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Overview

How to estimate rounding errors?

⇒ Discrete Stochastic Arithmetic and its implementations (CADNA, SAM)

How to use less precision taking into account accuracy requirements?

⇒ Precision auto-tuning: the PROMISE software

Can we avoid controlling accuracy and still get trustful results?

⇒ Yes, if BLAS 3 routines are used with perturbed data.
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How to estimate rounding error propagation?

The exact result r of an arithmetic operation is approximated by a floating-point
number R− or R+.

R− R+
r

The random rounding mode
Approximation of r by R− or R+ with the probability 1/2

The CESTAC method [La Porte & Vignes 1974]

The same code is run several times with the random rounding mode.
Then different results are obtained.

Briefly, the part that is common to all the different results is assumed to be
reliable and the part that is different in the results is affected by round-off errors.
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Implementation of the CESTAC method

The implementation of the CESTAC method in a code providing a result R
consists in:

performing N times this code with the random rounding mode to obtain N
samples Ri of R,
choosing as the computed result the mean value R of Ri , i = 1, ..., N ,
estimating the number of exact significant decimal digits of R with

CR = log10

 p
N

∣∣∣R∣∣∣
στβ


where

R = 1

N

N∑
i=1

Ri and σ2 = 1

N −1

N∑
i=1

(
Ri −R

)2
.

τβ is the value of Student’s distribution for N −1 degrees of freedom and a
probability level 1−β.

In pratice, N = 3 and β= 5%.
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The problem of stopping criteria

Let us consider a general iterative algorithm: Un+1 = F (Un).

while (fabs(X-Y) > EPSILON) {
X = Y;
Y = F(X);

}

ε too low =⇒ risk of infinite loop
ε too high =⇒ too early termination.

It would be optimal to stop when X −Y is an insignificant value.

Such a stopping criterion
would enable one to develop new numerical algorithms
is possible thanks to the concept of computational zero.
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The concept of computational zero

Definition [Vignes, 1986]

A result R computed using the CESTAC method is a computational zero,
denoted by @.0, if

∀i ,Ri = 0 or CR ≤ 0.

It means that R is a computed result which, because of round-off errors, cannot
be distinguished from 0.
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The stochastic definitions

Let X and Y be two results computed using the CESTAC method (N -samples).

X is stochastically equal to Y , noted X s= Y , iff

X −Y = @.0.

X is stochastically strictly greater than Y , noted X s> Y , iff

X > Y and X s=/ Y

X is stochastically greater than or equal to Y , noted X s≥ Y , iff

X ≥ Y or X s= Y

These stochastic relations require that each arithmetic operation is performed
N times before the next one is executed.
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Discrete Stochastic Arithmetic [Vignes, 2004]

Discrete Stochastic Arithmetic (DSA) is defined as the joint use of
the CESTAC method
the computational zero
the stochastic relation definitions.

Implementation of DSA
CADNA: for programs in half, single, double, and/or quadruple precision
http://cadna.lip6.fr

support for wide range of codes (vectorised, MPI, OpenMP, GPU)

SAM: for arbitrary precision programs (based on MPFR)
http://www-pequan.lip6.fr/~jezequel/SAM
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The CADNA library http://cadna.lip6.fr

CADNA allows one to estimate round-off error propagation in any scientific
program written in C, C++ or Fortran.

CADNA enables one to:
estimate the numerical quality of any result
detect numerical instabilities
take into account uncertainty on data.

CADNA provides new numerical types, the stochastic types, which consist of:
3 floating point variables
an integer variable to store the accuracy.

All operators and mathematical functions are redefined for these types.
⇒ CADNA requires only a few modifications in user programs.
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Cost of CADNA

The cost of CADNA is about 4 in memory, 10 in run time.

CADNA overhead:

Memory
Bound

Add

Compute
Bound

Add

Memory
Bound
Multiply

Compute
Bound
Multiply

7.89× 8.92× 11.6× 9.19×
(Intel Xeon E3-1275 at 3.5 GHz, gcc version 4.9.2, single precision, self-validation)
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An example without/with CADNA

Computation of P (x, y) = 9x4 − y4 +2y2 [S.M. Rump, 1983]

#include <stdio.h>

double rump(double x, double y) {
return 9.0*x*x*x*x - y*y*y*y + 2.0*y*y;

}
int main(int argc, char **argv) {
double x, y;
x = 10864.0;
y = 18817.0;
printf("P1=%.14e\n", rump(x, y));
x = 1.0/3.0;
y = 2.0/3.0;
printf("P2=%.14e\n", rump(x, y));
return 0;

