
Can we avoid rounding-error estimation in HPC
codes and still get trustworthy results?

Fabienne Jézéquel1, Stef Graillat1, Daichi Mukunoki2, Toshiyuki Imamura2,
Roman Iakymchuk1

1LIP6, Sorbonne Université, CNRS, Paris, France

2RIKEN Center for Computational Science, Kobe, Japan

13th International Workshop on Numerical Software Verification 2020
20-21 July 2020

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 1 / 33

Introduction

Increasing power of current computers
→ accelerators: GPUs, TPUs, FPGAs, etc.

Enable to solve more complex problems
→ Quantum field theory, supernova simulation, etc.

A high number of floating-point operations performed
→ Each of them can lead to a rounding error

⇒ Numerical validation is crucial ...but costful /
execution time overhead
development cost induced by the application of numerical validation
methods to HPC codes

Can we address this cost problem
...and still get trustworthy results?

Yes, when the input data is affected by rounding and/or measurement errors.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 2 / 33

Introduction

Increasing power of current computers
→ accelerators: GPUs, TPUs, FPGAs, etc.

Enable to solve more complex problems
→ Quantum field theory, supernova simulation, etc.

A high number of floating-point operations performed
→ Each of them can lead to a rounding error

⇒ Numerical validation is crucial

...but costful /
execution time overhead
development cost induced by the application of numerical validation
methods to HPC codes

Can we address this cost problem
...and still get trustworthy results?

Yes, when the input data is affected by rounding and/or measurement errors.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 2 / 33

Introduction

Increasing power of current computers
→ accelerators: GPUs, TPUs, FPGAs, etc.

Enable to solve more complex problems
→ Quantum field theory, supernova simulation, etc.

A high number of floating-point operations performed
→ Each of them can lead to a rounding error

⇒ Numerical validation is crucial ...but costful /
execution time overhead
development cost induced by the application of numerical validation
methods to HPC codes

Can we address this cost problem
...and still get trustworthy results?

Yes, when the input data is affected by rounding and/or measurement errors.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 2 / 33

Introduction

Increasing power of current computers
→ accelerators: GPUs, TPUs, FPGAs, etc.

Enable to solve more complex problems
→ Quantum field theory, supernova simulation, etc.

A high number of floating-point operations performed
→ Each of them can lead to a rounding error

⇒ Numerical validation is crucial ...but costful /
execution time overhead
development cost induced by the application of numerical validation
methods to HPC codes

Can we address this cost problem
...and still get trustworthy results?

Yes, when the input data is affected by rounding and/or measurement errors.
NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 2 / 33

Overview

1 Estimation of rounding errors:
Discrete Stochastic Arithmetic (DSA) and the CADNA library

2 Error induced by perturbed data

3 Our approach: combining DSA and standard floating-point arithmetic

4 Numerical experiments

5 Pros and cons of our approach

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 3 / 33

Probabilistic approach for numerical validation

operations are performed several times with random perturbations
→ accuracy estimation
analysis of the user code
→ no specific numerical algorithms

Several tools:
CADNA [Chesneaux, 1990], MCAlib [Frechling et al., 2015], SAM [S. Graillat et al.,
2011], VerifiCarlo [Denis et al., 2016], Verrou [Févotte et al., 2017]

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 4 / 33

Discrete Stochastic Arithmetic (DSA) [J. Vignes, 2004]

Principles
each operation is executed 3 times with a random rounding mode:
R → (R1,R2,R3) where each result Ri is rounded up or down with the same
probability
the number of correct digits in the results is estimated using Student’s test
with the confidence level 95%
operations are executed synchronously
⇒ detection of numerical instabilities

Ex: if (A>B) with A-B numerical noise
⇒ optimization of stopping criteria

Ex: stop when xn −xn+1 is numerical noise

Implementations of DSA
CADNA: for programs in double, single and/or half precision
http://cadna.lip6.fr

SAM: for arbitrary precision programs (based on MPFR)
http://www-pequan.lip6.fr/~jezequel/SAM

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 5 / 33

http://cadna.lip6.fr
http://www-pequan.lip6.fr/~jezequel/SAM

Discrete Stochastic Arithmetic (DSA) [J. Vignes, 2004]

