
Parallelization of Discrete Stochastic Arithmetic on
multicore architectures

Fabienne Jézéquel1, Jean-Luc Lamotte1, Olena Chubach2

1Laboratoire d’Informatique de Paris 6
Université Pierre et Marie Curie, Paris

France

2Odessa I. I. Mechnikov National University,
Odessa,
Ukraine

10th International Conference on Information Technology: New
Generations, ITNG 2013

April 15-17, 2013
Las Vegas, Nevada, USA

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 1



Introduction

Discrete Stochastic Arithmetic (DSA)

based on a probabilistic approach
enables one to estimate round-off error propagation in a program ,

cost (memory, execution time) /

How to take benefit of multicore architectures to reduce the cost of DSA for
the numerical validation of sequential programs?

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 2



The CESTAC method
M. La Porte, J. Vignes, 1974

The implementation of the CESTAC method in a code providing a result R
consists in:

performing N times this code with the random rounding mode to obtain N
samples Ri of R,
choosing as the computed result the mean value R of Ri , i = 1, ...,N,
estimating the number of exact significant decimal digits of R with

CR = log10

(√
N
∣∣R∣∣

στβ

)

where

R =
1
N

N∑
i=1

Ri and σ2 =
1

N − 1

N∑
i=1

(
Ri − R

)2
.

τβ is the value of Student’s distribution for N − 1 degrees of freedom and
a probability level β.

In pratice, N = 3 and β = 95%.
Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 3



Self-validation of the CESTAC method

The CESTAC method is based on a 1st order model.

A multiplication of two insignificant results
or a division by an insignificant result

may invalidate the 1st order approximation.

Therefore the CESTAC method requires a dynamical control of multiplications
and divisions, during the execution of the code.

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 4



The concept of computed zero

J. Vignes, 1986

Definition
Using the CESTAC method, a result R is a computed zero, denoted by @.0, if

∀i ,Ri = 0 or CR ≤ 0.

It means that R is a computed result which, because of round-off errors,
cannot be distinguished from 0.

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 5



The stochastic definitions

Definition
Let X and Y be two results computed using the CESTAC method (N-sample),
X is stochastically equal to Y , noted X s= Y , if and only if

X − Y = @.0.

Definition
Let X and Y be two results computed using the CESTAC method (N-sample).

X is stochastically strictly greater than Y , noted X s> Y , if and only if

X > Y and X s=/ Y

X is stochastically greater than or equal to Y , noted X s≥ Y , if and only if

X ≥ Y or X s= Y

Discrete Stochastic Arithmetic (DSA) is defined as the joint use of the
CESTAC method, the computed zero and the stochastic relation definitions.

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 6



The CADNA library http://www.lip6.fr/cadna

The CADNA library implements Discrete Stochastic Arithmetic.

CADNA allows to estimate round-off error propagation in any scientific
program written in Fortran or in C++.

More precisely, CADNA enables one to:
estimate the numerical quality of any result
control branching statements
perform a dynamic numerical debugging
take into account uncertainty on data.

CADNA provides new numerical types, the stochastic types, which consist of:
3 floating point variables
an integer variable to store the accuracy.

All operators and mathematical functions are overloaded for these types.

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 7



Parallelization of Discrete Stochastic Arithmetic

3 UNIX processes are executed in parallel.
They exchange information through a communication system.

Functions and operations that require data exchange:
1st group: synchronization required

...to ensure all processes compute the same result and perform
the same sequence of instructions.

equality and order relational operations
the absolute value function
conversions from a stochastic type to a classical
floating-point type
functions which compute the number of exact significant
digits of results

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 8



Parallelization of Discrete Stochastic Arithmetic

3 UNIX processes are executed in parallel.
They exchange information through a communication system.

Functions and operations that require data exchange:
1st group: synchronization required

...to ensure all processes compute the same result and perform
the same sequence of instructions.

2nd group: a part of the computation can be performed later

multiplications
divisions

The control of instabilities can be postponed. It has no impact
on the choice of the next instructions.

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 8



Execution of a program using multicore DSA

user program:
cadna_init(-1);
...

Creation of a shared memory segment
Launch of 2 other identical processes (fork UNIX function)

process 1: process 2: process 3:
... ... ...

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 9



Execution of a program using multicore DSA

user program:
cadna_init(-1);
...
A = ...
B = ...

All assignments, arithmetical operations and mathematical functions are
overloaded.

process 1: process 2: process 3:
... ... ...
A1 = ... A2 = ... A3 = ...
B1 = ... B2 = ... B3 = ...

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 9



Execution of a program using multicore DSA

user program:
cadna_init(-1);
...
A = ...
B = ...
if (A == B)

Each process computes the difference between its operands.
Associativity is not necessarily satisfied in IEEE floating-point arithmetic
⇒ the 3 processes must have the same ordered triplet D = (D1,D2,D3).
The number CD of exact significant digits of D is computed by all processes.

process 1: process 2: process 3:
... ... ...
A1 = ... A2 = ... A3 = ...
B1 = ... B2 = ... B3 = ...
D1 = A1 − B1 D2 = A2 − B2 D3 = A3 − B3

all_to_all_exchange(D1 , D2, D3)
D = (D1,D2,D3) D = (D1,D2,D3) D = (D1,D2,D3)
if (D == @.0) if (D == @.0) if (D == @.0)

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 9



Execution of a program using multicore DSA

user program:
cadna_init(-1);
...
A = ...
B = ...
if (A == B)
...
cadna_end();

The branch chosen is the same for the three processes.

process 1: process 2: process 3:
... ... ...
A1 = ... A2 = ... A3 = ...
B1 = ... B2 = ... B3 = ...
D1 = A1 − B1 D2 = A2 − B2 D3 = A3 − B3

all_to_all_exchange(D1 , D2, D3)
D = (D1,D2,D3) D = (D1,D2,D3) D = (D1,D2,D3)
if (D == @.0) if (D == @.0) if (D == @.0)
... ... ...

