
Can we avoid rounding-error estimation in HPC
codes and still get trustworthy results?

Fabienne Jézéquel1, Stef Graillat1, Daichi Mukunoki2, Toshiyuki Imamura2,
Roman Iakymchuk1

1LIP6, Sorbonne Université, CNRS, Paris, France

2RIKEN Center for Computational Science, Kobe, Japan

13th International Workshop on Numerical Software Verification 2020
20-21 July 2020

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 1 / 19

Introduction

Current computers: a high number of floating-point operations performed ,
Each of them can lead to a rounding error /

⇒ Numerical validation is crucial ...but costful /
execution time overhead
development cost induced by the application of numerical validation
methods to HPC codes

Can we address this cost problem
...and still get trustworthy results?

Yes, when the input data is affected by rounding and/or measurement errors.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 2 / 19

Introduction

Current computers: a high number of floating-point operations performed ,
Each of them can lead to a rounding error /

⇒ Numerical validation is crucial

...but costful /
execution time overhead
development cost induced by the application of numerical validation
methods to HPC codes

Can we address this cost problem
...and still get trustworthy results?

Yes, when the input data is affected by rounding and/or measurement errors.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 2 / 19

Introduction

Current computers: a high number of floating-point operations performed ,
Each of them can lead to a rounding error /

⇒ Numerical validation is crucial ...but costful /
execution time overhead
development cost induced by the application of numerical validation
methods to HPC codes

Can we address this cost problem
...and still get trustworthy results?

Yes, when the input data is affected by rounding and/or measurement errors.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 2 / 19

Introduction

Current computers: a high number of floating-point operations performed ,
Each of them can lead to a rounding error /

⇒ Numerical validation is crucial ...but costful /
execution time overhead
development cost induced by the application of numerical validation
methods to HPC codes

Can we address this cost problem
...and still get trustworthy results?

Yes, when the input data is affected by rounding and/or measurement errors.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 2 / 19

Definitions

Let y = f (x) be an exact result and ŷ = f̂ (x) be the associated computed result.

The forward error is the difference between y and ŷ .

The backward analysis tries to seek for ∆x s.t. ŷ = f (x +∆x).
∆x is the backward error associated with ŷ .
It measures the distance between the problem that is solved and the initial
one.

The condition number C of the problem is defined as:

C := lim
ε→0+

sup
|∆x|≤ε

[| f (x +∆x)− f (x)|
| f (x)| /

|∆x|
|x|

]
.

It measures the effect on the result of data perturbation.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 3 / 19

Error induced by perturbed data

The relative rounding error is denoted by u.

binary64 format (double precision): u = 2−53

binary32 format (single precision): u = 2−24.

If the algorithm is backward-stable (i.e. the backward error is of the order of u)

| f (x)− f̂ (x)|/| f (x)|.C u.

If the input data are perturbed, i.e. the input data are not x but x̂ = x(1+δ),
then one computes f̂ (x̂) with

| f (x)− f̂ (x̂)|/| f (x)|.C (u+|δ|).

If |δ|À u, the rounding error generated by f̂ is negligible w.r.t. C |δ|.
⇒ Estimating this rounding error may be avoided.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 4 / 19

Error induced by perturbed data

The relative rounding error is denoted by u.

binary64 format (double precision): u = 2−53

binary32 format (single precision): u = 2−24.

If the algorithm is backward-stable (i.e. the backward error is of the order of u)

| f (x)− f̂ (x)|/| f (x)|.C u.

If the input data are perturbed, i.e. the input data are not x but x̂ = x(1+δ),
then one computes f̂ (x̂) with

| f (x)− f̂ (x̂)|/| f (x)|.C (u+|δ|).