}

P1=2.00000000000000e+00
P2=8.02469135802469e–01
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#include <stdio.h>

#include <cadna.h>

double rump(double x, double y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main(int argc, char **argv) {

cadna_init(-1);

double x, y;
x=10864.0; y=18817.0;
printf("P1=%.14e\n", rump(x, y) );"
x=1.0/3.0; y=2.0/3.0;
printf("P2=%.14e\n", rump(x, y) );"

cadna_end();

return 0;
}
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Results with CADNA
only correct digits are displayed

Self-validation detection: ON
Mathematical instabilities detection: ON
Branching instabilities detection: ON
Intrinsic instabilities detection: ON
Cancellation instabilities detection: ON
—————————————————————
P1= @.0 (no more correct digits)
P2= 0.802469135802469E+000
—————————————————————
There are 2 numerical instabilities
2 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)
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Tools related to CADNA
http://cadna.lip6.fr

CADNAIZER
automatically transforms C codes to be used with CADNA

CADTRACE
identifies the instructions responsible for numerical instabilities

Example:
There are 11 numerical instabilities.

10 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S).
5 in <ex> file "ex.f90" line 58
5 in <ex> file "ex.f90" line 59

1 INSTABILITY IN ABS FUNCTION.
1 in <ex> file "ex.f90" line 37
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The SAM library:

Stochastic Arithmetic in Multiprecision
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The SAM library
http://www-pequan.lip6.fr/~jezequel/SAM

The SAM library implements in arbitrary precision the features of DSA:
the stochastic types
the concept of computational zero
the stochastic operators.

The SAM library is based on MPFR.

Classical variables → stochastic variables (of mp_st type) consisting of
three variables of MPFR type
an integer to store the accuracy.

All operators are overloaded
�⇒ for a program in C++ to be used with SAM, only a few modifications are
needed.
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Example of SAM code

f (x, y) = 333.75y6 +x2(11x2 y2 − y6 −121y4 −2)+5.5y8 + x

2y
is computed with x = 77617, y = 33096.
[S. Rump, 1988]

#include "sam.h"
#include <stdio.h>
int main() {

sam_init(-1,122);
mp_st x = 77617; mp_st y = 33096; mp_st res;
res=333.75*y*y*y*y*y*y+x*x*(11*x*x*y*y-y*y*y*y*y*y

-121*y*y*y*y-2.0)+5.5*y*y*y*y*y*y*y*y+x/(2*y);
printf("res=%s\n",strp(res));
sam_end();

}
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Output of the SAM code

Using SAM with 122-bit mantissa length, one obtains:

Self-validation detection: ON
Mathematical instabilities detection: ON
Branching instabilities detection: ON
Intrinsic instabilities detection: ON
Cancellation instabilities detection: ON
��������������
res=-0.827396059946821368141165095479816292
��������������

No instability detected
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No instability detected

[S. Graillat, F. Jézéquel, S. Wang, Y. Zhu, Stochastic Arithmetic in Multiprecision, 2011]

work in progress: a version of SAM mixing different precisions
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Precision auto-tuning

The PROMISE tool
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Precision optimization

mixed precision often leads to better performance
some existing tools:

CRAFT HPC [Lam & al., 2013]

binary modifications on the operations
Precimonious [Rubio-Gonzàlez & al., 2013]

source modification with LLVM

They rely on comparisons with the highest precision result.

B [Rump, 1988] P = 333.75y6 +x2(11x2 y2 − y6 −121y4 −2)+5.5y8 +x/(2y)
with x = 77617 and y = 33096

float: P =2.571784e+29
double: P =1.17260394005318
quad: P =1.17260394005317863185883490452018
exact: P ≈-0.827396059946821368141165095479816292
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PROMISE (PRecision OptiMISE)
promise.lip6.fr

Taking into account a required accuracy, PROMISE provides a mixed
precision configuration (float, double, quad)

2 ways to validate a configuration:
validation of every execution using CADNA

validation of a reference using CADNA and comparison to this reference
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Searching for a valid configuration with 2 types
Method based on the Delta Debug algorithm [Zeller, 2009]

Higher precision

✓
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Searching for a valid configuration: complexity

We will not have the best configuration.