Principles
each operation is executed 3 times with a random rounding mode:
R → (R1,R2,R3) where each result Ri is rounded up or down with the same
probability
the number of correct digits in the results is estimated using Student’s test
with the confidence level 95%
operations are executed synchronously
⇒ detection of numerical instabilities

Ex: if (A>B) with A-B numerical noise
⇒ optimization of stopping criteria

Ex: stop when xn −xn+1 is numerical noise

Implementations of DSA
CADNA: for programs in double, single and/or half precision
http://cadna.lip6.fr

SAM: for arbitrary precision programs (based on MPFR)
http://www-pequan.lip6.fr/~jezequel/SAM

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 5 / 33

http://cadna.lip6.fr
http://www-pequan.lip6.fr/~jezequel/SAM

The CADNA library http://cadna.lip6.fr

CADNA allows one to estimate rounding error propagation in any scientific
program written in C, C++ or Fortran.

CADNA enables one to estimate the numerical quality of any result and detect
numerical instabilities.

CADNA provides new numerical types, the stochastic types, which consist of:
3 floating point variables
an integer variable to store the accuracy.

All operators and mathematical functions are redefined for these types.
⇒ CADNA requires only a few modifications in user programs.

Performance overhead: ×4 memory, ≈×10 execution time

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 6 / 33

http://cadna.lip6.fr

The CADNA library http://cadna.lip6.fr

CADNA allows one to estimate rounding error propagation in any scientific
program written in C, C++ or Fortran.

CADNA enables one to estimate the numerical quality of any result and detect
numerical instabilities.

CADNA provides new numerical types, the stochastic types, which consist of:
3 floating point variables
an integer variable to store the accuracy.

All operators and mathematical functions are redefined for these types.
⇒ CADNA requires only a few modifications in user programs.

Performance overhead: ×4 memory, ≈×10 execution time
NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 6 / 33

http://cadna.lip6.fr

An example without/with CADNA

Computation of P (x, y) = 9x4 − y4 +2y2 [S.M. Rump, 1983]

#include <stdio.h>

double rump(double x, double y) {
return 9.0*x*x*x*x - y*y*y*y + 2.0*y*y;

}
int main(int argc, char **argv) {
double x, y;
x = 10864.0;
y = 18817.0;
printf("P1=%.14e\n", rump(x, y));
x = 1.0/3.0;
y = 2.0/3.0;
printf("P2=%.14e\n", rump(x, y));
return 0;

}

P1=2.00000000000000e+00
P2=8.02469135802469e–01

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 7 / 33

An example without/with CADNA

Computation of P (x, y) = 9x4 − y4 +2y2 [S.M. Rump, 1983]

#include <stdio.h>

double rump(double x, double y) {
return 9.0*x*x*x*x - y*y*y*y + 2.0*y*y;

}
int main(int argc, char **argv) {
double x, y;
x = 10864.0;
y = 18817.0;
printf("P1=%.14e\n", rump(x, y));
x = 1.0/3.0;
y = 2.0/3.0;
printf("P2=%.14e\n", rump(x, y));
return 0;

}

P1=2.00000000000000e+00
P2=8.02469135802469e–01

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 7 / 33

#include <stdio.h>

#include <cadna.h>

double rump(double x, double y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main(int argc, char **argv) {

cadna_init(-1);

double x, y;
x=10864.0; y=18817.0;
printf("P1=%.14e\n", rump(x, y));"
x=1.0/3.0; y=2.0/3.0;
printf("P2=%.14e\n", rump(x, y));"

cadna_end();

return 0;
}

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 8 / 33

#include <stdio.h>
#include <cadna.h>
double rump(double x, double y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main(int argc, char **argv) {

cadna_init(-1);

double x, y;
x=10864.0; y=18817.0;
printf("P1=%.14e\n", rump(x, y));"
x=1.0/3.0; y=2.0/3.0;
printf("P2=%.14e\n", rump(x, y));"

cadna_end();

return 0;
}

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 8 / 33

#include <stdio.h>
#include <cadna.h>
double rump(double x, double y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main(int argc, char **argv) {
cadna_init(-1);
double x, y;
x=10864.0; y=18817.0;
printf("P1=%.14e\n", rump(x, y));"
x=1.0/3.0; y=2.0/3.0;
printf("P2=%.14e\n", rump(x, y));"

cadna_end();

return 0;
}

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 8 / 33

#include <stdio.h>
#include <cadna.h>
double rump(double x, double y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main(int argc, char **argv) {
cadna_init(-1);
double x, y;
x=10864.0; y=18817.0;
printf("P1=%.14e\n", rump(x, y));"
x=1.0/3.0; y=2.0/3.0;
printf("P2=%.14e\n", rump(x, y));"
cadna_end();
return 0;

