
Estimation of numerical reproducibility
on CPU and GPU

Fabienne Jézéquel1, Jean-Luc Lamotte1 & Issam Said2

1LIP6, Université Pierre et Marie Curie

2Total & LIP6, Université Pierre et Marie Curie

8th Workshop on Computer Aspects of Numerical Algorithms (CANA’15)
Lodz, Poland

13-16 September 2015

Estimation of numerical reproducibility 13-16 Sept. 2015 1

Numerical reproducibility

Numerical reproducibility failures:

from one architecture to another
inside the same architecture.

different orders in the sequence of instructions
⇒ different round-off errors

differences in results may be difficult to identify: round-off errors or bug?

Stochastic arithmetic can estimate which digits in the results are different from
one execution to another because of round-off errors.

Estimation of numerical reproducibility 13-16 Sept. 2015 2

Outline

1 Reproducibility failures in a wave propagation code

2 Principles of stochastic arithmetic

3 Stochastic arithmetic for CPU simulations

4 Stochastic arithmetic for CPU-GPU simulations

5 The wave propagation code examined with stochastic arithmetic

Estimation of numerical reproducibility 13-16 Sept. 2015 3

Reproducibility failures in a wave propagation code

For oil exploration, the 3D acoustic wave equation

1
c2
∂2u
∂t2 −

∑
b∈x,y,z

∂2

∂b2 u = 0

where u is the acoustic pressure, c is the wave velocity and t is the time

is solved using a finite difference scheme
time: order 2
space: order p (in our case p = 8).

Estimation of numerical reproducibility 13-16 Sept. 2015 4

2 implementations of the finite difference scheme
1

un+1
ijk = 2un

ijk − un−1
ijk +

c2∆t2

∆h2

p/2∑
l=−p/2

al

(
un

i+ljk + un
ij+lk + un

ijk+l

)
+ c2∆t2f n

ijk

2

un+1
ijk = 2un

ijk−un−1
ijk +

c2∆t2

∆h2

 p/2∑
l=−p/2

al un
i+ljk +

p/2∑
l=−p/2

al un
ij+lk +

p/2∑
l=−p/2

al un
ijk+l

+c2∆t2f n
ijk

where un
ijk (resp. f n

ik) is the wave (resp. source) field in (i, j, k) coordinates and nth time
step and al∈−p/2,p/2 are the finite difference coefficients.

1 nearest neighbours first
2 dimension 1, 2 then 3

Estimation of numerical reproducibility 13-16 Sept. 2015 5

Reproducibility problems

differences from one implementation of the finite difference scheme to
another

differences from one execution to another inside a GPU
repeatability problem due to differences in the order of thread executions

differences from one architecture to another

In binary 32, for 64× 64× 64 space steps and 1000 time iterations:

any two results at the same space coordinates have 0 to 7 common digits

the average number of common digits is about 4.

Estimation of numerical reproducibility 13-16 Sept. 2015 6

Results computed at 3 different points

scheme point in the space domain
p1 = (0, 19, 62) p2 = (50, 12, 2) p3 = (20, 1, 46)

AMD Opteron CPU with gcc
1 -1.110479E+0 5.454238E+1 6.141038E+2
2 -1.110426E+0 5.454199E+1 6.141035E+2

NVIDIA C2050 GPU with CUDA
1 -1.110204E+0 5.454224E+1 6.141046E+2
2 -1.109869E+0 5.454244E+1 6.141047E+2

NVIDIA K20c GPU with OpenCL
1 -1.109953E+0 5.454218E+1 6.141044E+2
2 -1.111517E+0 5.454185E+1 6.141024E+2

AMD Radeon GPU with OpenCL
1 -1.109940E+0 5.454317E+1 6.141038E+2
2 -1.110111E+0 5.454170E+1 6.141044E+2

AMD Trinity APU with OpenCL
1 -1.110023E+0 5.454169E+1 6.141062E+2
2 -1.110113E+0 5.454261E+1 6.141049E+2

Estimation of numerical reproducibility 13-16 Sept. 2015 7

How to estimate the impact of round-off errors?
The exact result r of an arithmetic operation is approximated by a
floating-point number R− or R+.

