Tight interval inclusions with compensated

algorithms

Stef Graillat & Fabienne Jézéquel

Sorbonne Université, Laboratoire d’Informatique de Paris 6 (LIP6), France

18th international symposium on Scientific Computing, Computer
Arithmetic and Validated Numerics (SCAN 2018)

Tokyo, Japan, 10-15 September 2018

< ™\
1P S
UNIVERSITE

S. Graillat & F. Jézéquel Tight interval inclusions with compensate orithms

Introduction

Exascale barrier broken in June 2018: 1.8 108 floating-point
operations per second. (Oak Ridge National Laboratory, analysis
of genomic data)

@ Increasing power of current computers
— GPU accelerators, Intel Xeon Phi processors, etc.

e Enable to solve more complex problems
— Quantum field theory, supernova simulation, etc.

@ A high number of floating-point operations performed

— Each of them can lead to a rounding error

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

Introduction

Exascale barrier broken in June 2018: 1.8 108 floating-point
operations per second. (Oak Ridge National Laboratory, analysis
of genomic data)

@ Increasing power of current computers
— GPU accelerators, Intel Xeon Phi processors, etc.

e Enable to solve more complex problems
— Quantum field theory, supernova simulation, etc.

@ A high number of floating-point operations performed

— Each of them can lead to a rounding error

= Need for accuracy and validation

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

Key tools for accurate computation

e fixed length expansions libraries: double-double (Briggs,
Bailey, Hida, Li), quad-double (Bailey, Hida, Li)

e arbitrary length expansions libraries: Priest, Shewchuk,
Joldes-Muller-Popescu

e arbitrary precision libraries: ARPREC, MPFR, MPIR

e compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi,...)
based on EFTs (Error Free Transformations)

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

Key tools for accurate computation

e fixed length expansions libraries: double-double (Briggs,
Bailey, Hida, Li), quad-double (Bailey, Hida, Li)

e arbitrary length expansions libraries: Priest, Shewchuk,
Joldes-Muller-Popescu

e arbitrary precision libraries: ARPREC, MPFR, MPIR

e compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi,...)
based on EFTs (Error Free Transformations)

EFTs: properties and algorithms to compute the generated
elementary rounding errors

Let a,b € F, for the basic operation o € {4, —, x}, with rounding
to nearest,

aob="fl(aob)+e withe e F

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

Numerical validation with interval arithmetic

e Principle: replace numbers by intervals and compute.

o Fundamental theorem of interval arithmetic: the exact result
belongs to the computed interval.

@ No result is lost, the computed interval is guaranteed to
contain every possible result.

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

Numerical validation with interval arithmetic

e Principle: replace numbers by intervals and compute.

o Fundamental theorem of interval arithmetic: the exact result
belongs to the computed interval.

@ No result is lost, the computed interval is guaranteed to
contain every possible result.

How to compute tight interval inclusions
with compensated algorithms?

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

Numerical validation with interval arithmetic

e Principle: replace numbers by intervals and compute.

o Fundamental theorem of interval arithmetic: the exact result
belongs to the computed interval.

@ No result is lost, the computed interval is guaranteed to
contain every possible result.

How to compute tight interval inclusions
with compensated algorithms?

Assume floating-point arithmetic adhering to IEEE 754 with
rounding unit u (no underflow nor overflow).

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

@ Error-free transformations (EFT) with rounding to nearest

© Error-free transformations (EFT) with directed rounding

© Compensated algorithm for summation with directed rounding
@ Compensated dot product with directed rounding

© Compensated Horner scheme with directed rounding

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

Outline

@ Error-free transformations (EFT) with rounding to nearest

illat & F. g Tight inte inclus with compensat

EFT for addition

r=a®b = a+b=z+y withyeF
Algorithm of Dekker (1971) and Knuth (1974)

Algorithm (EFT of the sum of 2 floating-point numbers

with |a| > |b])

function [z, y] = FastTwoSum(a, b)
T=adb
y=(aoz)®b

Algorithm (EFT of the sum of 2 floating-point numbers)

function [z,y] = TwoSum(a, b)
zT=a®db
z=r0a
y=(@o(zoz)e (o2

t & F. Jézéquel Tight interval inclusions with compensated algorithms

EFT for the product (1/3)

r=a®b = axb=z+y withyelF
Algorithm TwoProduct by Veltkamp and Dekker (1971)

a=2z+y and z and y non overlapping with |y| < |z|.

Algorithm (Error-free split of a floating-point number

into two parts)

function [z,y] = Split(a)

factor = 2° 41 u=27" s=[p/2]
c=factor®a

r=c6(cOa)

Yy=a0x

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

EFT for the product (2/3)

Algorithm (EFT of the product of 2 floating-point
numbers)

function [z, y] = TwoProduct(a, b)
r=a®b
[a1, az] = Split(a)
[bl, bg] = Split(b)
Yy=a:00,0 (001 ®b) O az®b1) ©ay ® by)

S. Graillat & F. Jézéquel

Tight interval inclusions with compensated algorithms

EFT for the product (3/3)

r=a®b = axb=x+y withyeF
Given a,b,c € F,

@ FMA(a,b,c) is the nearest floating-point number to a x b+ ¢

Algorithm (EFT of the product of 2 floating-point

numbers)

function [z, y] = TwoProdFMA(a, b)
rT=a®b
y = FMA(a, b, —x)

FMA is available for example on PowerPC, Itanium, Cell, Xeon Phi,
AMD and Nvidia GPU, Intel (Haswell), AMD (Bulldozer)

Processors.