But the mean complexity is O(n log(n)) and in the worst case O(n2)

Efficient way for finding a local maximum configuration
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Searching for a valid configuration with 3 types

PROMISE with 2 types
from a C/C++ program and an accuracy requirement on the results,
provides a new program mixing single and double precision
based on CADNA and the DeltaDebug (DD) algorithm

C : set of variables
in double precision DD

bipartition
(C s ,C d )

PROMISE with 3 types
2 executions of DD to provide a program mixing single, double, and
quadruple precision

C : set of variables
in quadruple precision DD (C d

0 ,C q ) DD (C s ,C d ,C q )
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Experimental results
Benchmarks

Short programs:
arclength computation
rectangle method for the computation of integrals
Babylonian method for square root
matrix multiplication

GNU Scientific Library:
Fast Fourier Transform
sum of Taylor series terms
polynomial evaluation/solver

SNU NPB Suite:
Conjugate Gradient method
Scalar Penta-diagonal solver

Requested accuracy: 4, 6, 8 and 10 digits

⇒ PROMISE has found a new configuration each time.
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MICADO: simulation of nuclear cores (EDF)

neutron transport iterative solver
11,000 C++ code lines

# Digits
# comp

-
# exec

# double
-

# float

Time
(mm:ss)

Speed
up

memory
gain

10 83-51 19-32 88:56 1.01 1.00
8 80-48 18-33 85:10 1.01 1.01
6 69-37 13-38 71:32 1.20 1.44
5 3-3 0-51 9:58 1.32 1.624

Speed-up up to 1.32 and memory gain 1.62
Mixed precision approach successful: speed-up 1.20 and memory
gain 1.44

[S. Graillat, F. Jézéquel, R. Picot, F. Févotte, and B. Lathuilière, Auto-tuning for
floating-point precision with Discrete Stochastic Arithmetic, 2019]
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Numerical validation of BLAS routines
with perturbed data
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Numerical validation is crucial... but costful /.

Can we accelarate the execution?
Can we avoid numerical validation

...and still get trustful results?

work carried out from discussions with Stef Graillat, Roman Iakymchuk,
Toshiyuki Imamura, and Daichi Mukunoki
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Definitions

Let y = f (x) be an exact result and ŷ = f̂ (x) be the associated computed result.

The forward error is the difference between y and ŷ .

The backward analysis tries to seek for ∆x s.t. ŷ = f (x +∆x).
∆x is the backward error associated with ŷ .
It measures the distance between the problem that is solved and the initial
one.

The condition number C of the problem is defined as:

C := lim
ε→0+

sup
|∆x|≤ε

[ | f (x +∆x)− f (x)|
| f (x)| /

|∆x|
|x|

]
.

It measures the effect on the result of data perturbation.
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Error induced by perturbed data

The relative rounding error is denoted by u.

binary64 format (double precision): u = 2−53

binary32 format (single precision): u = 2−24.

If the algorithm is backward-stable (i.e. the backward error is of the order of u)

| f (x)− f̂ (x)|/| f (x)|.C u.

If the input data are perturbed, i.e. the input data are not x but x̂ = x(1+δ),
then one computes f̂ (x̂) with

| f (x)− f̂ (x̂)|/| f (x)|.C (u+|δ|).

If |δ|À u, the rounding error generated by f̂ is negligible w.r.t. C |δ|.

⇒ Estimating this rounding error may be avoided.
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Using a classic routine in a CADNA code

A computation routine is executed in a code that is controlled using DSA.

Its input data are affected by errors (rounding errors and/or measurement
errors).

We compare 2 kinds of computation:

with a call to a CADNA routine
with 3 calls to a classic routine.
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Computation with a call to a CADNA routine

stochastic
data D

CADNA
routine

stochastic
result R

D and R consist in stochastic arrays (each element is a triplet).

Every arithmetic operation is performed 3 times with the random rounding
mode.
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Computation with 3 calls to a classic routine

stochastic
data D

D2

D1

D3

classic routine

classic routine

classic routine

R ′
2

R ′
1

R ′
3

stochastic
result R ′

input data: 3 classic floating-point arrays D1,D2,D3 created from the
triplets of D

We get 3 classic floating-point arrays R ′
1,R ′

2,R ′
3.

A stochastic array R ′ created from R ′
1,R ′

2,R ′
3 can be used in the next parts

of the code.

⇒ we compare the number of correct digits (estimated by CADNA) in R and R ′
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Accuracy comparison for matrix multiplication

Multiplication in double precision of square random matrices of size 500
Each input value is perturbed using a CADNA function with a relative
error δ.

accuracy accuracy difference
δ of R between R & R ′

mean min-max mean max
1.e-14 13.9 9-15 2.5e-02 2
1.e-13 12.8 8-15 5.8e-03 1
1.e-12 11.9 7-14 4.2e-04 1
1.e-11 10.9 6-13 2.4e-05 1

As the order of magnitude of δ ↗ the mean accuracy ↘ by 1 digit.
Low difference between the accuracy of R & R ′
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Accuracy comparison for matrix-vector multiplication

Multiplication in double precision of a square random matrix of size 1000
with a vector

accuracy accuracy difference
δ of R between R & R ′

mean min-max mean max
1.e-14 13.9 12-15 4.6e-02 1
1.e-13 12.7 11-14 7.0e-03 1
1.e-12 11.8 10-13 0 0
1.e-11 10.9 9-12 0 0

As the order of magnitude of δ ↗ the mean accuracy ↘ by 1 digit.
The accuracy difference between R & R ′ remains low.
All the results have the same accuracy if δ≥ 10−12
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Performance comparison

We compare the performance of the CADNA routine with codes using:
a naive floating-point algorithm
the MKL implementation.