R− R+

r

The random rounding mode
Approximation of r by R− or R+ with the probability 1/2

The CESTAC method
The same code is run several times with the random rounding mode.
Then different results are obtained.

Briefly, the part that is common to all the different results is assumed to be
reliable and the part that is different in the results is affected by round-off
errors.

Estimation of numerical reproducibility 13-16 Sept. 2015 8

Implementation of the CESTAC method

The implementation of the CESTAC method in a code providing a result R
consists in:

performing N times this code with the random rounding mode to obtain N
samples Ri of R,
choosing as the computed result the mean value R of Ri , i = 1, ...,N,
estimating the number of exact significant decimal digits of R with

CR = log10

(√
N
∣∣R∣∣

στβ

)

where

R =
1
N

N∑
i=1

Ri and σ2 =
1

N − 1

N∑
i=1

(
Ri − R

)2
.

τβ is the value of Student’s distribution for N − 1 degrees of freedom and
a probability level β.

In pratice, N = 3 and β = 95%.

Estimation of numerical reproducibility 13-16 Sept. 2015 9

Self-validation of the CESTAC method

The CESTAC method is based on a 1st order model.

A multiplication of two insignificant results
or a division by an insignificant result

may invalidate the 1st order approximation.

Therefore the CESTAC method requires a dynamical control of multiplications
and divisions, during the execution of the code.

Estimation of numerical reproducibility 13-16 Sept. 2015 10

The concept of computed zero

J. Vignes, 1986

Definition
Using the CESTAC method, a result R is a computed zero, denoted by @.0, if

∀i ,Ri = 0 or CR ≤ 0.

It means that R is a computed result which, because of round-off errors,
cannot be distinguished from 0.

Estimation of numerical reproducibility 13-16 Sept. 2015 11

The stochastic definitions

Definition
Let X and Y be two results computed using the CESTAC method (N-sample),
X is stochastically equal to Y , noted X s= Y , if and only if

X − Y = @.0.

Definition
Let X and Y be two results computed using the CESTAC method (N-sample).

X is stochastically strictly greater than Y , noted X s> Y , if and only if

X > Y and X s=/ Y

X is stochastically greater than or equal to Y , noted X s≥ Y , if and only if

X ≥ Y or X s= Y

Discrete Stochastic Arithmetic (DSA) is defined as the joint use of the
CESTAC method, the computed zero and the stochastic relation definitions.

Estimation of numerical reproducibility 13-16 Sept. 2015 12

The CADNA library http://www.lip6.fr/cadna

The CADNA library implements Discrete Stochastic Arithmetic.

CADNA allows to estimate round-off error propagation in any scientific
program written in Fortran or in C++.

More precisely, CADNA enables one to:
estimate the numerical quality of any result
control branching statements
perform a dynamic numerical debugging
take into account uncertainty on data.

CADNA provides new numerical types, the stochastic types, which consist of:
3 floating point variables
an integer variable to store the accuracy.

All operators and mathematical functions are redefined for these types.
⇒ CADNA requires only a few modifications in user programs.

Estimation of numerical reproducibility 13-16 Sept. 2015 13

The CADNA library http://www.lip6.fr/cadna

The CADNA library implements Discrete Stochastic Arithmetic.

CADNA allows to estimate round-off error propagation in any scientific
program written in Fortran or in C++.

More precisely, CADNA enables one to:
estimate the numerical quality of any result
control branching statements
perform a dynamic numerical debugging
take into account uncertainty on data.

CADNA provides new numerical types, the stochastic types, which consist of:
3 floating point variables
an integer variable to store the accuracy.

All operators and mathematical functions are redefined for these types.
⇒ CADNA requires only a few modifications in user programs.