}

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 8 / 33

#include <stdio.h>
#include <cadna.h>
double rump(double x, double y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main(int argc, char **argv) {
cadna_init(-1);
double x, y;
x=10864.0; y=18817.0;
printf("P1=%.14e\n", rump(x, y));"
x=1.0/3.0; y=2.0/3.0;
printf("P2=%.14e\n", rump(x, y));"
cadna_end();
return 0;

}

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 8 / 33

#include <stdio.h>
#include <cadna.h>
double_st rump(double_st x, double_st y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main(int argc, char **argv) {
cadna_init(-1);
double_st x, y;
x=10864.0; y=18817.0;
printf("P1=%.14e\n", rump(x, y));"
x=1.0/3.0; y=2.0/3.0;
printf("P2=%.14e\n", rump(x, y));"
cadna_end();
return 0;

}

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 8 / 33

#include <stdio.h>
#include <cadna.h>
double_st rump(double_st x, double_st y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main(int argc, char **argv) {
cadna_init(-1);
double_st x, y;
x=10864.0; y=18817.0;
printf("P1=%.14e\n", rump(x, y));"
x=1.0/3.0; y=2.0/3.0;
printf("P2=%.14e\n", rump(x, y));"
cadna_end();
return 0;

}

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 8 / 33

#include <stdio.h>
#include <cadna.h>
double_st rump(double_st x, double_st y) {
return 9.0*x*x*x*x-y*y*y*y+2.0*y*y;

}
int main(int argc, char **argv) {
cadna_init(-1);
double_st x, y;
x=10864.0; y=18817.0;
printf("P1=%s\n", strp(rump(x, y)));"
x=1.0/3.0; y=2.0/3.0;
printf("P2=%s\n", strp(rump(x, y)));"
cadna_end();
return 0;

}

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 8 / 33

Results with CADNA
only correct digits are displayed

Self-validation detection: ON
Mathematical instabilities detection: ON
Branching instabilities detection: ON
Intrinsic instabilities detection: ON
Cancellation instabilities detection: ON
—————————————————————
P1= @.0 (no correct digits)
P2= 0.802469135802469E+000
—————————————————————
There are 2 numerical instabilities
2 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

A closer look at the floating-point values in P1 and P2:
P1= P2=
-1.400000000000000e+01 0.802469135802469e+00
-1.400000000000000e+01 0.802469135802469e+00
2.000000000000000e+00 0.802469135802469e+00

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 9 / 33

Outline

1 Discrete Stochastic Arithmetic (DSA) and the CADNA library

2 Error induced by perturbed data

3 Our approach: combining DSA and standard floating-point arithmetic

4 Numerical experiments

5 Pros and cons of our approach

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 10 / 33

Error induced by perturbed data
Definitions

Let y = f (x) be an exact result and ŷ = f̂ (x) be the associated computed result.

The forward error is the difference between y and ŷ .

The backward analysis tries to seek for ∆x s.t. ŷ = f (x +∆x).
∆x is the backward error associated with ŷ .
It measures the distance between the problem that is solved and the initial
one.

The condition number C of the problem is defined as:

C := lim
ε→0+

sup
|∆x|≤ε

[| f (x +∆x)− f (x)|
| f (x)| /

|∆x|
|x|

]
.

It measures the effect on the result of data perturbation.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 11 / 33

Error induced by perturbed data

The relative rounding error is denoted by u.

binary64 format (double precision): u = 2−53

binary32 format (single precision): u = 2−24.

If the algorithm is backward-stable (i.e. the backward error is of the order of u)

| f (x)− f̂ (x)|/| f (x)|.C u.

If the input data are perturbed, i.e. the input data are not x but x̂ = x(1+δ),
then one computes f̂ (x̂) with

| f (x)− f̂ (x̂)|/| f (x)|.C (u+|δ|).