In both cases: sequential and OpenMP 4 cores
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Performance for matrix multiplication

Execution time including matrix multiplications and array copies:

 0.0001

 0.001
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Despite memory copies, the codes using 3 classic matrix multiplications
perform better than the CADNA routine.
For matrices of size 2000, the MKL OpenMP implementation outperforms
the CADNA routine by a factor 250.
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Performance for matrix multiplication

Execution time for matrices of size 2000:
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The impact of array copies on the execution time is negligible.
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Performance for matrix-vector multiplication

Execution time including matrix-vector multiplications and array copies:
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The CADNA routine performs better than the other codes.
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Performance for matrix-vector multiplication

Execution time for matrices of size 10000:
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Except with the CADNA routine, the main part of the execution time is
spent in array copies.
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Performance for matrix-vector multiplication

Execution time for matrices of size 10000:
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⇒ Performance gain if a computation-intensive CADNA routine (BLAS 3)
is replaced by classic floating-point routines.
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Instability detection

Without CADNA:
numerical instabilities are not detected /
results with no correct digits appear as numerical noise ,

Example: matrix multiplication with catastrophic cancellations

Input data: square matrices A & B of size 10 in double precision
1st line of A: [1, ...,1,−1, ...,−1] (1st half: 1, 2nd half: -1)
each element of B set to 1
A and B pertubed with a relative error δ= 10−12

Results: C = A∗B with CADNA, C ′ = A∗B without CADNA
1st line of C and C ′: @.0 (numerical noise, triplet with no common digits)

With CADNA:
10 catastrophic cancellations are detected.
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Accuracy improvement with CADNA
Example: Gauss algorithm with pivoting

Input data:
We solve in single precision the system Ax = b with

A =


21 130 0 2.1
13 80 4.74 108 752
0 −0.4 3.9816 108 4.2
0 0 1.7 9 10−9

 b =


153.1

849.74
7.7816

2.6 10−8


A and b pertubed with a relative error δ= 10−6

Results: x with CADNA, x ′ without CADNA

x =


0.100E+001
0.999E+000

0.999999E-008
0.999999E+000

 x ′ =


@.0
@.0
@.0

0.999999E+000

 xexact =


1
1

10−8

1


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Accuracy improvement with CADNA
Example: Gauss algorithm with pivoting

Results: x with CADNA, x ′ without CADNA
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10−8

1



Test for pivoting: if (|Ai , j | > pmax) ...
With CADNA a non-significant element is not chosen as a pivot.

Instabilities detected by CADNA:
There are 3 numerical instabilities
1 UNSTABLE BRANCHING(S)
1 UNSTABLE INTRINSIC FUNCTION(S)
1 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)
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Conclusions & Perspectives

In a code controlled using CADNA, if a computation-intensive routine (BLAS 3)
is run with perturbed data,

a classic BLAS routine can be executed 3 times instead of the CADNA
routine with almost no accuracy difference on the results
the performance gain can be high with a BLAS routine from an optimized
library
but we loose the instability detection.

The same conclusions would be valid with an HPC code using MPI.
In the same conditions (computation-intensive routine & perturbed data)
CADNA-MPI routine ⇒ optimized floating-point MPI routines.
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Thanks for your attention!
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On the number of runs

2 or 3 runs are enough. To increase the number of runs is not necessary.

From the model, to increase by 1 the number of exact significant digits given by
CR , we need to multiply the size of the sample by 100.

Such an increase of N will only point out the limit of the model and its error
without really improving the quality of the estimation.

It has been shown that N = 3 is the optimal value. [Chesneaux & Vignes, 1988]
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On the probability of the confidence interval

With β= 0.05 and N = 3,

the probability of overestimating the number of exact significant digits of at
least 1 is 0.054%

the probability of underestimating the number of exact significant digits of
at least 1 is 29%.

By choosing a confidence interval at 95%, we prefer to guarantee a minimal
number of exact significant digits with high probability (99.946%), even if we are
often pessimistic by 1 digit.
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