)«endl;
cadna_end();
return 0;

Numerical precision: just what's needed 25 Mar. 2021

#include <iostream>

#include <cadna.h>

using namespace std;

double_st rump(double_st x, double_st y) {
return 9.0*xX*xX*xX*xX-y*y*y*y+2.0%y*y;

}

int main() {
cout.precision(15);
cout.setf(ios::scientific,ios::floatfield);
cadna_init(-1);
double_st x, y;
x=10864.0; y=18817.0;
cout«"Pl="«rump(x, y)<«endl;
x=1.0/3.0; y=2.0/3.0;
cout«"P2="«rump(x, y)«endl;
cadna_end();
return 0;

Numerical precision: just what's needed 25 Mar. 2021

Results with CADNA

only correct digits are displayed

CADNA_C software

Self-validation detection: ON
Mathematical instabilities detection: ON
Branching instabilities detection: ON
Intrinsic instabilities detection: ON
Cancellation instabilities detection: ON

P1=@.0 (no correct digits)
P2=0.802469135802469E+000

There are 2 numerical instabilities
2 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

Numerical precision: just what's needed 25 Mar. 2021 10

Numerical validation of a shallow-water (SW)

simulation on GPU

@ Simulation of the evolution of
water height and velocities in a 2D
oceanic basin

@ CUDA GPU code in double
precision

@ Focusing on an eddy evolution:
20 time steps (12 hours of
simulated time) on a 1024 x 1024
grid

Numerical precision: just what's needed 25 Mar. 2021 11

SW eddy simulation with CADNA-GPU

At the end of the simulation:

15

0.0 10" 1000
600 800 1000 200 400 600 800 10

Square of water velocity in m?.s~2 Number of correct digits estimated by CADNA-GPU

@ at eddy center: great accuracy loss due to cancellations

@ point at the very center: 9 digits lost
= no correct digits in single precision

o fortunately, velocity values close to zero at eddy center
— negligible impact on the output
— satisfactory overall accuracy

Numerical precision: just what's needed 25 Mar. 2021 12

Numerical validation... and then?

Can we use reduced or mixed precision
to improve performance and energy efficiency?

@ mixed precision linear algebra algorithms
ex: solution of linear systems using iterative refinement [Carson & al. 18]

@ precision autotuning

Numerical precision: just what's needed 25 Mar. 2021 13

Precision autotuning

@ floating-point autotuning tools that intend to deal with large codes:
@ Precimonious [Rubio-Gonzalez & al.’13]
@ source modification with LLVM
o CRAFT [Lam & al.’13]
@ binary modifications on the operations
o ADAPT [Menon & al.’18]
@ based on algorithmic differentiation
o CRAFT & ADAPT now combined in FloatSmith [Lam & al.’19]

They rely on comparisons with the highest precision result.

Numerical precision: just what's needed 25 Mar. 2021 14

Precision autotuning

@ floating-point autotuning tools that intend to deal with large codes:
@ Precimonious [Rubio-Gonzalez & al.’13]
@ source modification with LLVM
o CRAFT [Lam & al.’13]
@ binary modifications on the operations
o ADAPT [Menon & al.’18]
@ based on algorithmic differentiation
o CRAFT & ADAPT now combined in FloatSmith [Lam & al.’19]

They rely on comparisons with the highest precision result.

/\ [Rump’88] P=333.75y% + x*(11x%y% - y® — 121y* - 2) + 5.5)® + x/(2y)
with x = 77617 and y = 33096

Numerical precision: just what's needed 25 Mar. 2021 14

Precision autotuning

@ floating-point autotuning tools that intend to deal with large codes:
@ Precimonious [Rubio-Gonzalez & al.’13]
@ source modification with LLVM
o CRAFT [Lam & al.’13]
@ binary modifications on the operations
o ADAPT [Menon & al.’18]
@ based on algorithmic differentiation
o CRAFT & ADAPT now combined in FloatSmith [Lam & al.’19]

They rely on comparisons with the highest precision result.

/\ [Rump’88] P=333.75y% + x*(11x%y% - y® — 121y* - 2) + 5.5)® + x/(2y)
with x = 77617 and y = 33096
float: P =2.571784e+29

Numerical precision: just what's needed 25 Mar. 2021 14

Precision autotuning

@ floating-point autotuning tools that intend to deal with large codes:
@ Precimonious [Rubio-Gonzalez & al.’13]
@ source modification with LLVM
o CRAFT [Lam & al.’13]
@ binary modifications on the operations
o ADAPT [Menon & al.’18]
@ based on algorithmic differentiation
o CRAFT & ADAPT now combined in FloatSmith [Lam & al.’19]
They rely on comparisons with the highest precision result.
/\ [Rump’88] P=333.75y% + x*(11x%y% - y® — 121y* - 2) + 5.5)® + x/(2y)
with x =77617 and y = 33096

float: P =2.571784e+29
double: P =1.17260394005318

Numerical precision: just what's needed 25 Mar. 2021 14

Precision autotuning

@ floating-point autotuning tools that intend to deal with large codes:
@ Precimonious [Rubio-Gonzalez & al.’13]
@ source modification with LLVM
o CRAFT [Lam & al.’13]
@ binary modifications on the operations
o ADAPT [Menon & al.’18]
@ based on algorithmic differentiation
o CRAFT & ADAPT now combined in FloatSmith [Lam & al.’19]

They rely on comparisons with the highest precision result.