Estimation of numerical reproducibility 13-16 Sept. 2015 13

An example proposed by S. Rump
Computation of f (10864,18817) and f (1

3 ,
2
3) with f (x , y) = 9x4 − y4 + 2y2

program ex1
i m p l i c i t double p r e c i s i o n (a−h , o−z)
x = 10864.d0
y = 18817.d0
w r i t e (∗ , ∗) ’P(10864 ,18817) = ’ , rump (x , y)
x = 1 . d0 / 3 . d0
y = 2. d0 / 3 . d0
w r i t e (6 ,100) rump (x , y)

100 format (’P(1 / 3 , 2 / 3) = ’ , e24 .15)
end

f u n c t i o n rump (x , y)
i m p l i c i t double p r e c i s i o n (a−h , o−z)
a=9.d0∗x∗x∗x∗x
b=y∗y∗y∗y
c =2.d0∗y∗y
rump = a−b+c
r e t u r n
end

Estimation of numerical reproducibility 13-16 Sept. 2015 14

An example proposed by S. Rump (2)

The results:

P(10864,18817) = 2.00000000000000
P(1/3,2/3) = 0.802469135802469E+00

Estimation of numerical reproducibility 13-16 Sept. 2015 15

program ex1

use cadna

implicit double precision (a-h,o-z)

implicit type(double_st) (a-h,o-z)
call cadna_init(-1)

x = 10864.d0
y = 18817.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)

write(*,*)’P(10864,18817) = ’,str(rump(x,y))

x = 1.d0/3.d0
y = 2.d0/3.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)

write(*,*)’P(10864,18817) = ’,str(rump(x,y))
call cadna_end()

end

function rump(x,y)

use cadna

implicit double precision (a-h,o-z)

implicit type(double_st) (a-h,o-z)

a = 9.d0*x*x*x*x
b = y*y*y*y
c = 2.d0*y*y
rump = a-b+c
return
end

Estimation of numerical reproducibility 13-16 Sept. 2015 16

program ex1
use cadna
implicit double precision (a-h,o-z)

implicit type(double_st) (a-h,o-z)
call cadna_init(-1)

x = 10864.d0
y = 18817.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)

write(*,*)’P(10864,18817) = ’,str(rump(x,y))

x = 1.d0/3.d0
y = 2.d0/3.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)

write(*,*)’P(10864,18817) = ’,str(rump(x,y))
call cadna_end()

end

function rump(x,y)
use cadna
implicit double precision (a-h,o-z)

implicit type(double_st) (a-h,o-z)

a = 9.d0*x*x*x*x
b = y*y*y*y
c = 2.d0*y*y
rump = a-b+c
return
end

Estimation of numerical reproducibility 13-16 Sept. 2015 16

program ex1
use cadna
implicit double precision (a-h,o-z)

implicit type(double_st) (a-h,o-z)

call cadna_init(-1)
x = 10864.d0
y = 18817.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)

write(*,*)’P(10864,18817) = ’,str(rump(x,y))

x = 1.d0/3.d0
y = 2.d0/3.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)

write(*,*)’P(10864,18817) = ’,str(rump(x,y))
call cadna_end()

end

function rump(x,y)
use cadna
implicit double precision (a-h,o-z)

implicit type(double_st) (a-h,o-z)

a = 9.d0*x*x*x*x
b = y*y*y*y
c = 2.d0*y*y
rump = a-b+c
return
end

Estimation of numerical reproducibility 13-16 Sept. 2015 16

program ex1
use cadna
implicit double precision (a-h,o-z)

implicit type(double_st) (a-h,o-z)

call cadna_init(-1)
x = 10864.d0
y = 18817.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)

write(*,*)’P(10864,18817) = ’,str(rump(x,y))

x = 1.d0/3.d0
y = 2.d0/3.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)

write(*,*)’P(10864,18817) = ’,str(rump(x,y))

call cadna_end()
end

function rump(x,y)
use cadna
implicit double precision (a-h,o-z)

implicit type(double_st) (a-h,o-z)

a = 9.d0*x*x*x*x
b = y*y*y*y
c = 2.d0*y*y
rump = a-b+c
return
end

Estimation of numerical reproducibility 13-16 Sept. 2015 16

program ex1
use cadna
implicit double precision (a-h,o-z)

implicit type(double_st) (a-h,o-z)

call cadna_init(-1)
x = 10864.d0
y = 18817.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)

write(*,*)’P(10864,18817) = ’,str(rump(x,y))

x = 1.d0/3.d0
y = 2.d0/3.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)

write(*,*)’P(10864,18817) = ’,str(rump(x,y))

call cadna_end()
end

function rump(x,y)
use cadna
implicit double precision (a-h,o-z)

implicit type(double_st) (a-h,o-z)