If |δ|À u, the rounding error generated by f̂ is negligible w.r.t. C |δ|.
⇒ Estimating this rounding error may be avoided.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 4 / 19

Discrete Stochastic Arithmetic (DSA) [J. Vignes, 2004]
Rounding error estimation

each operation is executed 3 times with a random rounding mode:
R → (R1,R2,R3) where each result Ri is rounded up or down with the same
probability
the number of correct digits in the results is estimated using Student’s test
with the confidence level 95%
operations are executed synchronously
⇒ detection of numerical instabilities

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 5 / 19

The CADNA library http://cadna.lip6.fr

CADNA allows one to use DSA in any scientific program written in C, C++ or
Fortran.

CADNA provides new numerical types, the stochastic types, which consist of:
3 floating point variables
an integer variable to store the accuracy.

All operators and mathematical functions are redefined for these types.
⇒ CADNA requires only a few modifications in user programs.

Performance overhead: ×4 memory, ≈×10 execution time

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 6 / 19

http://cadna.lip6.fr

The CADNA library http://cadna.lip6.fr

CADNA allows one to use DSA in any scientific program written in C, C++ or
Fortran.

CADNA provides new numerical types, the stochastic types, which consist of:
3 floating point variables
an integer variable to store the accuracy.

All operators and mathematical functions are redefined for these types.
⇒ CADNA requires only a few modifications in user programs.

Performance overhead: ×4 memory, ≈×10 execution time

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 6 / 19

http://cadna.lip6.fr

Combining DSA and standard floating-point arithmetic
Computation routines are executed in a code that is controlled using DSA.

Their input data are affected by errors (rounding errors and/or measurement
errors).

⇒ we compare the number of correct digits (estimated by CADNA) in R and R ′

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 7 / 19

Combining DSA and standard floating-point arithmetic
Computation routines are executed in a code that is controlled using DSA.

Their input data are affected by errors (rounding errors and/or measurement
errors).

Computation with a call to CADNA routines:

stochastic
data D

CADNA
routine(s)

stochastic
result R

D and R consist in stochastic arrays (each element is a triplet).

⇒ we compare the number of correct digits (estimated by CADNA) in R and R ′
NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 7 / 19

Combining DSA and standard floating-point arithmetic
Computation routines are executed in a code that is controlled using DSA.

Their input data are affected by errors (rounding errors and/or measurement
errors).

Computation with 3 calls to classic routines:

stochastic
data D

D2

D1

D3

classic routine(s)

classic routine(s)

classic routine(s)

R ′
2

R ′
1

R ′
3

stochastic
result R ′

input data: 3 classic floating-point arrays D1,D2,D3 created from the
triplets of D
We get 3 classic floating-point arrays R ′

1,R ′
2,R ′

3.
A stochastic array R ′ created from R ′

1,R ′
2,R ′

3 can be used in the next parts
of the code.

⇒ we compare the number of correct digits (estimated by CADNA) in R and R ′
NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 7 / 19

Combining DSA and standard floating-point arithmetic
Computation routines are executed in a code that is controlled using DSA.

Their input data are affected by errors (rounding errors and/or measurement
errors).

Computation with 3 calls to classic routines:

stochastic
data D

D2

D1

D3

classic routine(s)

classic routine(s)

classic routine(s)

R ′
2

R ′
1

R ′
3

stochastic
result R ′

input data: 3 classic floating-point arrays D1,D2,D3 created from the
triplets of D
We get 3 classic floating-point arrays R ′

1,R ′
2,R ′

3.
A stochastic array R ′ created from R ′

1,R ′
2,R ′

3 can be used in the next parts
of the code.

⇒ we compare the number of correct digits (estimated by CADNA) in R and R ′
NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 7 / 19

Accuracy comparison
Experimental setup

Each random input value is perturbed with a relative error δ.