If |δ|À u, the rounding error generated by f̂ is negligible w.r.t. C |δ|.
⇒ Estimating this rounding error may be avoided.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 12 / 33

Error induced by perturbed data

The relative rounding error is denoted by u.

binary64 format (double precision): u = 2−53

binary32 format (single precision): u = 2−24.

If the algorithm is backward-stable (i.e. the backward error is of the order of u)

| f (x)− f̂ (x)|/| f (x)|.C u.

If the input data are perturbed, i.e. the input data are not x but x̂ = x(1+δ),
then one computes f̂ (x̂) with

| f (x)− f̂ (x̂)|/| f (x)|.C (u+|δ|).

If |δ|À u, the rounding error generated by f̂ is negligible w.r.t. C |δ|.
⇒ Estimating this rounding error may be avoided.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 12 / 33

Outline

1 Discrete Stochastic Arithmetic (DSA) and the CADNA library

2 Error induced by perturbed data

3 Our approach: combining DSA and standard floating-point arithmetic

4 Numerical experiments

5 Pros and cons of our approach

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 13 / 33

Combining DSA and standard floating-point arithmetic

Computation routines are executed in a code that is controlled using DSA.

Their input data are affected by errors (rounding errors and/or measurement
errors).

We compare 2 kinds of computation:
with a call to CADNA routines
with 3 calls to classic routines.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 14 / 33

Computation with a call to CADNA routines

stochastic
data D

CADNA
routine(s)

stochastic
result R

D and R consist in stochastic arrays (each element is a triplet).

Every arithmetic operation is performed 3 times with the random rounding
mode.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 15 / 33

Our approach: computation with 3 calls to classic
routines

stochastic
data D

D2

D1

D3

classic routine(s)

classic routine(s)

classic routine(s)

R ′
2

R ′
1

R ′
3

stochastic
result R ′

input data: 3 classic floating-point arrays D1,D2,D3 created from the
triplets of D

We get 3 classic floating-point arrays R ′
1,R ′

2,R ′
3.

A stochastic array R ′ created from R ′
1,R ′

2,R ′
3 can be used in the next parts

of the code.

⇒ we compare the number of correct digits (estimated by CADNA) in R and R ′

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 16 / 33

Our approach: computation with 3 calls to classic
routines

stochastic
data D

D2

D1

D3

classic routine(s)

classic routine(s)

classic routine(s)

R ′
2

R ′
1

R ′
3

stochastic
result R ′

input data: 3 classic floating-point arrays D1,D2,D3 created from the
triplets of D

We get 3 classic floating-point arrays R ′
1,R ′

2,R ′
3.

A stochastic array R ′ created from R ′
1,R ′

2,R ′
3 can be used in the next parts

of the code.

⇒ we compare the number of correct digits (estimated by CADNA) in R and R ′

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 16 / 33

Outline

1 Discrete Stochastic Arithmetic (DSA) and the CADNA library

2 Error induced by perturbed data

3 Our approach: combining DSA and standard floating-point arithmetic

4 Numerical experiments

5 Pros and cons of our approach

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 17 / 33

Accuracy comparison

Data initialization
Each stochastic value is initialized as α10e

α: random variable uniformly distributed in [−1,1]

e: integer randomly generated in {0, ...,E } (DP: E = 20, SP: E = 3)
⇒ generation of random data with different orders of magnitude.

Data perturbation
Each input value is perturbed with a relative error δ using a CADNA function

Accuracy analysis
For i = 1, . . . ,n2 (matrix mult.) or for i = 1, . . . ,n (matrix-vector mult.)
we analyze:

the accuracy CR i of the element R i of R

the accuracy CR ′i of the element R ′i of R ′

∆i = ∣∣CR i −CR ′i
∣∣

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 18 / 33

Accuracy comparison

Data initialization
Each stochastic value is initialized as α10e

α: random variable uniformly distributed in [−1,1]

e: integer randomly generated in {0, ...,E } (DP: E = 20, SP: E = 3)
⇒ generation of random data with different orders of magnitude.