a = 9.d0*x*x*x*x
b = y*y*y*y
c = 2.d0*y*y
rump = a-b+c
return
end

Estimation of numerical reproducibility 13-16 Sept. 2015 16

program ex1
use cadna
implicit type(double_st) (a-h,o-z)
call cadna_init(-1)
x = 10864.d0
y = 18817.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)

write(*,*)’P(10864,18817) = ’,str(rump(x,y))

x = 1.d0/3.d0
y = 2.d0/3.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)

write(*,*)’P(10864,18817) = ’,str(rump(x,y))

call cadna_end()
end

function rump(x,y)
use cadna
implicit type(double_st) (a-h,o-z)
a = 9.d0*x*x*x*x
b = y*y*y*y
c = 2.d0*y*y
rump = a-b+c
return
end

Estimation of numerical reproducibility 13-16 Sept. 2015 16

program ex1
use cadna
implicit type(double_st) (a-h,o-z)
call cadna_init(-1)
x = 10864.d0
y = 18817.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)

write(*,*)’P(10864,18817) = ’,str(rump(x,y))

x = 1.d0/3.d0
y = 2.d0/3.d0
write(*,*)’P(10864,18817) = ’, rump(x,y)

write(*,*)’P(10864,18817) = ’,str(rump(x,y))

call cadna_end()
end

function rump(x,y)
use cadna
implicit type(double_st) (a-h,o-z)
a = 9.d0*x*x*x*x
b = y*y*y*y
c = 2.d0*y*y
rump = a-b+c
return
end

Estimation of numerical reproducibility 13-16 Sept. 2015 16

program ex1
use cadna
implicit type(double_st) (a-h,o-z)
call cadna_init(-1)
x = 10864.d0
y = 18817.d0
write(*,*)’P(10864,18817) = ’,str(rump(x,y))
x = 1.d0/3.d0
y = 2.d0/3.d0
write(*,*)’P(10864,18817) = ’,str(rump(x,y))
call cadna_end()
end

function rump(x,y)
use cadna
implicit type(double_st) (a-h,o-z)
a = 9.d0*x*x*x*x
b = y*y*y*y
c = 2.d0*y*y
rump = a-b+c
return
end

Estimation of numerical reproducibility 13-16 Sept. 2015 16

The run with CADNA

—————————————————–
CADNA software — University P. et M. Curie — LIP6
Self-validation detection: ON
Mathematical instabilities detection: ON
Branching instabilities detection: ON
Intrinsic instabilities detection: ON
Cancellation instabilities detection: ON
—————————————————–
P(10864,18817) = @.0
P(1/3,2/3) = 0.802469135802469E+000
—————————————————–
CADNA software — University P. et M. Curie — LIP6
There are 2 numerical instabilities
0 UNSTABLE DIVISION(S)
0 UNSTABLE POWER FUNCTION(S)
0 UNSTABLE MULTIPLICATION(S)
0 UNSTABLE BRANCHING(S)
0 UNSTABLE MATHEMATICAL FUNCTION(S)
0 UNSTABLE INTRINSIC FUNCTION(S)
2 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

Estimation of numerical reproducibility 13-16 Sept. 2015 17

CADNA on CPU

Rounding mode change: the rnd_switch function
switches the rounding mode from +∞ to −∞, or from −∞ to +∞.
is written in assembly language
changes two bits in the FPU Control Word.

Instability detection:
dedicated counters are incremented
the occurrence of each kind of instability is given at the end of the run.

Estimation of numerical reproducibility 13-16 Sept. 2015 18

CADNA on CPU

Rounding mode change: the rnd_switch function
switches the rounding mode from +∞ to −∞, or from −∞ to +∞.
is written in assembly language
changes two bits in the FPU Control Word.

Instability detection:
dedicated counters are incremented
the occurrence of each kind of instability is given at the end of the run.

Estimation of numerical reproducibility 13-16 Sept. 2015 18

CADNA for CPU-GPU simulations
Rounding mode change
An arithmetic operation on GPU can be performed with a specified rounding
mode.

