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Introduction

Discrete Stochastic Arithmetic (DSA)

based on a probabilistic approach
enables one to estimate round-off error propagation in a program ,

cost (memory, execution time) /

How to take benefit of multicore architectures to reduce the cost of DSA for
the numerical validation of sequential programs?
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The CESTAC method
M. La Porte, J. Vignes, 1974

The implementation of the CESTAC method in a code providing a result R
consists in:

performing N times this code with the random rounding mode to obtain N
samples Ri of R,
choosing as the computed result the mean value R of Ri , i = 1, ...,N,
estimating the number of exact significant decimal digits of R with

CR = log10

(√
N
∣∣R∣∣

στβ

)

where

R =
1
N

N∑
i=1

Ri and σ2 =
1

N − 1

N∑
i=1

(
Ri − R

)2
.

τβ is the value of Student’s distribution for N − 1 degrees of freedom and
a probability level β.

In pratice, N = 3 and β = 95%.
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Self-validation of the CESTAC method

The CESTAC method is based on a 1st order model.

A multiplication of two insignificant results
or a division by an insignificant result

may invalidate the 1st order approximation.

Therefore the CESTAC method requires a dynamical control of multiplications
and divisions, during the execution of the code.
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The concept of computed zero

J. Vignes, 1986

Definition
Using the CESTAC method, a result R is a computed zero, denoted by @.0, if

∀i ,Ri = 0 or CR ≤ 0.

It means that R is a computed result which, because of round-off errors,
cannot be distinguished from 0.
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The stochastic definitions

Definition
Let X and Y be two results computed using the CESTAC method (N-sample),
X is stochastically equal to Y , noted X s= Y , if and only if

X − Y = @.0.

Definition
Let X and Y be two results computed using the CESTAC method (N-sample).

X is stochastically strictly greater than Y , noted X s> Y , if and only if

X > Y and X s=/ Y

X is stochastically greater than or equal to Y , noted X s≥ Y , if and only if

X ≥ Y or X s= Y

Discrete Stochastic Arithmetic (DSA) is defined as the joint use of the
CESTAC method, the computed zero and the stochastic relation definitions.
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The CADNA library http://www.lip6.fr/cadna

The CADNA library implements Discrete Stochastic Arithmetic.

CADNA allows to estimate round-off error propagation in any scientific
program written in Fortran or in C++.

More precisely, CADNA enables one to:
estimate the numerical quality of any result
control branching statements
perform a dynamic numerical debugging
take into account uncertainty on data.

CADNA provides new numerical types, the stochastic types, which consist of:
3 floating point variables
an integer variable to store the accuracy.

All operators and mathematical functions are overloaded for these types.
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Parallelization of Discrete Stochastic Arithmetic

3 UNIX processes are executed in parallel.
They exchange information through a communication system.

Functions and operations that require data exchange:
1st group: synchronization required

...to ensure all processes compute the same result and perform
the same sequence of instructions.

equality and order relational operations
the absolute value function
conversions from a stochastic type to a classical
floating-point type
functions which compute the number of exact significant
digits of results
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Parallelization of Discrete Stochastic Arithmetic

3 UNIX processes are executed in parallel.
They exchange information through a communication system.

Functions and operations that require data exchange:
1st group: synchronization required

...to ensure all processes compute the same result and perform
the same sequence of instructions.

2nd group: a part of the computation can be performed later

multiplications
divisions

The control of instabilities can be postponed. It has no impact
on the choice of the next instructions.
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Execution of a program using multicore DSA

user program:
cadna_init(-1);
...

Creation of a shared memory segment
Launch of 2 other identical processes (fork UNIX function)

process 1: process 2: process 3:
... ... ...
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Execution of a program using multicore DSA

user program:
cadna_init(-1);
...
A = ...
B = ...

All assignments, arithmetical operations and mathematical functions are
overloaded.

process 1: process 2: process 3:
... ... ...
A1 = ... A2 = ... A3 = ...
B1 = ... B2 = ... B3 = ...
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Execution of a program using multicore DSA

user program:
cadna_init(-1);
...
A = ...
B = ...
if (A == B)

Each process computes the difference between its operands.
Associativity is not necessarily satisfied in IEEE floating-point arithmetic
⇒ the 3 processes must have the same ordered triplet D = (D1,D2,D3).
The number CD of exact significant digits of D is computed by all processes.

process 1: process 2: process 3:
... ... ...
A1 = ... A2 = ... A3 = ...
B1 = ... B2 = ... B3 = ...
D1 = A1 − B1 D2 = A2 − B2 D3 = A3 − B3

all_to_all_exchange(D1 , D2, D3)
D = (D1,D2,D3) D = (D1,D2,D3) D = (D1,D2,D3)
if (D == @.0) if (D == @.0) if (D == @.0)

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 9



Execution of a program using multicore DSA

user program:
cadna_init(-1);
...
A = ...
B = ...
if (A == B)
...
cadna_end();

The branch chosen is the same for the three processes.

process 1: process 2: process 3:
... ... ...
A1 = ... A2 = ... A3 = ...
B1 = ... B2 = ... B3 = ...
D1 = A1 − B1 D2 = A2 − B2 D3 = A3 − B3

all_to_all_exchange(D1 , D2, D3)
D = (D1,D2,D3) D = (D1,D2,D3) D = (D1,D2,D3)
if (D == @.0) if (D == @.0) if (D == @.0)
... ... ...