For i = 1, . . . ,n2 (matrix mult.) or for i = 1, ...,n (matrix-vector mult.)
we analyze:

the accuracy CR i of the element R i of R

the accuracy CR ′i of the element R ′i of R ′

∆i = ∣∣CR i −CR ′i
∣∣

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 8 / 19

Accuracy comparison
in double precision

accuracy accuracy difference
δ of R between R & R ′

mean min-max mean max
Multiplication of matrices of size 500

1.e-14 13.9 9-15 2.5e-02 2
1.e-13 12.8 8-15 5.8e-03 1
1.e-12 11.9 7-14 4.2e-04 1
1.e-11 10.9 6-13 2.4e-05 1
Multiplication of a matrix of size 1000 with a vector
1.e-14 13.9 12-15 4.6e-02 1
1.e-13 12.7 11-14 7.0e-03 1
1.e-12 11.8 10-13 0 0
1.e-11 10.9 9-12 0 0

As the order of magnitude of δ ↗ the mean accuracy ↘ by 1 digit.
Low difference between the accuracy of R & R ′

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 9 / 19

Performance comparison

We compare the performance of the CADNA routine with codes using:
a naive floating-point algorithm
the Intel MKL implementation.

In both cases: sequential and OpenMP 4 cores

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 10 / 19

Performance for matrix multiplication

Execution time including matrix multiplications and array copies:

10-4

10-3

10-2

10-1

100

101

102

103

 400 800 1200 1600 2000

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Matrix size (n)

CADNA
naive seq

naive OMP
MKL seq

MKL OMP

The codes using 3 classic matrix multiplications perform better than the
CADNA routine.
For matrices of size 2000, the MKL OpenMP implementation outperforms
the CADNA routine by a factor 294 (this gain increases on many-cores).
NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 11 / 19

Performance for matrix multiplication

Execution time for matrices of size 2000:

 0

 20

 40

 60

 80

 100

 120

 140

CADNA
naive seq

naive OMP

MKL seq

MKL OMP

E
xe

cu
ti

o
n
 t

im
e
 (

s)

computation
array copies

Most of the execution time is spent in matrix multiplication.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 12 / 19

Performance for matrix-vector multiplication

Execution time including matrix-vector multiplications and array copies:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2000 4000 6000 8000 10000

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Matrix size (n)

CADNA
naive seq

naive OMP
MKL seq

MKL OMP

The CADNA routine performs better than the other sequential codes.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 13 / 19

Performance for matrix-vector multiplication

Execution time for matrices of size 10000:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

CADNA
naive seq

naive OMP

MKL seq

MKL OMP

E
xe

cu
ti

o
n
 t

im
e
 (

s)
computation
array copies

Except with the CADNA routine, the main part of the execution time is
spent in array copies.
Both computation and array copies are parallelized in the OpenMP codes.
NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 14 / 19

Conclusions/Perspectives

In a code controlled using CADNA, if computation-intensive routines are
run with perturbed data,

classic BLAS routines can be executed 3 times instead of the CADNA
routines with almost no accuracy difference on the results
the performance gain can be high with BLAS routines from an optimized
library
but we lose the instability detection.

The same conclusions would be valid with an HPC code using MPI.
CADNA-MPI routines ⇒ optimized floating-point MPI routines.

Application of our approach to real-life examples with realistic data sets.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 15 / 19

Thanks for your attention!

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 16 / 19

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 17 / 19

On the number of runs

2 or 3 runs are enough. To increase the number of runs is not necessary.

From the model, to increase by 1 the number of exact significant digits given by
CR , we need to multiply the size of the sample by 100.

Such an increase of N will only point out the limit of the model and its error
without really improving the quality of the estimation.

It has been shown that N = 3 is the optimal value. [Chesneaux & Vignes, 1988]

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 18 / 19

On the probability of the confidence interval

With β= 0.05 and N = 3,

the probability of overestimating the number of exact significant digits of at
least 1 is 0.054%

the probability of underestimating the number of exact significant digits of
at least 1 is 29%.

By choosing a confidence interval at 95%, we prefer to guarantee a minimal
number of exact significant digits with high probability (99.946%), even if we are
often pessimistic by 1 digit.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 19 / 19