CPU

if (RANDOM) rnd_switch();
res.x=a.x*b.x;

if (RANDOM) rnd_switch();
res.y=a.y*b.y;
rnd_switch();
res.z=a.z*b.z;

GPU
if (RANDOMGPU())
res.x=__fmul_ru(a.x,b.x);

else
res.x=__fmul_rd(a.x,b.x);

if (RANDOMGPU()) {
res.y=__fmul_rd(a.y,b.y);
res.z=__fmul_ru(a.z,b.z);

}
else {
res.y=__fmul_ru(a.y,b.y);
res.z=__fmul_rd(a.z,b.z);

}

2 types: float_st for CPU computation and float_gpu_st for GPU
computation. Estimation of numerical reproducibility 13-16 Sept. 2015 19

CADNA for CPU-GPU simulations

Instability detection

No counter: would need more memory (shared) and would need a lot of
atomic operations
An unsigned char is associated with each result (each bit is associated
with a type of instability).

CPU +GPU
class float_st {
protected:
float x,y,z;
private:
mutable unsigned int accuracy;
unsigned char accuracy;
mutable unsigned char error;
unsigned char pad1, pad2;
}

GPU
class float_gpu_st {
public:
float x,y,z;
public:
mutable unsigned char accuracy;
mutable unsigned char error;
unsigned char pad1, pad2; }

Estimation of numerical reproducibility 13-16 Sept. 2015 20

CADNA for CPU-GPU simulations

Instability detection

No counter: would need more memory (shared) and would need a lot of
atomic operations
An unsigned char is associated with each result (each bit is associated
with a type of instability).

CPU +GPU
class float_st {
protected:
float x,y,z;
private:
mutable unsigned int accuracy;
unsigned char accuracy;
mutable unsigned char error;
unsigned char pad1, pad2;
}

GPU
class float_gpu_st {
public:
float x,y,z;
public:
mutable unsigned char accuracy;
mutable unsigned char error;
unsigned char pad1, pad2; }

Estimation of numerical reproducibility 13-16 Sept. 2015 20

CADNA for CPU-GPU simulations

Instability detection

No counter: would need more memory (shared) and would need a lot of
atomic operations
An unsigned char is associated with each result (each bit is associated
with a type of instability).

CPU +GPU
class float_st {
protected:
float x,y,z;
private:
mutable unsigned int accuracy;
unsigned char accuracy;
mutable unsigned char error;
unsigned char pad1, pad2;
}

GPU
class float_gpu_st {
public:
float x,y,z;
public:
mutable unsigned char accuracy;
mutable unsigned char error;
unsigned char pad1, pad2; }

Estimation of numerical reproducibility 13-16 Sept. 2015 20

Example: matrix multiplication

#include "cadna.h"
#include "cadna_gpu.cu"

__global__ void matMulKernel(
float_gpu_st* mat1,
float_gpu_st* mat2,
float_gpu_st* matRes,
int dim) {

unsigned int x = blockDim.x*blockIdx.x+threadIdx.x;
unsigned int y = blockDim.y*blockIdx.y+threadIdx.y;

cadna_init_gpu();

if (x < dim && y < dim){
float_gpu_st temp;
temp=0;
for(int i=0; i<dim;i++){
temp = temp + mat1[y * dim + i] * mat2[i * dim + x];

}
matRes[y * dim + x] = temp;
}

}

Estimation of numerical reproducibility 13-16 Sept. 2015 21

Example: matrix multiplication

...
float_st mat1[DIMMAT][DIMMAT], mat2[DIMMAT][DIMMAT],

res[DIMMAT][DIMMAT];
...
cadna_init(-1);
int size = DIMMAT * DIMMAT * sizeof(float_st);
cudaMalloc((void **) &d_mat1, size);
cudaMalloc((void **) &d_mat2, size);
cudaMalloc((void **) &d_res, size);
cudaMemcpy(d_mat1, mat1, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_mat2, mat2, size, cudaMemcpyHostToDevice);

dim3 threadsPerBlock(16,16);
int nbbx = (int)ceil((float)DIMMAT/(float)16);
int nbby = (int)ceil((float)DIMMAT/(float)16);
dim3 numBlocks(nbbx , nbby);
matMulKernel<<< numBlocks , threadsPerBlock>>>
(d_mat1, d_mat2, d_res, DIMMAT);
cudaMemcpy(res, d_res, size, cudaMemcpyDeviceToHost);
...
cadna_end();