Data perturbation
Each input value is perturbed with a relative error δ using a CADNA function

Accuracy analysis
For i = 1, . . . ,n2 (matrix mult.) or for i = 1, . . . ,n (matrix-vector mult.)
we analyze:

the accuracy CR i of the element R i of R

the accuracy CR ′i of the element R ′i of R ′

∆i = ∣∣CR i −CR ′i
∣∣

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 18 / 33

Accuracy comparison for matrix multiplication

Multiplication of square random matrices of size 500:
accuracy accuracy difference

δ of R between R & R ′
mean min-max mean max

double precision
1.e-14 13.9 9-15 2.5e-02 2
1.e-13 12.8 8-15 5.8e-03 1
1.e-12 11.9 7-14 4.2e-04 1
1.e-11 10.9 6-13 2.4e-05 1

single precision
1.e-6 5.6 1-7 2.3e-1 2
1.e-5 4.8 0-7 1.9e-2 2
1.e-4 3.7 0-6 2.8e-3 1
1.e-3 2.8 0-5 2.8e-4 1

As the order of magnitude of δ ↗ the mean accuracy ↘ by 1 digit
High perturbation in single precision ⇒ low accuracy on the results
Low difference between the accuracy of R & R ′

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 19 / 33

Accuracy comparison for matrix-vector multiplication

Multiplication of a square random matrix of size 1000 with a vector:
accuracy accuracy difference

δ of R between R & R ′
mean min-max mean max

double precision
1.e-14 13.9 12-15 4.6e-02 1
1.e-13 12.7 11-14 7.0e-03 1
1.e-12 11.8 10-13 0 0
1.e-11 10.9 9-12 0 0

single precision
1.e-6 5.5 3-7 3.2e-1 2
1.e-5 4.8 2-6 2.4e-2 1
1.e-4 3.7 1-5 7.0e-3 1
1.e-3 2.8 0-4 1.0e-3 1

As the order of magnitude of δ ↗ the mean accuracy ↘ by 1 digit
High perturbation in single precision ⇒ low accuracy on the results
The accuracy difference between R & R ′ remains low
(in double precision, all the results have the same accuracy if δ≥ 10−12)
NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 20 / 33

Performance comparison
Matrix and matrix-vector multiplication

We analyze the performance of various double precision codes.
“CADNA":
naive sequential multiplication with CADNA
“naive seq":
our approach using a sequential naive multiplication
“naive OMP":
our approach using a naive parallel (OpenMP, 4 cores) multiplication
“MKL seq":
our approach using a sequential BLAS routine from the Intel MKL library
“MKL OMP":
our approach using a parallel (OpenMP, 4 cores) MKL BLAS routine

Array copies except with CADNA

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 21 / 33

Array copies in our experiments

stochastic
data D

D2

D1

D3

BLAS routine

BLAS routine

BLAS routine

R ′
2

R ′
1

R ′
3

stochastic
result R ′

Conversions: array-of-structures ↔ structure-of-arrays
before the BLAS routine: stochastic array → 3 classic arrays
after the BLAS routine: 3 classic arrays → stochastic array

Worst case (maximum array copy cost in total execution time)
BLAS routines continuously used
⇒ array copies only before and after them

Both computation and array copies parallelized in the OpenMP codes

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 22 / 33

Performance for matrix multiplication

Execution time including matrix multiplications and array copies:

10-4

10-3

10-2

10-1

100

101

102

103

 400 800 1200 1600 2000

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Matrix size (n)

CADNA
naive seq

naive OMP
MKL seq

MKL OMP

Despite memory copies, the codes using 3 classic matrix multiplications
perform better than the CADNA routine.
For matrices of size 2000, the MKL OpenMP implementation outperforms
the CADNA routine by a factor 294.
NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 23 / 33

Performance for matrix multiplication

Execution time for matrices of size 2000:

 0

 20

 40

 60

 80

 100

 120

 140

CADNA
naive seq

naive OMP

MKL seq

MKL OMP

E
xe

cu
ti

o
n
 t

im
e
 (

s)

computation
array copies

Most of the execution time is spent in matrix multiplication.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 24 / 33

Performance for matrix multiplication
CADNA vs our approach with MKL OMP

Core i7-8650U (1.9 GHz, 4 cores), n=2000:
CADNA Proposed w/ Speedup

MKL OMP
Comp 130 0.393 331x
Copy – 0.0495 –
Total 130 0.4425 294x

Dual-socket Xeon Gold 6126 (2.6 GHz, 12 cores×2), n=5000:
CADNA Proposed w/ Speedup