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

Outline

© Error-free transformations (EFT) with directed rounding

illat & F. g Tight inte inclus with compensat

EFT for addition with directed rounding

r=1lx(a+b) = a+b=x+e butpossblye¢F

Algorithm (EFT of the sum of 2 floating-point numbers

with |a| > |b])
function [z, y] = FastTwoSum(a, b)
Y = ﬂ*((a — l’) = b)

Proposition

We have y = fl«(e) and so |e — y| < 2ule|. It yields |e — y| < 4u?|z|
and |e — y| < 4u?|a + b|. Moreover

o ifx=Ae<y

o ifx=V,y<e

S. Graillat & F. Jézéquel

Tight interval inclusions with compensated algorithms

EFT for addition with directed rounding

r=1fl«(a+b) = a+b=x+e butpossiblye¢F

Algorithm (EFT of the sum of 2 floating-point numbers)

function [z,y] = TwoSum(a, b)
z =fl«(x —a)
y=f((a—(z-2)+(-2)

Proposition

We have |e — y| < 4u?|a +b| and |e — y| < 4u?|z|. Moreover
o ifx=A,e<y
o ifx=V,y<e

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

EFT for the product with directed rounding

r=1flx(axb) = axb=x+y withyeF
Given a,b,c € F,

@ FMA(a,b,c) is the nearest floating-point number to a x b+ ¢

Algorithm (EFT of the product of 2 floating-point

numbers)

function [z, y] = TwoProdFMA(a, b)
T = ﬂ*(a X b)
y = FMA(a, b, —x)

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

EFT for the product with directed rounding
a=xz+y and z and y non overlapping with |y| < |z|

Algorithm (Error-free split of a floating-point number

into two parts)

function [z, y] = Split(a)
factor = 2% 4+ 1 Nu=27" s=[p/2]
¢ = fl«(factor X a)
z =fl«(c — (¢ — a))
y = fl«(a — z)

Proposition

| A

We have a = x +y. Moreover,

o the significand of x fits in p — s bits;
e the significand of y fits in s bits.

S. Graillat & F. Jézéquel

Tight interval inclusions with compensated algorithms

EFT for the product with directed rounding

r=1flx(axb) = axb=x+e witheelF

Algorithm (EFT of the product of 2 floating-point

numbers)

function [z, y] = TwoProduct(a, b)
T = ﬂ*(a X b)
la1,as] = Split(a) ; [b1,be] = Split(d)
y = flx(ag X by — (((x — a1 X by) —ag X by) —a; X by))

Proposition

We have e — y| < 8u?|a x b| and |e — y| < 8u?|x|. Moreover
o ifx=Ae<y
o ifx=V,y<e

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

Outline

© Compensated algorithm for summation with directed rounding

Tight inter inclusions with comper algorithms

Compensated algorithm for summation

Let p = {p;} be a vector of n floating-point numbers.

Algorithm (Ogita, Rump, Oishi (2005))

function res = CompSum(p)
T =p1;01=0
fori=2:n

[7i, ¢i] = TwoSum(m; 1, p;)
o; = fl«(0s_1 + @)
res = flx(m, + 0,)

v

Proposition

Let us suppose CompSum is applied, with directed rounding, to
pi€F, 1<i<n. Lets:=> p; and S:= Y |p;|. If nu< 3, then

lres — s| < 2u|s| + 2(1 + 2u)72(2u)S with 7, (u) = m

1—nu’

Compensated algorithm for summation

Algorithm (Tight inclusion using INTLAB)

setround (-1)
Sinf = CompSump (p)
setround (1)
Ssup = CompSump (p)

| A

Proposition

Let p = {p;} be a vector of n floating-point numbers. Then we have

n
Sinf < » p; < Ssup.
=1

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

Numerical experiments

Conditioning and radius/midpoint
T T T

10° T T
—~&— classic summation
—<{— compensated summation
A ep ——a = B — A
100 - P ~ /<> il
A/ /
/ /
/ /
E 10°F / // |
£ /
Q / /
2 / yd
g S /
3 /
- /
& 1070 F / / 1
/ /
/ £
/ /
X /
1078 | // 4
- —— = — —
10'20 1 1 1 1 1 1 1
10° 10° 1010 10'° 1020 102 10%° 10% 1040