Estimation of numerical reproducibility 13-16 Sept. 2015 22

Output

mat1=
0.0000000E+000 0.1000000E+001 0.2000000E+001 0.3000000E+001
0.4000000E+001 0.5000000E+001 0.6000000E+001 0.6999999E+001
0.8000000E+001 @.0 0.1000000E+002 0.1099999E+002
0.1199999E+002 0.1299999E+002 0.1400000E+002 0.1500000E+002

mat2=
0.1000000E+001 0.1000000E+001 0.1000000E+001 0.1000000E+001
0.1000000E+001 @.0 0.1000000E+001 0.1000000E+001
0.1000000E+001 0.1000000E+001 0.1000000E+001 0.1000000E+001
0.1000000E+001 0.1000000E+001 0.1000000E+001 0.1000000E+001

res=
0.5999999E+001 @.0 0.5999999E+001 0.5999999E+001
0.2199999E+002 @.0 0.2199999E+002 0.2199999E+002
@.0 @.0 MUL @.0 @.0
0.5399999E+002 @.0 0.5399999E+002 0.5399999E+002
--
CADNA GPU software --- University P. et M. Curie --- LIP6
No instability detected on CPU
--

Estimation of numerical reproducibility 13-16 Sept. 2015 23

The acoustic wave propagation code examined with
CADNA

The code is run on:
an AMD Opteron 6168 CPU with gcc
an NVIDIA C2050 GPU with CUDA.

With both implementations of the finite difference scheme, the number of
exact digits varies from 0 to 7 (single precision).

Its mean value is:
4.06 with both schemes on CPU
3.43 with scheme 1 and 3.49 with scheme 2 on GPU.

⇒ consistent with our previous observations

Instabilities detected: > 270 000 cancellations

Estimation of numerical reproducibility 13-16 Sept. 2015 24

The acoustic wave propagation code examined with
CADNA

Results computed at 3 different points using scheme 1:

Point in the space domain
p1 = (0,19,62) p2 = (50,12,2) p3 = (20,1,46)

IEEE CPU -1.110479E+0 5.454238E+1 6.141038E+2
IEEE GPU -1.110204E+0 5.454224E+1 6.141046E+2

CADNA CPU -1.1E+0 5.454E+1 6.14104E+2
CADNA GPU -1.11E+0 5.45E+1 6.1410E+2

Reference -1.108603879E+0 5.454034021E+1 6.141041156E+2

Despite differences in the estimated accuracy, the same trend can be
observed on CPU and on GPU.

Highest round-off errors impact negligible results.
Highest results impacted by low round-off errors.

Estimation of numerical reproducibility 13-16 Sept. 2015 25

Accuracy distribution on CPU

Estimation of numerical reproducibility 13-16 Sept. 2015 26

Accuracy distribution on GPU

Estimation of numerical reproducibility 13-16 Sept. 2015 27

Execution times

CPU
execution instability detection execution time (s) ratio

IEEE - 110.8 1
CADNA all instabilities 4349 39.3

no instability 1655 14.9
mul., div., branching 1663 15.0

GPU
execution instability detection execution time (s) ratio

IEEE - 0.80 1
CADNA mul., div., branching 5.73 7.2

Estimation of numerical reproducibility 13-16 Sept. 2015 28

Conclusion

Stochastic arithmetic can estimate which digits are affected by round-off
errors and possibly explain reproducibility failures.

Related works :

taking advantage of SIMD instructions (SSE, AVX, Xeon Phi)
CADNA for MPI codes
CADNA for OpenMP codes.

Estimation of numerical reproducibility 13-16 Sept. 2015 29

Estimation of numerical reproducibility 13-16 Sept. 2015 30

On the probability of the confidence interval

With β = 95% and N = 3,

the probability of overestimating the number of exact significant digits of
at least 1 is 0.054%
the probability of underestimating the number of exact significant digits of
at least 1 is 29%.

By choosing a confidence interval at 95%, we prefer to guarantee a minimal
number of exact significant digits with high probability (99.946%), even if we
are often pessimistic by 1 digit.

Estimation of numerical reproducibility 13-16 Sept. 2015 31