MKL OMP
Comp 2520 0.563 4476x
Copy – 0.0889 –
Total 2520 0.652 3865x

On large scale:
the performance gain increases
the array copy cost becomes visible
NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 25 / 33

Performance for matrix-vector multiplication

Execution time including matrix-vector multiplications and array copies:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2000 4000 6000 8000 10000

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Matrix size (n)

CADNA
naive seq

naive OMP
MKL seq

MKL OMP

The CADNA routine performs better than the other sequential codes.
From a certain matrix size, the OpenMP codes that use classic
floating-point arithmetic perform better than the CADNA code.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 26 / 33

Performance for matrix-vector multiplication

Execution time for matrices of size 10000:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

CADNA
naive seq

naive OMP

MKL seq

MKL OMP

E
xe

cu
ti

o
n
 t

im
e
 (

s)
computation
array copies

In the sequential codes that use classic floating-point arithmetic the main
part of the execution time is spent in array copies.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 27 / 33

Outline

1 Discrete Stochastic Arithmetic (DSA) and the CADNA library

2 Error induced by perturbed data

3 Our approach: combining DSA and standard floating-point arithmetic

4 Numerical experiments

5 Pros and cons of our approach

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 28 / 33

Pros and cons

Pros
performance gain:

DSA operations are avoided
use of vendor optimized libraries

applicability:
no code translation to a CADNA version

Cons
we lose CADNA features:

instability detection
accuracy improvement

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 29 / 33

Instability detection

Without CADNA:
numerical instabilities are not detected /
results with no correct digits appear as numerical noise ,

Example: matrix multiplication with catastrophic cancellations

Input data: square matrices A & B of size 10 in double precision
1st line of A: [1, ...,1,−1, ...,−1] (1st half: 1, 2nd half: -1)
each element of B set to 1
A and B pertubed with a relative error δ= 10−12

Results: C = A∗B with CADNA, C ′ = A∗B without CADNA
1st line of C and C ′: @.0 (numerical noise, triplet with no common digits)

With CADNA:
10 catastrophic cancellations are detected.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 30 / 33

Accuracy improvement with CADNA
Example: Gauss algorithm with pivoting

Input data:
We solve in single precision the system Ax = b with

A =


21 130 0 2.1
13 80 4.74 108 752
0 −0.4 3.9816 108 4.2
0 0 1.7 9 10−9

 b =


153.1

849.74
7.7816

2.6 10−8


A and b perturbed with a relative error δ= 10−6

Results: x with CADNA, x ′ without CADNA

x =


0.100E+001
0.999E+000

0.999999E-008
0.999999E+000

 x ′ =


@.0
@.0
@.0

0.999999E+000

 xexact =


1
1

10−8

1


NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 31 / 33

Accuracy improvement with CADNA
Example: Gauss algorithm with pivoting

Results: x with CADNA, x ′ without CADNA

x =


0.100E+001
0.999E+000

0.999999E-008
0.999999E+000

 x ′ =


@.0
@.0
@.0

0.999999E+000

 xexact =


1
1

10−8

1



Test for pivoting: if (|Ai , j | > pmax) ...
With CADNA a non-significant element is not chosen as a pivot.

Instabilities detected by CADNA:
There are 3 numerical instabilities
1 UNSTABLE BRANCHING(S)
1 UNSTABLE INTRINSIC FUNCTION(S)
1 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 31 / 33

Conclusions/Perspectives

In a code controlled using CADNA, if computation-intensive routines are
run with perturbed data,

classic BLAS routines can be executed 3 times instead of the CADNA
routines with almost no accuracy difference on the results
the performance gain can be high with BLAS routines from an optimized
library
but we lose the instability detection.

The same conclusions would be valid with an HPC code using MPI.
In the same conditions (computation-intensive routines & perturbed data)
CADNA-MPI routine ⇒ optimized floating-point MPI routines.

Application of our approach to real-life examples with realistic data sets.

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 32 / 33

Thanks for your attention!

NSV2020 Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? 33 / 33

	Discrete Stochastic Arithmetic (DSA) and the CADNA library
	Error induced by perturbed data
	Our approach: combining DSA and standard floating-point arithmetic
	Numerical experiments
	Pros and cons of our approach