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 9



Several multicore versions

1 with synchronous data exchange
any data exchange is performed synchronously

2 with a validation box
1st group of functions or operations:
synchronizations
2nd group of functions or operations (multiplications, divisions):
the control of accuracy can be postponed

Computation box: 3 processes run 3 instances of the program and fill
buffers with multiplication operands & divisors

Validation box: 1 process checks their accuracy

3 with a validation box and an accuracy variable associated with any
stochastic number
Without it, the accuracy of a stochastic number may be computed several times
even if this number is not modified.

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 10



Several multicore versions

1 with synchronous data exchange
any data exchange is performed synchronously

2 with a validation box
1st group of functions or operations:
synchronizations
2nd group of functions or operations (multiplications, divisions):
the control of accuracy can be postponed

3 with a validation box and an accuracy variable associated with any
stochastic number
Without it, the accuracy of a stochastic number may be computed several times
even if this number is not modified.

Performance test (quad-core Intel i5-2500 processor, gcc 4.6.3 compiler)
Matrix multiplication & linear system solving using Jacobi method
Versions 1 & 3⇒ similar performance
cost reduced by ≈ 2 w.r.t. the sequential CADNA library.

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 10



Computation of integrals using the trapezoidal method

I1 =
∫ 100

1 f1(x)dx with f1(x) =
sin(x)

x + cos(x)exp(sin(x))

Execution instability execution ratio
detection time (s)

IEEE - 8.80 1
sequential DSA full 94.00 10.7

self-validation 66.17 7.5
no detection 57.57 6.5

parallel DSA self-validation 56.73 6.4
(synchronous exchange) no detection 30.59 3.5

parallel DSA self-validation 35.11 4.0
(validation box) no detection 28.06 3.2

parallel DSA self-validation 32.28 3.7
(validation box & accuracy) no detection 32.24 3.7

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 11



Computation of integrals using the trapezoidal method

I2 =
∫ 2
−1 f2(x)dx with f2(x) = 2x5−10x4+5x3−60x2+80x+37

8x4+13x3−38x2+43x+513

f2 is particularly unfavourable to DSA, because it contains mathematical
expressions that are efficiently computed using IEEE floating-point arithmetic.

Execution instability execution ratio
detection time (s)

IEEE - 0.22 1
sequential DSA full 40.18 182.6

self-validation 28.15 128.0
no detection 20.02 91.0

parallel DSA self-validation 17.91 81.4
(synchronous exchange) no detection 10.96 49.8

parallel DSA self-validation 23.09 105.0
(validation box) no detection 8.71 39.6

parallel DSA self-validation 10.85 49.3
(validation box & accuracy) no detection 10.81 49.1

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 12



Numerical validation of the shallow-water application
Simulation of the linear flow of a nonviscous fluid in shallow-water
environment with a free surface (over 8,000 lines of codes)

Numerical instabilities:
212 unstable multiplications
149,564 losses of accuracy due to cancellations

Execution instability execution ratio
detection time (s)

IEEE - 7.76 1
sequential DSA full 192.38 24.8

self-validation 70.64 9.1
no detection 70.65 9.1

parallel DSA self-validation 41.34 5.3
(synchronous exchange) no detection 19.42 2.5

parallel DSA self-validation 25.28 3.3
(validation box) no detection 16.75 2.2

parallel DSA self-validation 20.17 2.6
(validation box & accuracy) no detection 20.19 2.6

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 13



Numerical validation of the shallow-water application
Simulation of the linear flow of a nonviscous fluid in shallow-water
environment with a free surface (over 8,000 lines of codes)

Execution instability execution ratio
detection time (s)

IEEE - 7.76 1
sequential DSA full 192.38 24.8

self-validation 70.64 9.1
no detection 70.65 9.1

parallel DSA self-validation 41.34 5.3
(synchronous exchange) no detection 19.42 2.5

parallel DSA self-validation 25.28 3.3
(validation box) no detection 16.75 2.2

parallel DSA self-validation 20.17 2.6
(validation box & accuracy) no detection 20.19 2.6

moderate cost of DSA: the shallow-water application performs not only
computation but also I/O tasks.
cost reduced by 3.5 w.r.t. the sequential CADNA library with
self-validation.

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 13



Conclusion

Recommended version: validation box and accuracy variable

cost reduced by ≈ 2 w.r.t. the sequential CADNA library

The cost on a computation kernel may be high.
It usually becomes reasonable on a real-life application.

same modifications required by the sequential CADNA library and our parallel
implementation of DSA.

Recommended strategy:
1 execution with our parallel implementation of DSA to check the numerical

quality of the results
2 for a more detailed analysis execution with the CADNA library

instructions responsible for numerical instabilities:
identified with a debugger
if possible, modified to improve the numerical quality of the results.

Parallelization of Discrete Stochastic Arithmetic on multicore architectures ITNG 2013 14