Condition number

Outline

@ Compensated dot product with directed rounding

illat & F. g Tight inte inclus with compensat

Compensated dot product

Algorithm (Ogita, Rump and Oishi 2005)

function res = CompDot(x,y)
[p, s] = TwoProduct(z1,y1)
fori=2:n
[h, r] = TwoProduct(z;, ;)
[p, q] = TwoSum(p, h)
S = ﬂ*(S = (q+ T))
end
res = fl«(p+ s)

Proposition

Let x;,y; € F (1 <i<n)andres the result computed by CompDot
with directed rounding. If (n 4+ 1)u < %, then,

lres — 27y| < 2u|zTy| + 2’72+1(2u)‘$TH?/|-

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

Compensated dot product

Algorithm (Tight inclusion using INTLAB)

setround (-1)
Dinf = CompDot(x,y)
setround (1)
Dsup = CompDot(x,y)

| A

Proposition
Let x;,y; € F (1 <i <n) be given. Then we have

Dinf < a:Ty < Dsup.

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

Numerical experiments

Conditioning and radius/midpoint
T T T

102

-

A ‘7& classic dot product

100k ’ —O— compensated dot product]

Radius/midpoint
.
=

10-10 L Y / |

1012k A » 1

G=1 L T I I I

| |
10° 10° 1010 10'° 1020 102 10%° 10% 1040
Condition number

Outline

© Compensated Horner scheme with directed rounding

illat & F. g Tight inte inclus with compensat

Compensated Horner scheme

Let p(x Zaa: with x,a;, € F
=0

Algorithm (Graillat, Langlois, Louvet, 2009)

function res = CompHorner(p, z)
Sp = ap
r, =20
fori=n—-1:-1:0
[pi, m;] = TwoProduct(s;41,x)
[si, 0;] = TwoSum(p;, a;)
r, = ﬂ*(?”i+1 X T+ (7Ti = O'l))
end
res = fl«(sg + 19)

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

Compensated Horner scheme

Theorem

Consider a polynomial p of degree n with floating-point coefficients,
and a floating-point value x. With directed rounding, the forward
error in the compensated Horner algorithm is such that

|CompHorner (p,) — p(x)| < 2ulp(x)] + 272041 (20)*p(|z]),

with p(x) = > 1, a2’

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

Compensated Horner scheme

Algorithm (z > 0, Tight inclusion using INTLAB)

setround (-1)
Einf = CompHorner (p,x)
setround (1)
Esup = CompHorner (p,x)

If x <0, CompHorner(p, —x) is computed
with p(z) = >0 a;(—1)"2".

Proposition
Consider a polynomial p of degree n with floating-point coefficients,
and a floating-point value x.

Einf < p(x) < Esup.

Tight interval inclusions with compensated algorithms

S. Graillat & F. Jézéquel

Numerical experiments

Conditioning and radius/midpoint
T T T

10° T T
—4— Classic Horner
—&— Compensated Horner
A A VELS
A%AAA /N
100 e A?% b
“ »
“ 2
“ »
“ 5
E 10°F Aﬁ O//O]
o
g A
£ A &
B A d
g Va &
1070 F e 4 7
x [
A &
x %
A &
1078 | /<>Q B
0690600 00600 6097
10'20 1 1 1 L L L L
10° 10° 1010 10'° 1020 102 10%° 10% 1040

Condition number

Conclusion and future work

o Compensated methods are a fast way to get accurate results

@ They can be used efficiently with interval arithmetic to obtain
certified results with finite precision

o Interval computations with K-fold compensated algorithms
using Priest’s EFT and FMA

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

References |

1

2|

13l

S. Boldo, S. Graillat, and J.-M. Muller.
On the robustness of the 2Sum and Fast2Sum algorithms.
ACM Trans. Math. Softw., 44(1):4:1-4:14, July 2017.

S. Graillat, F. Jézéquel, and R. Picot.
Numerical validation of compensated summation algorithms
with stochastic arithmetic.

Electronic Notes in Theoretical Computer Science, 317:55—69,
2015.

S. Graillat, F. Jézéquel, and R. Picot.

Numerical validation of compensated algorithms with stochastic

arithmetic.
Applied Mathematics and Computation, 329:339 — 363, 2018.

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

References 11

4]

5]

6]

S. Graillat, Ph. Langlois, and N. Louvet.

Algorithms for accurate, validated and fast polynomial
evaluation.

Japan J. Indust. Appl. Math., 2-3(26):191-214, 20009.

T. Ogita, S. M. Rump, and S. Oishi.
Accurate sum and dot product.
SIAM Journal on Scientific Computing, 26(6):1955-1988, 2005.

D.M. Priest.

On Properties of Floating Point Arithmetics: Numerical
Stability and the Cost of Accurate Computations.

PhD thesis, Mathematics Department, University of California,
Berkeley, CA, USA, November 1992.

S. Graillat & F. Jézéquel Tight interval inclusions with compensated algorithms

Thank you for your attention

	Error-free transformations (EFT) with rounding to nearest
	Error-free transformations (EFT) with directed rounding
	Compensated algorithm for summation with directed rounding
	Compensated dot product with directed rounding
	Compensated Horner scheme with directed rounding