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 9



Several multicore versions

1 with synchronous data exchange
any data exchange is performed synchronously

2 with a validation box
1st group of functions or operations:
synchronizations
2nd group of functions or operations (multiplications, divisions):
the control of accuracy can be postponed

Computation box: 3 processes run 3 instances of the program and fill
buffers with multiplication operands & divisors

Validation box: 1 process checks their accuracy

3 with a validation box and an accuracy variable associated with any
stochastic number
Without it, the accuracy of a stochastic number may be computed several times
even if this number is not modified.
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Several multicore versions

1 with synchronous data exchange
any data exchange is performed synchronously

2 with a validation box
1st group of functions or operations:
synchronizations
2nd group of functions or operations (multiplications, divisions):
the control of accuracy can be postponed

3 with a validation box and an accuracy variable associated with any
stochastic number
Without it, the accuracy of a stochastic number may be computed several times
even if this number is not modified.

Performance test (quad-core Intel i5-2500 processor, gcc 4.6.3 compiler)
Matrix multiplication & linear system solving using Jacobi method
Versions 1 & 3⇒ similar performance
cost reduced by ≈ 2 w.r.t. the sequential CADNA library.
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Computation of integrals using the trapezoidal method

I1 =
∫ 100

1 f1(x)dx with f1(x) =
sin(x)

x + cos(x)exp(sin(x))

Execution instability execution ratio
detection time (s)

IEEE - 8.80 1
sequential DSA full 94.00 10.7

self-validation 66.17 7.5
no detection 57.57 6.5

parallel DSA self-validation 56.73 6.4
(synchronous exchange) no detection 30.59 3.5

parallel DSA self-validation 35.11 4.0
(validation box) no detection 28.06 3.2

parallel DSA self-validation 32.28 3.7
(validation box & accuracy) no detection 32.24 3.7
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Computation of integrals using the trapezoidal method

I2 =
∫ 2
−1 f2(x)dx with f2(x) = 2x5−10x4+5x3−60x2+80x+37

8x4+13x3−38x2+43x+513

f2 is particularly unfavourable to DSA, because it contains mathematical
expressions that are efficiently computed using IEEE floating-point arithmetic.

Execution instability execution ratio
detection time (s)

IEEE - 0.22 1
sequential DSA full 40.18 182.6

self-validation 28.15 128.0
no detection 20.02 91.0

parallel DSA self-validation 17.91 81.4
(synchronous exchange) no detection 10.96 49.8

parallel DSA self-validation 23.09 105.0
(validation box) no detection 8.71 39.6

parallel DSA self-validation 10.85 49.3
(validation box & accuracy) no detection 10.81 49.1
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Numerical validation of the shallow-water application
Simulation of the linear flow of a nonviscous fluid in shallow-water
environment with a free surface (over 8,000 lines of codes)

Numerical instabilities:
212 unstable multiplications
149,564 losses of accuracy due to cancellations

Execution instability execution ratio
detection time (s)

IEEE - 7.76 1
sequential DSA full 192.38 24.8

self-validation 70.64 9.1
no detection 70.65 9.1

parallel DSA self-validation 41.34 5.3
(synchronous exchange) no detection 19.42 2.5

parallel DSA self-validation 25.28 3.3
(validation box) no detection 16.75 2.2

parallel DSA self-validation 20.17 2.6
(validation box & accuracy) no detection 20.19 2.6
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Numerical validation of the shallow-water application
Simulation of the linear flow of a nonviscous fluid in shallow-water
environment with a free surface (over 8,000 lines of codes)

Execution instability execution ratio
detection time (s)

IEEE - 7.76 1
sequential DSA full 192.38 24.8

self-validation 70.64 9.1
no detection 70.65 9.1

parallel DSA self-validation 41.34 5.3
(synchronous exchange) no detection 19.42 2.5

parallel DSA self-validation 25.28 3.3
(validation box) no detection 16.75 2.2

parallel DSA self-validation 20.17 2.6
(validation box & accuracy) no detection 20.19 2.6

moderate cost of DSA: the shallow-water application performs not only
computation but also I/O tasks.
cost reduced by 3.5 w.r.t. the sequential CADNA library with
self-validation.
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Conclusion

Recommended version: validation box and accuracy variable

cost reduced by ≈ 2 w.r.t. the sequential CADNA library

The cost on a computation kernel may be high.
It usually becomes reasonable on a real-life application.

same modifications required by the sequential CADNA library and our parallel
implementation of DSA.

Recommended strategy:
1 execution with our parallel implementation of DSA to check the numerical

quality of the results
2 for a more detailed analysis execution with the CADNA library

instructions responsible for numerical instabilities:
identified with a debugger
if possible, modified to improve the numerical quality of the results.
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