/\ [Rump’88] P=333.75y% + x*(11x%y% - y® — 121y* - 2) + 5.5)® + x/(2y)
with x = 77617 and y = 33096

float: P =2.571784e+29

double: P =1.17260394005318

quad: P =1.17260394005317863185883490452018

Numerical precision: just what's needed 25 Mar. 2021 14

Precision autotuning

@ floating-point autotuning tools that intend to deal with large codes:
@ Precimonious [Rubio-Gonzalez & al.’13]
@ source modification with LLVM
o CRAFT [Lam & al.’13]
@ binary modifications on the operations
o ADAPT [Menon & al.’18]
@ based on algorithmic differentiation
o CRAFT & ADAPT now combined in FloatSmith [Lam & al.’19]

They rely on comparisons with the highest precision result.

/\ [Rump’88] P=333.75y% + x*(11x%y% - y® — 121y* - 2) + 5.5)® + x/(2y)
with x = 77617 and y = 33096

float: P =2.571784e+29

double: P =1.17260394005318

quad: P =1.17260394005317863185883490452018

exact: P =-0.827396059946821368141165095479816292

Numerical precision: just what's needed 25 Mar. 2021 14

PROMISE (PRecision OptiMISE) [Graillat & al:19]

promise.lip6. fr

PROMISE

@ provides a mixed precision code (half, single, double, quad)
taking into account a required accuracy

@ uses CADNA to validate a type configuration

@ uses the Delta Debug algorithm [zeller’09] to search for a valid type
configuration with a mean complexity of O(nlog(n)) for n variables.

Numerical precision: just what's needed 25 Mar. 2021

promise.lip6.fr

Searching for a valid configuration with 2 types

Method based on the Delta Debug algorithm [Zeller’09]

Higher precision I I

Numerical precision: just what's needed 25 Mar. 2021 16

Searching for a valid configuration with 2 types

Method based on the Delta Debug algorithm [Zeller’09]

Higher precision

v

—
Y
—

Lower precision

L

X

Numerical precision: just what's needed 25 Mar. 2021 16

Searching for a valid configuration with 2 types

Method based on the Delta Debug algorithm [Zeller’09]

Higher precision II I

Lower precision :l !

Numerical precision: just what's needed 25 Mar. 2021 16

Searching for a valid configuration with 2 types

Method based on the Delta Debug algorithm [Zeller’09]

Higher precision II |

Lower precision I

Numerical precision: just what's needed 25 Mar. 2021 16

Searching for a valid configuration with 2 types

Method based on the Delta Debug algorithm [Zeller’09]

Higher precision II |

Lower precision I

/ : 1

1

,”'_'“AT\/" | Not tested |
Y |

Already tested ‘/ __________________________

Numerical precision: just what's needed 25 Mar. 2021 16

Searching for a valid type configuration

PROMISE with 2 types (ex: double & single precision)

From a code in double, the Delta Debug (DD) algorithm finds which variables
can be relaxed to single precision.

peioind

single

Numerical precision: just what's needed 25 Mar. 2021 17

Searching for a valid type configuration

PROMISE with 2 types (ex: double & single precision)

From a code in double, the Delta Debug (DD) algorithm finds which variables
can be relaxed to single precision.

peioind

single

PROMISE with 3 types (ex: double, single & half precision)

The Delta Debug algorithm is applied twice.

double Sngle
single _> half

Numerical precision: just what's needed 25 Mar. 2021 17

Precision autotuning using PROMISE

MICADO: simulation of nuclear cores (code developed by EDF)

@ neutron transport iterative solver
@ 11,000 C++ code lines

double Speed memor
Digits - FL)J ain y
float P 9
10 19-32 1.01 1.00
8 18-33 1.01 1.01
6 13-38 1.20 1.44
i 0-51 1.32 1.62

@ Speedup, memory gain w.r.t. the double precision version
@ Speed-up up to 1.32 and memory gain 1.62

@ Mixed precision approach successful: speed-up 1.20 and memory
gain 1.44

Numerical precision: just what's needed 25 Mar. 2021 18

Conclusion/Perspectives

To optimize precision and so improve energy efficiency
@ numerical validation tools such as CADNA
@ precision autotuning tools such as PROMISE
@ mixed precision algorithms

Perspectives
@ floating-point autotuning in arbitrary precision
@ combine mixed precision algorithms and floating-point autotuning

Numerical precision: just what's needed 25 Mar. 2021 19

Thanks to the CADNA/SAM/PROMISE contributors:

Julien Brajard, Romuald Carpentier, Jean-Marie Chesneaux, Patrick Corde,
Pacome Eberhart, Francois Févotte, Pierre Fortin, Stef Graillat, Thibault
Hilaire, Sara Hoseininasab, Jean-Luc Lamotte, Baptiste Landreau, Bruno
Lathuiliére, Romain Picot, Jonathon Tidswell, Su Zhou, ...

Numerical precision: just what's needed 25 Mar. 2021

Thanks to the CADNA/SAM/PROMISE contributors:

Julien Brajard, Romuald Carpentier, Jean-Marie Chesneaux, Patrick Corde,
Pacome Eberhart, Francois Févotte, Pierre Fortin, Stef Graillat, Thibault
Hilaire, Sara Hoseininasab, Jean-Luc Lamotte, Baptiste Landreau, Bruno
Lathuiliére, Romain Picot, Jonathon Tidswell, Su Zhou, ...

Thank you for your attention!

Numerical precision: just what's needed 25 Mar. 2021

